JPH08338806A - Gas concentration measuring device in oil - Google Patents
Gas concentration measuring device in oilInfo
- Publication number
- JPH08338806A JPH08338806A JP14480895A JP14480895A JPH08338806A JP H08338806 A JPH08338806 A JP H08338806A JP 14480895 A JP14480895 A JP 14480895A JP 14480895 A JP14480895 A JP 14480895A JP H08338806 A JPH08338806 A JP H08338806A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- oil
- temperature
- optical fiber
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
(57)【要約】
【目的】 絶縁油の温度が変化しても正確に油中ガス濃
度が測定できる油中ガス濃度測定装置を提供する。
【構成】 絶縁油の温度を検出する温度センサ25を設
け、この温度センサ25の検出した絶縁油の温度と上記
ガスセル内のガス濃度とから接続部2内の溶存ガスの濃
度を測定する測定部19を設けた。
(57) [Abstract] [Purpose] To provide an apparatus for measuring gas concentration in oil, which enables accurate measurement of gas concentration in oil even if the temperature of insulating oil changes. [Composition] A temperature sensor 25 for detecting the temperature of the insulating oil is provided, and a measuring unit for measuring the concentration of the dissolved gas in the connecting portion 2 from the temperature of the insulating oil detected by the temperature sensor 25 and the gas concentration in the gas cell. 19 was provided.
Description
【0001】[0001]
【産業上の利用分野】本発明は、OFケーブル内の絶縁
油中の溶存ガスを測定する油中ガス濃度測定装置に係
り、特に、絶縁油の温度が変化しても正確に油中ガス濃
度が測定できる油中ガス濃度測定装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-oil gas concentration measuring device for measuring dissolved gas in insulating oil in an OF cable, and more particularly, to an accurate in-oil gas concentration even if the temperature of the insulating oil changes. The present invention relates to an apparatus for measuring gas concentration in oil that can measure.
【0002】[0002]
【従来の技術】OFケーブルの劣化診断のために絶縁油
中の溶存ガスを測定することが行われている。絶縁油中
の溶存ガスは、主に炭化水素系のガス、他に水素、一酸
化炭素、二酸化炭素である。これらを測定するには接続
部内の絶縁油を採油して行われる。採油のときにはOF
ケーブル線路を一旦停電させ、接続部の注油孔を開いて
この注油孔より採油する。採油された絶縁油を工場等へ
持ち帰り、ガスクロマトグラフィで分析する。こうして
測定された種々のガスの濃度を基にして絶縁油の劣化、
即ち、OFケーブルの劣化の診断を行っている。2. Description of the Related Art Dissolved gas in insulating oil is measured for diagnosing deterioration of OF cables. The dissolved gas in the insulating oil is mainly a hydrocarbon-based gas, as well as hydrogen, carbon monoxide, and carbon dioxide. To measure these, the insulating oil in the connection part is sampled. OF for oil collection
Power out the cable line once, open the lubrication hole at the connection, and collect oil from this lubrication hole. The collected insulating oil is brought back to the factory and analyzed by gas chromatography. Deterioration of insulating oil based on the concentration of various gases measured in this way,
That is, the deterioration of the OF cable is diagnosed.
【0003】上記の方式は一旦OFケーブル線路を停止
させる必要があることや、対象となるOFケーブル線路
が長大であるため採油に手間がかかることから、近年で
は接続部の注油孔に油中の溶存ガスを検出するセンサを
取り付け、そのセンサの検知情報を常時監視する方式が
検討されつつある。In the above method, since it is necessary to stop the OF cable line once and it takes a lot of time to collect oil because the target OF cable line is long, in recent years, the oiling hole of the connecting portion is filled with oil. A method of mounting a sensor for detecting dissolved gas and constantly monitoring the detection information of the sensor is being studied.
【0004】例えば、図3に示される方式は、ガスの光
学的性質を利用すると共に、光ファイバを利用して遠隔
から油中溶存ガス濃度を測定するものである。具体的に
は、OFケーブル1の接続部2に油中ガスセンサ3が取
り付けられており、この油中ガスセンサ3内で検出され
るガスデータ信号は、光ファイバ31を伝送路としてガ
スデータ処理部13へ伝送される。ガスデータ処理部1
3はガスデータ信号からガス濃度を求める。このガス濃
度情報が劣化診断部14に送られ、劣化診断部14では
OFケーブル1の劣化診断がなされる。For example, the system shown in FIG. 3 utilizes the optical properties of gas and also measures the dissolved gas concentration in oil remotely using an optical fiber. Specifically, the in-oil gas sensor 3 is attached to the connection portion 2 of the OF cable 1, and the gas data signal detected in the oil-in-gas sensor 3 has a gas data processing unit 13 using the optical fiber 31 as a transmission path. Transmitted to. Gas data processing unit 1
3 obtains the gas concentration from the gas data signal. This gas concentration information is sent to the deterioration diagnosis unit 14, and the deterioration diagnosis unit 14 makes a deterioration diagnosis of the OF cable 1.
