JPH08339973A - Formation of aluminum thin film - Google Patents
Formation of aluminum thin filmInfo
- Publication number
- JPH08339973A JPH08339973A JP16834195A JP16834195A JPH08339973A JP H08339973 A JPH08339973 A JP H08339973A JP 16834195 A JP16834195 A JP 16834195A JP 16834195 A JP16834195 A JP 16834195A JP H08339973 A JPH08339973 A JP H08339973A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum
- alh
- forming
- thin film
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 68
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 62
- 239000010409 thin film Substances 0.000 title claims abstract description 19
- 230000015572 biosynthetic process Effects 0.000 title abstract description 3
- 239000010408 film Substances 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000012808 vapor phase Substances 0.000 claims abstract description 10
- 239000000126 substance Substances 0.000 claims abstract description 9
- SPRIOUNJHPCKPV-UHFFFAOYSA-N hydridoaluminium Chemical compound [AlH] SPRIOUNJHPCKPV-UHFFFAOYSA-N 0.000 claims description 40
- 239000007789 gas Substances 0.000 claims description 22
- 229910052739 hydrogen Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 239000002994 raw material Substances 0.000 claims description 8
- -1 olefin hydrocarbons Chemical class 0.000 claims description 6
- 125000000217 alkyl group Chemical group 0.000 claims description 5
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims description 5
- 150000001412 amines Chemical class 0.000 claims description 5
- 229930195733 hydrocarbon Natural products 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 2
- 239000000463 material Substances 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体装置およびディ
スプレイ装置におけるアルミニウム薄膜の形成方法に関
し、特に層間接続を有する配線の形成方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an aluminum thin film in a semiconductor device and a display device, and more particularly to a method for forming a wiring having an interlayer connection.
【0002】[0002]
【従来の技術】半導体集積回路及びディスプレイ装置の
高密度、高集積化は、微細加工技術によって支えられて
いる。配線用アルミニウム薄膜の形成過程では、従来の
スパッタリング法、蒸着法などに代わり、段差被覆性
(ステップカバレッジ)に優れた気相化学成長(CV
D)法が適用されようとしている。2. Description of the Related Art High density and high integration of semiconductor integrated circuits and display devices are supported by fine processing technology. In the process of forming an aluminum thin film for wiring, vapor phase chemical growth (CV) having excellent step coverage is used instead of the conventional sputtering method, vapor deposition method, or the like.
Method D) is about to be applied.
【0003】従来のアルミニウム薄膜の形成方法として
は、例えば文献(Appl. Phys. Lett. No.57、第1221
頁、1990年)に記載されているように、気相化学成長法
(「CVD法」という)で接続孔内にのみ選択的にアルミ
ニウムを堆積(deposit)させた後、高周波プラズマで
励起された原料ガスを基板に照射し、基板全面に配線層
となるAl膜を形成する方法がある。すなわち、図2を参
照して、CVD法により接続孔(コンタクトホール)内に
選択的に第2のアルミニウム膜を堆積させた後(図2
(B)参照)、高周波プラズマで励起されたアルミニウ
ムを含む原料ガス(例えばAl(CH3)2H)9を基板に照射
し(図2(C)参照)、一括CVD法により基板全面に配
線層となる第3のアルミニウム膜8を形成する(図2
(D)参照)。As a conventional method for forming an aluminum thin film, for example, a reference (Appl. Phys. Lett. No. 57, No. 1221) is used.
(1990, p. 1990), aluminum was selectively deposited only in the contact holes by vapor phase chemical vapor deposition (referred to as “CVD method”) and then excited by high frequency plasma. There is a method of irradiating a substrate with a source gas and forming an Al film to be a wiring layer on the entire surface of the substrate. That is, referring to FIG. 2, after the second aluminum film is selectively deposited in the connection hole (contact hole) by the CVD method (FIG.
(See (B)), irradiating the substrate with a source gas (for example, Al (CH 3 ) 2 H) 9 containing aluminum excited by high-frequency plasma (see FIG. 2C), and wiring the entire surface of the substrate by a collective CVD method. A third aluminum film 8 to be a layer is formed (FIG. 2
(D)).