【0005】油中ガスセンサ3の構造は、簡単に述べる
と絶縁油32が満たされる油セル5と、その絶縁油中の
ガスが透過してくるガスセル7とで構成されている。油
セル5とガスセル7とは、ステンレス焼結金属に弗素樹
脂をコーティングしたもの等の透過膜6によって隔てら
れている。接続部2の絶縁油が油セル5に導入され、こ
の絶縁油32に溶存しているガスが透過膜6により透過
してガスセル7内に分離される。分離されたガスの濃度
は、ガスセル7内に特定の波長の光を透過させ、その光
の吸収量を基に検出される。この特定の波長の光を出射
する光源は図示されていないが、光ファイバ31はこの
特定の波長の光をガスセル7まで導く伝送路であると共
に油中ガスセンサ3内で検出されたガスデータ信号をガ
スデータ処理部に導く伝送路である。The structure of the in-oil gas sensor 3 is simply composed of an oil cell 5 filled with insulating oil 32 and a gas cell 7 through which the gas in the insulating oil permeates. The oil cell 5 and the gas cell 7 are separated by a permeable membrane 6 such as a sintered stainless metal coated with a fluorine resin. The insulating oil of the connecting portion 2 is introduced into the oil cell 5, and the gas dissolved in the insulating oil 32 permeates through the permeable membrane 6 and is separated into the gas cell 7. The concentration of the separated gas is detected on the basis of the amount of absorption of the light that allows light of a specific wavelength to pass through the gas cell 7. Although a light source that emits light of this specific wavelength is not shown, the optical fiber 31 is a transmission line that guides the light of this specific wavelength to the gas cell 7, and the gas data signal detected in the oil gas sensor 3 is transmitted. This is a transmission line leading to the gas data processing unit.
【0006】[0006]
【発明が解決しようとする課題】上記従来技術におい
て、透過膜で分離されたガスの濃度から油中溶存ガス濃
度を測定しているが、油温によってガスが透過膜を透過
する速度が異なるため、油中溶存ガス濃度を正確に測定
することは困難であった。In the above prior art, the dissolved gas concentration in oil is measured from the concentration of the gas separated by the permeable membrane, but the speed at which the gas permeates the permeable membrane differs depending on the oil temperature. It was difficult to measure the dissolved gas concentration in oil accurately.
【0007】油温によって透過膜の透過性がどのように
異なってくるかを、実験結果に基づいて説明する。ここ
では、ステンレス焼結金属に弗素樹脂の一種であるPF
Aを静電塗装した膜を用いた。How the permeability of the permeable membrane varies depending on the oil temperature will be described based on experimental results. Here, PF, which is a kind of fluororesin, is used for the sintered stainless steel.
A film obtained by electrostatically coating A was used.
【0008】ガスが溶存している油を油セルに入れ、ガ
スセル内にガスが透過してくるようにする。このとき、
油中ガスの透過式は次式(1)で表される。Oil in which gas is dissolved is put into an oil cell so that the gas permeates into the gas cell. At this time,
The permeation equation of gas in oil is represented by the following equation (1).
【0009】[0009]
【数1】 [Equation 1]
【0010】ここに、P 2 :ガスセル側のガス分圧(P
a) P 0 :ガスセル内の初期分圧(Pa) k :定数 (Pa/ppm) N :油中ガス濃度 (ppm) α :油中ガス透過係数 (l・m/m2 ・s・P
a) d :膜厚 (m) A :膜面積 (m2 ) τ :透過時間 (s) V :ガスセル側容積 (l) である。Where P 2 : Gas partial pressure on the gas cell side (P
a) P 0 : Initial partial pressure in gas cell (Pa) k: Constant (Pa / ppm) N: Gas concentration in oil (ppm) α: Gas permeability coefficient in oil (l · m / m 2 · s · P)
a) d: film thickness (m) A: film area (m 2 ) τ: permeation time (s) V: gas cell side volume (l).
【0011】(a) A/Vが小さい場合 上式(1)において、V、N、A、dは定数であり、P
2 、P 0 は実験で求められるので、必然的に透過係数α
を求めることができる。定数kはガスの種類、油温によ
って決定される定数であり、ここでは既に実験によって
求められている定数kを用いた。また、膜厚dは不確か
であるため透過係数をα/dで表すことにした。(A) When A / V is small In the above equation (1), V, N, A and d are constants and P
2 and P 0 are obtained experimentally, so the transmission coefficient α is inevitable.
Can be requested. The constant k is a constant determined by the type of gas and the oil temperature, and here, the constant k that has already been obtained by the experiment was used. Since the film thickness d is uncertain, the transmission coefficient is represented by α / d.
【0012】実験で求めたメタンガスの透過係数α/d
と油温Tとの関係を図4に示す。図4から油温によって
透過係数が異なっていることが確認できる。例えば、油
温40℃と80℃の場合を比較する。底面直径54m
m、肉厚2mm、長さ10cmの円筒形の油中ガスセン
サを想定し、膜面積A=0.017m2 、ガスセル側容
積V=0.196lとし、油中ガス濃度N=200pp
mとする。ガスセル内の初期分圧P 0 =0Paとし、5
00時間(1800000s)経過後の透過圧力及びガ
ス濃度を求める。図4を近似した直線式から、油温40
℃の場合の透過係数は8.2×10-11 l・m/m2 ・
s・Pa、80℃の場合の透過係数は2.9×10-10
l・m/m2 ・s・Paとなる。式(1)を用いて透過
圧力を求めると、40℃の場合、透過圧力は36.4P
a、ガス濃度は359ppmとなり、80℃の場合、5
7.0Pa、562ppmとなる。2つの場合で20.
6Pa(203ppm)も違うことがわかる。Experimentally determined methane gas permeability coefficient α / d
The relationship between the oil temperature and the oil temperature T is shown in FIG. From FIG. 4, it can be confirmed that the permeability coefficient differs depending on the oil temperature. For example, the case where the oil temperature is 40 ° C. and 80 ° C. are compared. Bottom diameter 54m
Assuming a cylindrical gas sensor in oil having a thickness of m, a wall thickness of 2 mm, and a length of 10 cm, the film area A is 0.017 m 2 , the gas cell side volume V is 0.196 l, and the gas concentration N in oil is 200 pp.
m. Initial partial pressure in gas cell P 0 = 0 Pa, 5
The permeation pressure and the gas concentration after 00 hours (1800000s) have been obtained. Oil temperature 40
The transmission coefficient at ℃ is 8.2 × 10 -11 l · m / m 2 ·
Transmission coefficient at s · Pa, 80 ° C is 2.9 × 10 -10
1 · m / m 2 · s · Pa. When the permeation pressure is calculated using the formula (1), the permeation pressure is 36.4 P at 40 ° C.
a, the gas concentration is 359 ppm, 5 at 80 ° C
It becomes 7.0 Pa and 562 ppm. 20 in two cases.
It can be seen that 6 Pa (203 ppm) is different.
【0013】油中溶存ガス濃度を測定する際には、この
透過圧力或いはガス濃度を検知し、検知結果から逆算
し、油中溶存ガス濃度を求めなければならない。油中溶
存ガス濃度を求める式は、式(1)を展開することによ
り次式(2)となる。When measuring the dissolved gas concentration in oil, it is necessary to detect the permeation pressure or the gas concentration and back-calculate from the detection result to obtain the dissolved gas concentration in oil. The formula for obtaining the dissolved gas concentration in oil becomes the following formula (2) by expanding the formula (1).
【0014】[0014]
【数2】 [Equation 2]
【0015】ここで、通常の油温を40℃、過渡期の油
温を80℃とする。油温を検知できないとすれば、過渡
期に油温が80℃に上昇していたことは不明であるか
ら、過渡期であっても通常の油温40℃の条件で油中溶
存ガス濃度を求めることになる。油温が80℃で透過圧
力57.0Pa(562ppm)であるときに、油温4
0℃と考えて上記逆算により油中溶存ガス濃度を算出す
ると313ppmになる。最初に仮定したように油中ガ
ス濃度N=200ppmであるから、逆算の結果は実際
とはかなり違った値になることがわかる。Here, the normal oil temperature is 40 ° C., and the oil temperature in the transition period is 80 ° C. If it is not possible to detect the oil temperature, it is not known that the oil temperature had risen to 80 ° C during the transition period. Therefore, even in the transition period, the dissolved gas concentration in oil can be determined under the normal oil temperature of 40 ° C. Will ask. When the oil temperature is 80 ° C and the permeation pressure is 57.0 Pa (562 ppm), the oil temperature 4
When the dissolved gas concentration in oil is calculated by the above back calculation assuming 0 ° C, it becomes 313 ppm. Since the gas concentration in oil N = 200 ppm as initially assumed, it can be seen that the result of back calculation has a value quite different from the actual value.
【0016】(b) A/Vが大きい場合 透過膜の面積が大きく、ガスセルの体積が小さい場合、
式(2)の第2項の分母は1となり、油中ガス濃度の算
出式は、式(3)のようになる。(B) When A / V is large When the area of the permeable membrane is large and the volume of the gas cell is small,
The denominator of the second term of the equation (2) is 1, and the equation for calculating the gas concentration in oil is as shown in the equation (3).
【0017】[0017]
【数3】 (Equation 3)
【0018】油中ガス濃度は、ガスセル内のガス分圧と
kによって算出できる。この場合、透過膜自体の透過特
性(透過係数)とは無関係となる。但し、kは油温、ガ
スの種類で決定される定数であり、メタンガスの場合、
次式(4)で与えられる。The gas concentration in oil can be calculated from the gas partial pressure in the gas cell and k. In this case, it has nothing to do with the transmission characteristic (transmission coefficient) of the permeable membrane itself. However, k is a constant determined by the oil temperature and the type of gas, and in the case of methane gas,
It is given by the following equation (4).
【0019】[0019]
【数4】 [Equation 4]
【0020】ここに、t:油温(℃) k:定数(Pa) よって、40℃の場合、k=0.25027、80℃の
場合、k=0.28982となる。ガスセル内のガス分
圧を同じとすると、算出される油中ガス濃度は、40℃
の場合で80℃の場合の1.2倍となる。Here, t: oil temperature (° C.) k: constant (Pa) Therefore, at 40 ° C., k = 0.25027, and at 80 ° C., k = 0.28982. If the gas partial pressure in the gas cell is the same, the calculated gas concentration in oil is 40 ° C.