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上述し
た従来例では、選択CVDと一括CVDの切り替えに高価な高
周波プラズマ装置を必要とする。さらに、アルミニウム
薄膜形成装置が大型化するため、フロアの専有面積が増
加する。これらによって、半導体装置やディスプレイ装
置の製造コストが上昇するという問題点がある。However, in the above-mentioned conventional example, an expensive high-frequency plasma device is required for switching between selective CVD and collective CVD. Further, since the aluminum thin film forming apparatus becomes large in size, the area occupied by the floor increases. Due to these, there is a problem that the manufacturing cost of the semiconductor device and the display device increases.
【0005】従って、本発明は上記問題点を解消し、接
続孔をアルミニウムにより埋め込み、かつ配線層となる
アルミニウム薄膜を選択CVDと一括CVDの切り替えにより
実現するアルミニウム薄膜の形成方法を提供することを
目的とする。Therefore, the present invention solves the above problems, and provides a method for forming an aluminum thin film, in which a connection hole is filled with aluminum and an aluminum thin film serving as a wiring layer is realized by switching between selective CVD and collective CVD. To aim.
【0006】[0006]
【課題を解決するための手段】前記目的を達成するた
め、本発明は、絶縁膜に接続孔が開口された基板上にア
ルミニウム膜を形成する工程において、(a)アルミニウ
ムを含む原料を用いた気相化学成長法により第1のアル
ミニウム膜を接続孔内にのみ形成する工程と、(b)金属
元素を含むガスに前記基板を曝露する工程と、(c)前記
アルミニウムを含む原料を用いた気相化学成長法により
アルミニウム膜を形成する工程と、を含むことを特徴と
するアルミニウム薄膜の形成方法を提供する。In order to achieve the above object, the present invention uses (a) a raw material containing aluminum in the step of forming an aluminum film on a substrate in which a connection hole is formed in an insulating film. A step of forming the first aluminum film only in the contact hole by a vapor phase chemical growth method, a step of exposing the substrate to a gas containing a metal element, and a step of using the raw material containing the aluminum. And a step of forming an aluminum film by a vapor phase chemical growth method.
【0007】本発明は、好ましくは、前記アルミニウム
を含む原料として、水素化アルミニウムAlH3のアミ
ンアダクトを用いることを特徴とする。The present invention is preferably characterized in that an amine adduct of aluminum hydride AlH 3 is used as the raw material containing aluminum.
【0008】また、本発明は、好ましくは、前記水素化
アルミニウムAlH3のアミンアダクトとして、AlH3N(C
H3)3、AlH3N(C2H5)3、AlH3N(CH3)2(C2H5)、AlH3N(C3H7)
3、AlH3N(C4H9)3、N(CH3)3AlH3N(CH3)3、N(C2H5)3AlH3N
(C2H5)3、N(CH3)2(C2H5)AlH3N(CH3)2(C2H5)、N(C3H7)3A
lH3N(C3H7)3、N(C4H9)3AlH3N(C4H9)3からなる群から選
択された少なくとも一を用いることを特徴とする。In the present invention, preferably, the amine adduct of the aluminum hydride AlH 3 is AlH 3 N (C
H 3) 3, AlH 3 N (C 2 H 5) 3, AlH 3 N (CH 3) 2 (C 2 H 5), AlH 3 N (C 3 H 7)
3, AlH 3 N (C 4 H 9) 3, N (CH 3) 3 AlH 3 N (CH 3) 3, N (C 2 H 5) 3 AlH 3 N
(C 2 H 5 ) 3 , N (CH 3 ) 2 (C 2 H 5 ) AlH 3 N (CH 3 ) 2 (C 2 H 5 ), N (C 3 H 7 ) 3 A
At least one selected from the group consisting of lH 3 N (C 3 H 7 ) 3 and N (C 4 H 9 ) 3 AlH 3 N (C 4 H 9 ) 3 is used.
【0009】さらに、本発明は、好ましくは、ガス化さ
れたアルミニウムを含む前記原料として、アルミニウム
と、それぞれ独立なアルキル基またはオレフィン炭化水
素R1、R2、R3と、水素Hから構成される、R1n
AlH3-n(n≦3、nは正の整数),R1nR2mAl
H3-n-m(n,m≦2、n+m≦3、n,mは正の整
数),R1R2R3Alからなる群から選択された少な
くとも一の構造を持つ分子及び又はこれらの分子の混合
物を用いることを特徴とする。Further, in the present invention, R1 is preferably composed of aluminum as the raw material containing gasified aluminum, aluminum, and an independent alkyl group or olefin hydrocarbon R1, R2, R3, and hydrogen H. n
AlH 3-n (n ≦ 3, n is a positive integer), R1 n R2 m Al
H 3-nm (n, m ≦ 2, n + m ≦ 3, n and m are positive integers), a molecule having at least one structure selected from the group consisting of R1R2R3Al and / or a mixture of these molecules is used. Characterize.
【0010】そして、本発明は、好ましくは、前記アル
ミニウムとそれぞれ独立なアルキル基またはオレフィン
炭化水素R1、R2、R3と水素Hで構成されるガスと
して、Al(CH3)3、Al(C2H5)3、Al(CH3)2H、Al(i-C
4H9)3、Al(n-C3H7)3、Al(n-C4H9)3、Al(C2H5)2H、Al(i-
C4H9)2Hからなる群から選択された少なくとも一を用い
ること を特徴とする。In the present invention, preferably, Al (CH 3 ) 3 and Al (C 2 ) are used as a gas composed of an alkyl group or olefin hydrocarbons R1, R2, R3 and hydrogen H which are independent of aluminum. H 5 ) 3 , Al (CH 3 ) 2 H, Al (iC
4 H 9) 3, Al ( nC 3 H 7) 3, Al (nC 4 H 9) 3, Al (C 2 H 5) 2 H, Al (i-
At least one selected from the group consisting of C 4 H 9 ) 2 H is used.
【0011】また、本発明は、好ましくは、前記曝露す
るガスの金属元素が、4A、5A、6A、8、1B、2
B、3B族の少なくとも一の族に属することを特徴とす
る。In the present invention, preferably, the metal element of the gas to be exposed is 4A, 5A, 6A, 8, 1B, 2
Characterized by belonging to at least one of the B and 3B groups.
【0012】さらに、本発明は、好ましくは、前記曝露
するガスの金属元素が、Ti、Zr、Hf、V、Nb、
Ta、Cr、Mo、W、Co、Ni、Pd、Pt、C
u、Au、Zn、In、Geからなる群から選択された
少なくとも一を含むことを特徴とする。Further, in the present invention, preferably, the metal element of the gas to be exposed is Ti, Zr, Hf, V, Nb,
Ta, Cr, Mo, W, Co, Ni, Pd, Pt, C
It is characterized by containing at least one selected from the group consisting of u, Au, Zn, In and Ge.
【0013】そして、本発明は、好ましくは、前記曝露
するガスが、TiCl4、Ti[N(CH3)2]4、W(CO)6、Au(CH3)
2(C5H7O2)、(C5H5)CuP(C2H5)3からなる群から選択され
た少なくとも一を含むことを特徴とする。In the present invention, preferably, the gas to be exposed is TiCl 4 , Ti [N (CH 3 ) 2 ] 4 , W (CO) 6 , Au (CH 3 ).
2 (C 5 H 7 O 2 ), (C 5 H 5 ) CuP (C 2 H 5 ) 3 and at least one selected from the group consisting of
【0014】[0014]
【作用】本発明の原理・作用を以下に説明する。The operation and principle of the present invention will be described below.
【0015】本発明においては、基板表面の絶縁膜に開
口された接続孔を、選択CVD法によってアルミニウムで
埋め込む。In the present invention, the connection hole opened in the insulating film on the surface of the substrate is filled with aluminum by the selective CVD method.
【0016】次に、反応容器内で4A、5A、6A、
8、1B、2B、3B族に属する金属を含むガスに基板
を曝す。これによって基板表面に前記ガスが吸着する。Next, in the reaction vessel, 4A, 5A, 6A,
The substrate is exposed to a gas containing a metal belonging to groups 8, 1B, 2B, and 3B. As a result, the gas is adsorbed on the substrate surface.
【0017】続いて、反応容器内を排気する。基板表面
には前記ガスの吸着層が形成される。この吸着層は排気
時の圧力と基板温度に依存するが、通常1原子層程度の
薄い層である。Then, the inside of the reaction vessel is evacuated. An adsorption layer for the gas is formed on the surface of the substrate. This adsorption layer depends on the pressure at the time of exhaust and the substrate temperature, but is usually a thin layer of about one atomic layer.