In the case of, it is 1.2 times that in the case of 80 ° C.
【0021】以上述べたように、(a)のA/Vが小さ
い場合も、(b)のA/Vが大きい場合もガスセル内の
ガス分圧(濃度)から油中ガス濃度を求めると、油温に
よって不正確になることがわかる。As described above, when the A / V in (a) is small and the A / V in (b) is large, the gas concentration in oil is calculated from the gas partial pressure (concentration) in the gas cell. It can be seen that the oil temperature makes it inaccurate.
【0022】そこで、本発明の目的は、上記課題を解決
し、絶縁油の温度が変化しても正確に油中ガス濃度が測
定できる油中ガス濃度測定装置を提供することにある。Therefore, an object of the present invention is to solve the above problems and provide a gas concentration measuring device for oil which can accurately measure the gas concentration in oil even if the temperature of the insulating oil changes.
【0023】[0023]
【課題を解決するための手段】上記目的を達成するため
に本発明は、OFケーブルの接続部に接続部内の絶縁油
から溶存ガスを分離するガスセルを設け、このガスセル
に光ファイバを接続し、ガスセル内のガス濃度を上記光
ファイバからの光の透過により検出するようにした油中
ガス濃度測定装置において、絶縁油の温度を検出する温
度センサを設け、この温度センサの検出した絶縁油の温
度と上記ガスセル内のガス濃度とから接続部内の溶存ガ
スの濃度を測定する測定部を設けたものである。In order to achieve the above object, the present invention provides a gas cell for separating a dissolved gas from insulating oil in the connection portion at a connection portion of an OF cable, and connecting an optical fiber to the gas cell, In an oil gas concentration measuring device adapted to detect the gas concentration in a gas cell by transmitting light from the optical fiber, a temperature sensor for detecting the temperature of insulating oil is provided, and the temperature of the insulating oil detected by this temperature sensor is set. And a measuring part for measuring the concentration of the dissolved gas in the connection part from the gas concentration in the gas cell.
【0024】また、上記光ファイバを自身に沿った温度
分布を測定する温度分布センサとし、この光ファイバを
上記ガスセルの周囲を通るように布設して同一の光ファ
イバでガス濃度と絶縁油の温度とを検出させてもよい。Further, the optical fiber is used as a temperature distribution sensor for measuring the temperature distribution along itself, and the optical fiber is laid so as to pass around the gas cell, and the same optical fiber is used for gas concentration and temperature of insulating oil. May be detected.
【0025】[0025]
【作用】上記構成により、温度センサは絶縁油の温度を
検出する。他方、ガスセル内のガス濃度は光ファイバか
らの光の透過により検出される。前記のように、透過膜
の温度特性が分かっているので、温度センサの検出結果
から透過係数を求め、この透過係数を用いれば、油中ガ
ス濃度の正確な測定ができる。With the above structure, the temperature sensor detects the temperature of the insulating oil. On the other hand, the gas concentration in the gas cell is detected by the transmission of light from the optical fiber. As described above, since the temperature characteristic of the permeable membrane is known, the permeation coefficient is obtained from the detection result of the temperature sensor, and if this permeation coefficient is used, the gas concentration in oil can be accurately measured.
【0026】また、温度分布センサ、例えばラマン散乱
光を利用した光ファイバ分布型温度センサを用いるよう
にし、その光ファイバとガス濃度検出用の光ファイバを
兼用とすることもできる。即ち、光ファイバをガスセル
の周囲を通るように布設し、光ファイバに沿った温度分
布からガスセルの位置での温度を取り出すようにする。Further, a temperature distribution sensor, for example, an optical fiber distribution type temperature sensor utilizing Raman scattered light may be used, and the optical fiber and the gas concentration detecting optical fiber may be used in common. That is, the optical fiber is laid so as to pass around the gas cell, and the temperature at the position of the gas cell is extracted from the temperature distribution along the optical fiber.
【0027】[0027]
【実施例】以下本発明の一実施例を添付図面に基づいて
詳述する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.
【0028】図1に示されるように、OFケーブル1に
はその長手方向に沿って間隔を隔てて接続部(JB)2
が設けられている。図1では接続部2が2つ示されてい
るので、以下区別する場合は2a,2bのように符号に
a,bを加える。本発明に係る油中ガスセンサ3は、接
続部2の採油孔4に装着されている。油中ガスセンサ3
は接続部2に連通する油セル5と、ステンレス焼結金属
に弗素樹脂をコーティングした膜等のガス分離膜6と、
ガス分離膜により油セルから隔てられているガスセル7
とからなり、ガスセル7にはガス濃度測定用の光が透過
できるように入射窓8と出射窓9とが対向させて設けら
れている。As shown in FIG. 1, the OF cable 1 has connection portions (JB) 2 spaced apart along the longitudinal direction thereof.
Is provided. Since two connecting portions 2 are shown in FIG. 1, a and b are added to the reference numerals such as 2a and 2b when differentiating them below. The in-oil gas sensor 3 according to the present invention is attached to the oil collection hole 4 of the connection portion 2. Gas sensor 3 in oil
Is an oil cell 5 communicating with the connecting portion 2, a gas separation membrane 6 such as a membrane made of a stainless sintered metal coated with a fluororesin,
Gas cell 7 separated from the oil cell by a gas separation membrane
The gas cell 7 is provided with an entrance window 8 and an exit window 9 facing each other so that light for measuring gas concentration can be transmitted.
【0029】一方、接続部2の遠隔にある中央監視所1
0には、光スイッチ11、油温測定部12、ガスデータ
処理部13、劣化診断部14が設けられており、油温測
定部12とガスデータ処理部13とは光スイッチ11に
光結合されている。送信用光ファイバ15(15a,1
5b)が光スイッチ11から各ガスセル3の入射窓8ま
で布設されており、受信用光ファイバ16がガスデータ
処理部13から各ガスセル3の出射窓側に設けた光スイ
ッチ17の一方の出力端まで布設されている。各ガスセ
ル7の出射窓に結合されている光ファイバ18が、油中
ガスセンサ3の周囲に螺旋状に巻き付けられ、それから
上記光スイッチ17の入力端に結合されている。光スイ
ッチ17の他方の出力端は、その下流側の接続部2bの
ための送信用光ファイバ15に結合されている。On the other hand, the central monitoring station 1 remote from the connection unit 2
0 is provided with an optical switch 11, an oil temperature measuring unit 12, a gas data processing unit 13, and a deterioration diagnosing unit 14, and the oil temperature measuring unit 12 and the gas data processing unit 13 are optically coupled to the optical switch 11. ing. Transmission optical fiber 15 (15a, 1
5b) is laid from the optical switch 11 to the entrance window 8 of each gas cell 3, and the receiving optical fiber 16 extends from the gas data processing unit 13 to one output end of the optical switch 17 provided on the exit window side of each gas cell 3. It has been laid. An optical fiber 18 coupled to the emission window of each gas cell 7 is spirally wound around the in-oil gas sensor 3 and then coupled to the input end of the optical switch 17. The other output end of the optical switch 17 is coupled to the transmission optical fiber 15 for the connection portion 2b on the downstream side thereof.
【0030】油温測定部12は、送信用光ファイバ15
中で発生するラマン散乱光から送信用光ファイバ15に
沿った温度分布を測定するものである。油温測定部12
が測定動作をしているとき、光ファイバ18は絶縁油の
温度を検出する温度センサ25となる。ガスデータ処理
部13は、送信用光ファイバ15からガスセル7を経由
し受信用光ファイバ16で受けとった光からガスセル7
中のガス濃度を測定するものである。また、油温測定部
12及びガスデータ処理部13には図示しないがそれぞ
れ光源が内蔵されている。劣化診断部14は、ガス濃度
に絶縁油の温度を加味して接続部2内の溶存ガスの濃度
を測定する測定部19を有し、その溶存ガスの濃度の測
定結果からOFケーブル1の劣化を診断するものであ
る。The oil temperature measuring section 12 includes an optical fiber 15 for transmission.
The temperature distribution along the transmitting optical fiber 15 is measured from the Raman scattered light generated therein. Oil temperature measuring unit 12
Is performing a measurement operation, the optical fiber 18 serves as a temperature sensor 25 that detects the temperature of the insulating oil. The gas data processing unit 13 uses the light received from the optical fiber 15 for transmission via the gas cell 7 and the optical fiber 16 for reception to detect the gas cell 7
It measures the gas concentration inside. Although not shown, the oil temperature measuring unit 12 and the gas data processing unit 13 each have a built-in light source. The deterioration diagnosis unit 14 has a measurement unit 19 that measures the concentration of the dissolved gas in the connection unit 2 by adding the temperature of the insulating oil to the gas concentration, and the deterioration of the OF cable 1 is determined from the measurement result of the concentration of the dissolved gas. To diagnose.
【0031】次に実施例の作用を述べる。Next, the operation of the embodiment will be described.
【0032】ガスデータ処理部13内の光源から出射さ
れた光は、送信用光ファイバ15aで油中ガスセンサ3
a内に伝送され、ガス濃度情報の検出に使用される。こ
こで検出されたガス濃度情報は、受信用光ファイバ16
でガスデータ処理部13に伝送される。光スイッチ11
を切り換えることにより、他の油中ガスセンサ3bの情
報を得ることができる。The light emitted from the light source in the gas data processing section 13 is transmitted through the transmission optical fiber 15a to the gas sensor 3 in oil.
It is transmitted in a and used for detecting gas concentration information. The gas concentration information detected here is the optical fiber 16 for reception.
Is transmitted to the gas data processing unit 13. Optical switch 11
It is possible to obtain information of the other in-oil gas sensor 3b by switching between.