【0018】吸着層の構造及び性質は下地層の材質、構
造によって異なるが、SiO2、Si3N4、Al、Cu
上に吸着した前記ガスはアルミニウムのCVDに対し
て、同じ効果を有しており、続いて再度アルミニウムの
CVDを行うと、基板全面にアルミニウム薄膜が堆積す
ることを本発明者は新たに見いだした。The structure and properties of the adsorption layer differ depending on the material and structure of the underlayer, but SiO 2 , Si 3 N 4 , Al, Cu
The inventor newly found that the above-adsorbed gas has the same effect on the CVD of aluminum, and when the CVD of aluminum is subsequently performed again, an aluminum thin film is deposited on the entire surface of the substrate. .
【0019】[0019]
【実施例】次に本発明の実施例について図面を参照して
説明する。Next, an embodiment of the present invention will be described with reference to the drawings.
【0020】図1は本発明の一実施例の製造方法を工程
順に説明するための模式的な断面図である。本実施例は
シリコン集積回路における配線工程に適用した場合を例
示する。FIG. 1 is a schematic sectional view for explaining a manufacturing method according to an embodiment of the present invention in the order of steps. This embodiment illustrates the case where it is applied to a wiring process in a silicon integrated circuit.
【0021】図1(A)に標準的な集積回路製造方法を
用いて形成した、接続孔形成前の構造を有する基板を示
す。図1(A)において、1はシリコン基板、2は第1
の酸化シリコン膜、3は第1のアルミニウム膜、4は第
2の酸化シリコン膜、5は窒化チタン膜である。FIG. 1A shows a substrate having a structure before the formation of connection holes, which is formed by using a standard integrated circuit manufacturing method. In FIG. 1A, 1 is a silicon substrate, 2 is a first
Silicon oxide film, 3 is a first aluminum film, 4 is a second silicon oxide film, and 5 is a titanium nitride film.
【0022】続いて図1(B)に示すように、シリコン
基板1の全面に(CH3)2AlHを用いた気相化学成長によ
り、第2のアルミニウム膜6を形成する。これによっ
て、接続孔は第2のアルミニウム膜6によって埋め込ま
れる。(CH3)2AlHは流量300sccmの水素ガスでバブリング
して、5分間、反応室に導入する。気相化学成長条件
は、基板温度130℃、全圧1Torrである。Subsequently, as shown in FIG. 1B, a second aluminum film 6 is formed on the entire surface of the silicon substrate 1 by vapor phase chemical growth using (CH 3 ) 2 AlH. As a result, the connection hole is filled with the second aluminum film 6. (CH 3 ) 2 AlH is bubbled with hydrogen gas at a flow rate of 300 sccm and introduced into the reaction chamber for 5 minutes. The vapor phase chemical growth conditions are a substrate temperature of 130 ° C. and a total pressure of 1 Torr.
【0023】次に、(CH3)2AlHの導入を中断し、CVD室を
排気した後、Ti[N(CH3)2]4を導入する。反応室での圧力
は1mTorrである。Next, the introduction of (CH 3 ) 2 AlH is interrupted, the CVD chamber is evacuated, and then Ti [N (CH 3 ) 2 ] 4 is introduced. The pressure in the reaction chamber is 1 mTorr.
【0024】すると、図1(C)に示すように、吸着層
7が第2の絶縁膜4と第2のアルミニウム膜6上に形成
される。Then, as shown in FIG. 1C, the adsorption layer 7 is formed on the second insulating film 4 and the second aluminum film 6.
【0025】さらに、CVD室を排気した後、再び(CH3)2A
lHを前記条件と同じ条件で導入すると、基板全面に第3
のアルミニウム膜8が堆積した(図1(D)参照)。Further, after evacuating the CVD chamber, (CH 3 ) 2 A
If lH is introduced under the same conditions as described above, a third
The aluminum film 8 was deposited (see FIG. 1D).
【0026】本実施例では接続孔底部の材質としてTiN
を用いた場合を例示したが、TiWなど他のバリアメタル
や、多結晶Siなどのリソグラフィ用反応防止膜を用いて
も同様の効果がある。In this embodiment, TiN is used as the material for the bottom of the connection hole.
Although the case where the above is used is illustrated, the same effect can be obtained by using another barrier metal such as TiW or a reaction preventing film for lithography such as polycrystalline Si.
【0027】さらに、絶縁膜として酸化シリコン膜を用
いた場合を例示したが、Si3N4を用いても同様の効果が
得られる。Further, although the case where the silicon oxide film is used as the insulating film is illustrated, the same effect can be obtained by using Si 3 N 4 .
【0028】また、アルミニウムのCVDガスとしてAl(CH
3)2Hを用いた場合を例示したが、Al(CH3)3、Al(C
2H5)3、Al(i-C4H9)、Al(n-C3H7)3、Al(n-C4H9)3、Al(C2
H5)2H、Al(i-C4H9)2Hを代表とする、アルミニウムとそ
れぞれ独立なアルキル基またはオレフィン炭化水素R
1、R2、R3と水素Hで構成される、R1nAlH3-n
(n≦3、nは正の整数),R1nR2mAlH
3-n-m(n,m≦2、n+m≦3、n,mは正の整
数),R1R2R3Alの構造を持つ分子あるいはこれ
らの分子の混合物を用いても同様の効果がある。Al (CH 2) is used as a CVD gas for aluminum.
3 ) 2 H was used as an example, but Al (CH 3 ) 3 and Al (C
2 H 5) 3, Al ( iC 4 H 9), Al (nC 3 H 7) 3, Al (nC 4 H 9) 3, Al (C 2
H 5 ) 2 H and Al (iC 4 H 9 ) 2 H typified by aluminum and an alkyl group or olefin hydrocarbon R each independent of aluminum
R1 n AlH 3-n composed of 1, R2, R3 and hydrogen H
(N ≦ 3, n is a positive integer), R1 n R2 m AlH
Similar effects can be obtained by using molecules having a structure of 3-nm (n, m ≦ 2, n + m ≦ 3, n and m are positive integers), R1R2R3Al, or a mixture of these molecules.
【0029】さらに、AlH3N(CH3)3、AlH3N(C2H5)3、AlH
3N(CH3)2(C2H5)、AlH3N(C3H7)3、AlH3N(C4H9)3、N(CH3)
3AlH3N(CH3)3、N(C2H5)3AlH3N(C2H5)3、N(CH3)2(C2H5)A
lH3N(CH3)2(C2H5)、N(C3H7)3AlH3N(C3H7)3、N(C4H9)3Al
H3N(C4H9)3をはじめとする水素化アルミニウムAlH3
のアミンアダクトを用いても同様の効果が得られる。Further, AlH 3 N (CH 3 ) 3 , AlH 3 N (C 2 H 5 ) 3 , AlH
3 N (CH 3 ) 2 (C 2 H 5 ), AlH 3 N (C 3 H 7 ) 3 , AlH 3 N (C 4 H 9 ) 3 , N (CH 3 )
3 AlH 3 N (CH 3 ) 3 , N (C 2 H 5 ) 3 AlH 3 N (C 2 H 5 ) 3 , N (CH 3 ) 2 (C 2 H 5 ) A
lH 3 N (CH 3) 2 (C 2 H 5), N (C 3 H 7) 3 AlH 3 N (C 3 H 7) 3, N (C 4 H 9) 3 Al
H 3 N (C 4 H 9 ) 3 aluminum hydride AlH 3, including
The same effect can be obtained by using the amine adduct.
【0030】また、選択CVDから一括CVDへの切り替えの
ガスとしてTi[N(CH3)2]4を用いた場合を例示したが、Ti
Cl4、W(CO)6、Au(CH3)2(C5H7O2)、(C5H5)CuP(C2H5)3を
はじめとして、金属元素が、Ti、Zr、Hf、V、N
b、Ta、Cr、Mo、W、Co、Ni、Pd、Pt、
Cu、Au、Zn、In、Geであるガスを用いても同
様の効果が得られる。さらに、曝露するガスの金属元素
が、4A、5A、6A、8、1B、2B、3B族に属す
るものであれは、同様の効果が得られる。In addition, the case where Ti [N (CH 3 ) 2 ] 4 is used as a gas for switching from selective CVD to collective CVD has been exemplified.