【0033】一方、油中ガスセンサ3の周囲に巻き付け
た光ファイバ18で検出される温度情報も同時に受信用
光ファイバ16を介してガスデータ処理部13に伝送さ
れる。温度情報はガス濃度情報と一緒に劣化診断部14
に送られる。On the other hand, the temperature information detected by the optical fiber 18 wound around the oil gas sensor 3 is also transmitted to the gas data processing unit 13 through the receiving optical fiber 16 at the same time. The temperature information and the gas concentration information together with the deterioration diagnosis unit 14
Sent to
【0034】1つの油中ガスセンサ3aで、ガス濃度を
求める際には、ガスデータ処理部13内の光源、光スイ
ッチ11、送信用光ファイバ15a、光ファイバ18、
受信用光ファイバ16、ガスデータ処理部13が動作
し、このとき光スイッチ17によって他の油中ガスセン
サ3bへの伝送路は遮断される。従って、1つの油中ガ
スセンサ3aで検出された情報のみが受信用光ファイバ
16を介してガスデータ処理部13に伝送され、ガスデ
ータ処理部13でガスセル7内のガス濃度が求められ
る。When the gas concentration in one gas sensor 3a is obtained, the light source in the gas data processing unit 13, the optical switch 11, the transmission optical fiber 15a, the optical fiber 18,
The receiving optical fiber 16 and the gas data processing unit 13 operate, and at this time, the optical switch 17 shuts off the transmission path to the other gas sensor 3b in oil. Therefore, only the information detected by one gas sensor 3a in oil is transmitted to the gas data processing unit 13 via the receiving optical fiber 16, and the gas data processing unit 13 obtains the gas concentration in the gas cell 7.
【0035】このとき、ガス分離膜6の透過性は、従来
例で説明したように油温によって異なる。そこで、ガス
濃度検出後、次のように温度検出が行われる。At this time, the permeability of the gas separation membrane 6 differs depending on the oil temperature as described in the conventional example. Therefore, after detecting the gas concentration, the temperature is detected as follows.
【0036】光スイッチ11を切り換えることにより、
油温測定部12内の光源から出射された光が送信用光フ
ァイバ15aを介して油中ガスセンサ3aに導かれる。
この光はガスセル7aを透過し、光ファイバ18を経由
して光スイッチ17に至る。このとき光スイッチ17に
より光を油中ガスセンサ3bに導く。光は、各ガスセル
7を透過する。各ガスセル7内のガス分子によって起き
るラマン散乱光は、送信用光ファイバ15aを介して油
温測定部12に伝送される。油温測定部12では伝送路
に沿った温度分布が得られ、各ガスセル7の距離に応じ
て各ガスセル7の温度、即ち各油中ガスセンサ3の絶縁
油の温度が測定される。なお、各油中ガスセンサ3の距
離は、油温測定部12から出射される光が往復する時間
より求まる。By switching the optical switch 11,
The light emitted from the light source in the oil temperature measuring unit 12 is guided to the oil gas sensor 3a via the transmission optical fiber 15a.
This light passes through the gas cell 7a and reaches the optical switch 17 via the optical fiber 18. At this time, the light is guided to the in-oil gas sensor 3b by the optical switch 17. The light passes through each gas cell 7. Raman scattered light generated by gas molecules in each gas cell 7 is transmitted to the oil temperature measurement unit 12 via the transmission optical fiber 15a. The oil temperature measuring unit 12 obtains a temperature distribution along the transmission path, and measures the temperature of each gas cell 7, that is, the temperature of the insulating oil of each in-oil gas sensor 3 according to the distance between each gas cell 7. The distance between the in-oil gas sensors 3 is obtained from the time when the light emitted from the oil temperature measuring unit 12 reciprocates.
【0037】以上のように、同一の光ファイバを使用し
て油温とガス濃度の双方が求められる。劣化診断部14
では油温とガス濃度により、OFケーブル1の劣化診断
が行われる。As described above, both the oil temperature and the gas concentration are obtained using the same optical fiber. Degradation diagnosis unit 14
Then, the deterioration diagnosis of the OF cable 1 is performed based on the oil temperature and the gas concentration.
【0038】次に、本発明の他の実施例を図2を用いて
説明する。Next, another embodiment of the present invention will be described with reference to FIG.
【0039】この例では、OFケーブル1の接続部2が
3つ示されている。各接続部2に装着された油中ガスセ
ンサ3は、前記実施例と同じように油セル5、ガス分離
膜6及びガスセル7から構成されている。但し、ガスセ
ル7には入射窓8に対向させて反射部20が形成されて
いる。各油中ガスセンサ3の入射窓8に結合されている
光ファイバ22が1つの濃度測定用光ファイバ21に結
合され、濃度測定用光ファイバ21が中央監視所10の
ガスデータ処理部13まで布設されている。In this example, three connecting portions 2 of the OF cable 1 are shown. The in-oil gas sensor 3 attached to each connecting portion 2 is composed of an oil cell 5, a gas separation membrane 6 and a gas cell 7 as in the above-mentioned embodiment. However, the gas cell 7 is provided with a reflecting portion 20 facing the entrance window 8. The optical fiber 22 coupled to the entrance window 8 of each in-oil gas sensor 3 is coupled to one concentration measuring optical fiber 21, and the concentration measuring optical fiber 21 is laid up to the gas data processing unit 13 of the central monitoring station 10. ing.