Cl 4 , W (CO) 6 , Au (CH 3 ) 2 (C 5 H 7 O 2 ), (C 5 H 5 ) CuP (C 2 H 5 ) 3 and other metal elements are Ti, Zr, Hf, V, N
b, Ta, Cr, Mo, W, Co, Ni, Pd, Pt,
The same effect can be obtained by using gases such as Cu, Au, Zn, In, and Ge. Further, the same effect can be obtained if the metal element of the gas to be exposed belongs to the groups 4A, 5A, 6A, 8, 1B, 2B and 3B.
【0031】以上、本発明を上記実施例に即して説明し
たが、本発明は上記態様にのみ限定されず、本発明の原
理に準ずる各種態様を含むことは勿論である。Although the present invention has been described with reference to the above embodiment, the present invention is not limited to the above embodiment, but includes various embodiments according to the principle of the present invention.
【0032】[0032]
【発明の効果】以上説明したように、本発明によれば、
接続孔がアルミニウムにより埋め込まれ、かつ配線層と
なるアルミニウム薄膜を金属を含むガスへの曝露という
簡易な方法で実現できるため、高価で大型の装置を不要
とすると共に複雑な製造工程を必要としないため、半導
体装置やディスプレイ装置の製造コストを低減できると
いう効果を有する。As described above, according to the present invention,
Since the connection hole is filled with aluminum and the aluminum thin film to be the wiring layer can be realized by a simple method of exposing to a gas containing a metal, an expensive and large device is not required and a complicated manufacturing process is not required. Therefore, the manufacturing cost of the semiconductor device and the display device can be reduced.
【図1】本発明の一実施例の主要工程を工程順に説明す
るための断面図である。FIG. 1 is a cross-sectional view for explaining a main process of one embodiment of the present invention in process order.
【図2】従来の工程を示す図である。FIG. 2 is a diagram showing a conventional process.
1 シリコン基板 2 第1の酸化シリコン膜 3 第1のAl膜 4 第2の酸化シリコン膜 5 TiN膜 6 第2のAl膜 7 吸着層 8 第3のAl膜 9 原料ガス 1 Silicon Substrate 2 First Silicon Oxide Film 3 First Al Film 4 Second Silicon Oxide Film 5 TiN Film 6 Second Al Film 7 Adsorption Layer 8 Third Al Film 9 Source Gas
Claims (8)
ミニウム膜を形成する工程において、 (a)アルミニウムを含む原料を用いた気相化学成長法に
より第1のアルミニウム膜を接続孔内にのみ形成する工
程と、 (b)金属元素を含むガスに前記基板を曝露する工程と、 (c)前記アルミニウムを含む原料を用いた気相化学成長
法によりアルミニウム膜を形成する工程と、 を含むことを特徴とするアルミニウム薄膜の形成方法。1. In a step of forming an aluminum film on a substrate in which a connection hole is opened in an insulating film, (a) a first aluminum film is formed in the connection hole by a vapor phase chemical growth method using a raw material containing aluminum. A step of forming only an aluminum film, a step of exposing the substrate to a gas containing a metal element, and a step of forming an aluminum film by a vapor phase chemical growth method using a raw material containing aluminum. A method of forming an aluminum thin film, comprising:
化アルミニウムAlH3のアミンアダクトを用いること
を特徴とする請求項1記載のアルミニウム薄膜の形成方
法。2. The method for forming an aluminum thin film according to claim 1, wherein an amine adduct of aluminum hydride AlH 3 is used as the raw material containing aluminum.
アダクトとして、AlH3N(CH3)3、AlH3N(C2H5)3、AlH3N(C
H3)2(C2H5)、AlH3N(C3H7)3、AlH3N(C4H9)3、N(CH3)3AlH
3N(CH3)3、N(C2H5)3AlH3N(C2H5)3、N(CH3)2(C2H5)AlH3N
(CH3)2(C2H5)、N(C3H7)3AlH3N(C3H7)3、N(C4H9)3AlH3N
(C4H9)3からなる群から選択された少なくとも一を用い
ることを特徴とする請求項2記載のアルミニウム薄膜の
形成方法。 3. The amine adduct of aluminum hydride AlH 3 includes AlH 3 N (CH 3 ) 3 , AlH 3 N (C 2 H 5 ) 3 and AlH 3 N (C
H 3) 2 (C 2 H 5), AlH 3 N (C 3 H 7) 3, AlH 3 N (C 4 H 9) 3, N (CH 3) 3 AlH
3 N (CH 3 ) 3 , N (C 2 H 5 ) 3 AlH 3 N (C 2 H 5 ) 3 , N (CH 3 ) 2 (C 2 H 5 ) AlH 3 N
(CH 3) 2 (C 2 H 5), N (C 3 H 7) 3 AlH 3 N (C 3 H 7) 3, N (C 4 H 9) 3 AlH 3 N
The method for forming an aluminum thin film according to claim 2, wherein at least one selected from the group consisting of (C 4 H 9 ) 3 is used.