【0040】一方、中央監視所10の油温測定部12か
らは、1本の油温測定用光ファイバ23が各油中ガスセ
ンサ3の油セル5を貫通して布設されている。各油中ガ
スセンサ3の油セル5内では、油温測定用光ファイバ2
3が所定のファイバ長を内蔵させるべくループに形成さ
れている。On the other hand, one oil temperature measuring optical fiber 23 is laid from the oil temperature measuring section 12 of the central monitoring station 10 so as to penetrate the oil cell 5 of each in-oil gas sensor 3. In the oil cell 5 of each in-oil gas sensor 3, the optical fiber 2 for oil temperature measurement is used.
3 is formed in a loop to accommodate a predetermined fiber length.
【0041】この例では、ガスデータ処理部13は、濃
度測定用光ファイバ21を介して各ガスセル7のガスデ
ータを得る。ガスデータ処理部13で各ガスセル7内の
ガス濃度が求められ、これらは劣化診断部14に送られ
る。油温測定部12は、油温測定用光ファイバ23を用
いて一定の時間間隔毎に各油セル5の絶縁油の温度を測
定する。これらも劣化診断部14に送られる。劣化診断
部14内の測定部19は、ガス濃度に絶縁油の温度を加
味して各接続部2内の溶存ガスの濃度を測定する。そし
て、劣化診断部14でOFケーブル1の劣化診断が行わ
れる。In this example, the gas data processing unit 13 obtains gas data of each gas cell 7 via the optical fiber 21 for concentration measurement. The gas data processing unit 13 obtains the gas concentration in each gas cell 7, and these are sent to the deterioration diagnosis unit 14. The oil temperature measuring unit 12 measures the temperature of the insulating oil in each oil cell 5 at regular time intervals by using the oil temperature measuring optical fiber 23. These are also sent to the deterioration diagnosis unit 14. The measurement unit 19 in the deterioration diagnosis unit 14 measures the concentration of the dissolved gas in each connection unit 2 by adding the temperature of the insulating oil to the gas concentration. Then, the deterioration diagnosis unit 14 performs deterioration diagnosis of the OF cable 1.
【0042】[0042]
【発明の効果】本発明は次の如き優れた効果を発揮す
る。The present invention exhibits the following excellent effects.
【0043】(1)絶縁油の温度が変化しても正確に油
中ガス濃度が測定できる。(1) The gas concentration in oil can be accurately measured even if the temperature of the insulating oil changes.
【0044】(2)ガス濃度と油温とが同じ光ファイバ
で測定でき、経済的である。(2) The gas concentration and the oil temperature can be measured with the same optical fiber, which is economical.
【0045】(3)光ファイバを用いているので電磁界
の影響を受けずに測定ができる。(3) Since the optical fiber is used, the measurement can be performed without being affected by the electromagnetic field.
【図1】本発明の一実施例を示すOFケーブルの劣化診
断システムのブロック図である。FIG. 1 is a block diagram of a deterioration diagnosis system for an OF cable showing an embodiment of the present invention.
【図2】本発明の他の実施例を示すOFケーブルの劣化
診断システムのブロック図である。FIG. 2 is a block diagram of a deterioration diagnosis system for an OF cable showing another embodiment of the present invention.
【図3】従来例を示すOFケーブルの劣化診断システム
のブロック図である。FIG. 3 is a block diagram of a deterioration diagnosis system for an OF cable showing a conventional example.
【図4】メタンガスの透過係数と油温の関係を表わした
グラフである。FIG. 4 is a graph showing the relationship between methane gas permeation coefficient and oil temperature.
2 接続部 7 ガスセル 19 測定部 25 温度センサ 2 Connection part 7 Gas cell 19 Measuring part 25 Temperature sensor
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 晃之 茨城県日立市日高町5丁目1番1号 日立 電線株式会社オプトロシステム研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akiyuki Nakamura 5-1-1 Hidaka-cho, Hitachi-shi, Ibaraki Hitachi Cable Co., Ltd.
Claims (2)
油から溶存ガスを分離するガスセルを設け、このガスセ
ルに光ファイバを接続し、ガスセル内のガス濃度を上記
光ファイバからの光の透過により検出するようにした油
中ガス濃度測定装置において、絶縁油の温度を検出する
温度センサを設け、この温度センサの検出した絶縁油の
温度と上記ガスセル内のガス濃度とから接続部内の溶存
ガスの濃度を測定する測定部を設けたことを特徴とする
油中ガス濃度測定装置。1. An OF cable is provided with a gas cell for separating dissolved gas from insulating oil in the connection portion, an optical fiber is connected to the gas cell, and the gas concentration in the gas cell is adjusted by transmitting light from the optical fiber. In the gas concentration measuring device for oil to be detected, a temperature sensor for detecting the temperature of the insulating oil is provided, and the temperature of the insulating oil detected by this temperature sensor and the gas concentration in the gas cell are used to measure the dissolved gas in the connection portion. An in-oil gas concentration measuring device comprising a measuring unit for measuring the concentration.