として、アルミニウムと、それぞれ独立なアルキル基ま
たはオレフィン炭化水素R1、R2、R3と、水素Hか
ら構成される、R1nAlH3-n(n≦3、nは正の整
数),R1nR2mAlH3-n-m(n,m≦2、n+m≦
3、n,mは正の整数),R1R2R3Alからなる群
から選択された少なくとも一の構造を持つ分子及び又は
これらの分子の混合物を用いることを特徴とする請求項
1記載のアルミニウム薄膜の形成方法。4. R1 n AlH 3-n (n which is composed of aluminum as the raw material containing gasified aluminum, an alkyl group or olefin hydrocarbons R1, R2 and R3 which are independent of each other, and hydrogen H. ≦ 3, n is a positive integer), R1 n R2 m AlH 3-nm (n, m ≦ 2, n + m ≦
3. The method for forming an aluminum thin film according to claim 1, wherein a molecule having at least one structure selected from the group consisting of R1, R2R3Al, and / or a mixture of these molecules is used. .
ル基またはオレフィン炭化水素R1、R2、R3と水素
Hで構成されるガスとして、Al(CH3)3、Al(C2H5)3、Al
(CH3)2H、Al(i-C4H9)3、Al(n-C3H7)3、Al(n-C4H9)3、Al
(C2H5)2H、Al(i-C4H9)2Hからなる 群から選択された少
なくとも一を用いることを特徴とする請求項4記載のア
ルミニウム薄膜の形成方法。5. Al (CH 3 ) 3 , Al (C 2 H 5 ) 3 , Al as a gas composed of an alkyl group or olefin hydrocarbons R1, R2, R3 independent of the aluminum and hydrogen H
(CH 3) 2 H, Al (iC 4 H 9) 3, Al (nC 3 H 7) 3, Al (nC 4 H 9) 3, Al
The method for forming an aluminum thin film according to claim 4, wherein at least one selected from the group consisting of (C 2 H 5 ) 2 H and Al (iC 4 H 9 ) 2 H is used.
A、6A、8、1B、2B、3B族の少なくとも一の族
に属することを特徴とする請求項1〜5のいずれか一に
記載のアルミニウム薄膜の形成方法。6. The metal element of the exposed gas is 4A, 5
The method for forming an aluminum thin film according to claim 1, wherein the method belongs to at least one of A, 6A, 8, 1B, 2B, and 3B groups.
r、Hf、V、Nb、Ta、Cr、Mo、W、Co、N
i、Pd、Pt、Cu、Au、Zn、In、Geからな
る群から選択された少なくとも一を含むことを特徴とす
る請求項6記載のアルミニウム薄膜の形成方法。7. The metal element of the exposed gas is Ti, Z
r, Hf, V, Nb, Ta, Cr, Mo, W, Co, N
The method for forming an aluminum thin film according to claim 6, further comprising at least one selected from the group consisting of i, Pd, Pt, Cu, Au, Zn, In, and Ge.
4、W(CO)6、Au(CH3)2(C5H7O2)、(C5H5)CuP(C2H5)3から
なる群から選択された少なくとも一を含むことを特徴と
する請求項7記載のアルミニウム薄膜の形成方法。8. The exposing gas is TiCl 4 , Ti [N (CH 3 ) 2 ].
4 , W (CO) 6 , Au (CH 3 ) 2 (C 5 H 7 O 2 ), (C 5 H 5 ) CuP (C 2 H 5 ) 3 containing at least one selected from the group consisting of The method for forming an aluminum thin film according to claim 7, which is characterized in that.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7168341A JP3058053B2 (en) | 1995-06-09 | 1995-06-09 | Method of forming aluminum thin film |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7168341A JP3058053B2 (en) | 1995-06-09 | 1995-06-09 | Method of forming aluminum thin film |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH08339973A true JPH08339973A (en) | 1996-12-24 |
| JP3058053B2 JP3058053B2 (en) | 2000-07-04 |
Family
ID=15866271
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP7168341A Expired - Lifetime JP3058053B2 (en) | 1995-06-09 | 1995-06-09 | Method of forming aluminum thin film |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3058053B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6876079B2 (en) * | 2001-02-27 | 2005-04-05 | Sony Corporation | Semiconductor device and method of manufacturing the same |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH06267957A (en) * | 1993-03-15 | 1994-09-22 | Kawasaki Steel Corp | Method of forming metal film |
| JPH06272043A (en) * | 1993-03-17 | 1994-09-27 | Kawasaki Steel Corp | Method for forming Al alloy film |
-
1995
- 1995-06-09 JP JP7168341A patent/JP3058053B2/en not_active Expired - Lifetime
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH06267957A (en) * | 1993-03-15 | 1994-09-22 | Kawasaki Steel Corp | Method of forming metal film |
| JPH06272043A (en) * | 1993-03-17 | 1994-09-27 | Kawasaki Steel Corp | Method for forming Al alloy film |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6876079B2 (en) * | 2001-02-27 | 2005-04-05 | Sony Corporation | Semiconductor device and method of manufacturing the same |
| US7012023B2 (en) | 2001-02-27 | 2006-03-14 | Sony Corporation | Semiconductor device and method of manufacturing the same |
| US7064441B2 (en) | 2001-02-27 | 2006-06-20 | Sony Corporation | Semiconductor device and method of manufacturing the same |
| US7271487B2 (en) | 2001-02-27 | 2007-09-18 | Sony Corporation | Semiconductor device and method of manufacturing the same |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3058053B2 (en) | 2000-07-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6399490B1 (en) | Highly conformal titanium nitride deposition process for high aspect ratio structures | |
| TW309628B (en) | ||
| US6210813B1 (en) | Forming metal silicide resistant to subsequent thermal processing | |
| US7998842B2 (en) | Atomic layer deposition metallic contacts, gates and diffusion barriers | |
| US7928006B2 (en) | Structure for a semiconductor device and a method of manufacturing the same | |
| KR920018852A (en) | Method for Forming Tungsten Contacts with Low Resistance and Defect Density on Silicon Semiconductor Wafers | |
| US20020068466A1 (en) | Methods of forming thin films by atomic layer deposition | |
| US6136690A (en) | In situ plasma pre-deposition wafer treatment in chemical vapor deposition technology for semiconductor integrated circuit applications | |
| JPH0390572A (en) | Cvd vapor deposition method for forming tungsten layer on semiconductor wafer | |
| TW202208660A (en) | Fluorine-free tungsten ald for dielectric selectivity improvement | |
| JP4570704B2 (en) | Barrier film manufacturing method | |
| EP0498580A1 (en) | Method for depositing a metal film containing aluminium by use of alkylaluminium halide | |
| US7060609B2 (en) | Method of manufacturing a semiconductor device | |
| JP2000058650A (en) | Semiconductor device, and method and device for manufacturing the device | |
| US7411254B2 (en) | Semiconductor substrate | |
| JPH07297150A (en) | Fabrication of semiconductor device | |
| JP3058053B2 (en) | Method of forming aluminum thin film | |
| JP3628570B2 (en) | Method for forming tungsten thin film and method for manufacturing semiconductor device | |
| JP3149912B2 (en) | Semiconductor device and method of manufacturing the same | |
| JP2937998B1 (en) | Wiring manufacturing method | |
| JPH05267220A (en) | Method of forming sealing layer and metal plug in semiconductor device | |
| JPH0722416A (en) | Aluminum wiring formation method | |
| JP4248056B2 (en) | Method for producing metal copper thin film by CVD method and CVD apparatus | |
| JPH0529316A (en) | Manufacture of semiconductor device | |
| JPH05343354A (en) | Close contact layer of semiconductor device and forming method for metal plug |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19980106 |