を測定する温度分布センサとし、この光ファイバを上記
ガスセルの周囲を通るように布設して同一の光ファイバ
でガス濃度と絶縁油の温度とを検出させることを特徴と
する請求項1記載の油中ガス濃度測定装置。2. The optical fiber is used as a temperature distribution sensor for measuring a temperature distribution along itself, and the optical fiber is laid so as to pass around the gas cell, and the gas concentration and the temperature of the insulating oil are the same with the optical fiber. 2. The apparatus for measuring gas concentration in oil according to claim 1, wherein
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP14480895A JPH08338806A (en) | 1995-06-12 | 1995-06-12 | Gas concentration measuring device in oil |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP14480895A JPH08338806A (en) | 1995-06-12 | 1995-06-12 | Gas concentration measuring device in oil |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH08338806A true JPH08338806A (en) | 1996-12-24 |
Family
ID=15370952
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP14480895A Pending JPH08338806A (en) | 1995-06-12 | 1995-06-12 | Gas concentration measuring device in oil |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH08338806A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007101547A (en) * | 2005-09-30 | 2007-04-19 | General Electric Co <Ge> | Chemical substance sensing device, system and method of optical fiber type |
| CN100351624C (en) * | 2005-01-13 | 2007-11-28 | 上海众毅工业控制技术有限公司 | Dissolved gas analyzer of electric power transformer oil based on Raman technology |
| JP2008528983A (en) * | 2005-01-28 | 2008-07-31 | バイエル・テクノロジー・サービシーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Mechanical coupling between near-infrared material concentration measurement and temperature profile measurement by fiber Bragg grating of glass fiber |
| CN114778455A (en) * | 2022-04-24 | 2022-07-22 | 上海交通大学 | A MEMS fiber optic sensor and its constituted state monitoring system for low-oil equipment |
-
1995
- 1995-06-12 JP JP14480895A patent/JPH08338806A/en active Pending
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100351624C (en) * | 2005-01-13 | 2007-11-28 | 上海众毅工业控制技术有限公司 | Dissolved gas analyzer of electric power transformer oil based on Raman technology |
| JP2008528983A (en) * | 2005-01-28 | 2008-07-31 | バイエル・テクノロジー・サービシーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Mechanical coupling between near-infrared material concentration measurement and temperature profile measurement by fiber Bragg grating of glass fiber |
| JP2007101547A (en) * | 2005-09-30 | 2007-04-19 | General Electric Co <Ge> | Chemical substance sensing device, system and method of optical fiber type |
| CN114778455A (en) * | 2022-04-24 | 2022-07-22 | 上海交通大学 | A MEMS fiber optic sensor and its constituted state monitoring system for low-oil equipment |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101542272B (en) | Apparatus and method for optically determining the presence of carbon dioxide | |
| US4630482A (en) | Method and apparatus for ultrasonic measurements of a medium | |
| US6640625B1 (en) | Method and apparatus for measuring fluid density downhole | |
| NO964618L (en) | Method and apparatus for analyzing glucose in a biological sample | |
| CN108414113B (en) | Fire alarm system and method for predicting optical fiber temperature with multi-point temperature dispersion coefficient | |
| WO2003023370A3 (en) | System, method and computer program for conducting optical transmission measurements and evaluating determined measuring variables | |
| EP3295151B1 (en) | Hollow fibre waveguide gas cells | |
| EA200201084A1 (en) | SPECTROSCOPIC DETECTION AND ANALYSIS OF METHANE IN THE NATURAL MERGENCY IN METHANE ASSEMBLY IN COALS | |
| CA2677516A1 (en) | Apparatus for determining transverse velocity or temperature of a fluid in a pipe | |
| CN111189592A (en) | Distributed optical fiber detection system for leakage of acidic medium conveying pipeline and detection method thereof | |
| US4320665A (en) | Method and means for measuring flow of a two phase fluid | |
| US6923040B2 (en) | Device and process for measuring breath alcohol | |
| US20050210956A1 (en) | Method of identifying and detecting the concentrations of multiple species by means of a spectrophone | |
| JPH08338806A (en) | Gas concentration measuring device in oil | |
| EP1353173B1 (en) | Acoustic gas monitor | |
| US20110199604A1 (en) | Optical fiber hydrogen detection system and method | |
| JP7020476B2 (en) | Gas detection system, gas detection method and program | |
| CN214584891U (en) | Extraction type explosion-proof gas analysis device | |
| Gottwald et al. | Single-port optical access for spectroscopic measurements in industrial flue gas ducts | |
| CN211477522U (en) | Leakage distributed optical fiber detection system for acidic medium conveying pipeline | |
| JP3210491B2 (en) | Inner diameter measurement method | |
| JP2001307924A (en) | Deterioration diagnosis device for oil-filled transformer | |
| EP4339594A1 (en) | Water quality sensor and method for measuring concentration of substance in water | |
| JP2002124425A (en) | Method and apparatus for diagnosing deterioration of oil-filled electrical equipment | |
| EP3910328B1 (en) | Millimeter-wave and ultrasound sensors for fluid mixture parameter determination |