JPH0840797A - Sapphire substrate for film composition analysis and film composition analysis method using the same - Google Patents
Sapphire substrate for film composition analysis and film composition analysis method using the sameInfo
- Publication number
- JPH0840797A JPH0840797A JP17823694A JP17823694A JPH0840797A JP H0840797 A JPH0840797 A JP H0840797A JP 17823694 A JP17823694 A JP 17823694A JP 17823694 A JP17823694 A JP 17823694A JP H0840797 A JPH0840797 A JP H0840797A
- Authority
- JP
- Japan
- Prior art keywords
- composition
- silicide film
- film
- sapphire substrate
- tungsten silicide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
(57)【要約】
【構成】半導体基板上に形成するタングステンシリサイ
ド膜の組成を分析するために、サファイア基板1上に同
条件でタングステンシリサイド膜2を形成した後、この
タングステンシリサイド膜2の組成を分析する。
【効果】高精度にタングステンシリサイド膜2の組成分
析を行うことができ、サファイア基板1は繰り返して使
用することができる。
(57) [Summary] [Structure] In order to analyze the composition of a tungsten silicide film formed on a semiconductor substrate, a tungsten silicide film 2 is formed on a sapphire substrate 1 under the same conditions, and then the composition of the tungsten silicide film 2 is formed. To analyze. [Effect] The composition of the tungsten silicide film 2 can be analyzed with high accuracy, and the sapphire substrate 1 can be used repeatedly.
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体基板上にシリサイ
ド膜を形成する際、その組成を正確に分析するための方
法及びそのために用いるサファイア基板に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for accurately analyzing the composition of a silicide film formed on a semiconductor substrate and a sapphire substrate used therefor.
【0002】[0002]
【従来の技術】近年、半導体装置において、MOSデバ
イスの高集積化に伴い、動作スピードを上げるためにゲ
ート電極や配線の材料として抵抗値の低いタングステン
シリサイド(W−Si)膜が用いられている。このタン
グステンシリサイド膜はタングステンとシリコンの合金
であり、スパッタ法やCVD法によって形成されるが、
成膜条件によってタングステンとシリコンの組成比が変
化し、この組成比によって抵抗値が変わるため、成膜後
の組成を正確に分析しておく必要がある。2. Description of the Related Art In recent years, in a semiconductor device, a tungsten silicide (W-Si) film having a low resistance value is used as a material of a gate electrode and a wiring in order to increase an operation speed with the high integration of a MOS device. . This tungsten silicide film is an alloy of tungsten and silicon and is formed by a sputtering method or a CVD method.
Since the composition ratio of tungsten and silicon changes depending on the film forming conditions, and the resistance value changes depending on this composition ratio, it is necessary to accurately analyze the composition after film formation.
【0003】そこで、予め最終製品とはならないシリコ
ン基板上に所定の条件でスパッタ法またはCVD法にて
タングステンシリサイド膜を形成した後、この膜の組成
を分析することによって、上記成膜条件下でのタングス
テンシリサイド膜の組成を検知しておくことが行われて
いる。Therefore, a tungsten silicide film is previously formed on a silicon substrate which is not the final product by a sputtering method or a CVD method under a predetermined condition, and then the composition of this film is analyzed to obtain the above film forming conditions. The composition of the tungsten silicide film is previously detected.
【0004】具体的な組成の分析方法としては、シリコ
ン基板上でのタングステンシリサイド膜の厚みと電気抵
抗値を測定する事により、その組成を推定していた。ま
た、他の分析方法として、シリコン基板上のタングステ
ンシリサイド膜を蛍光X線分析法にて組成分析する方法
もあった。As a specific compositional analysis method, the composition has been estimated by measuring the thickness and electric resistance of the tungsten silicide film on the silicon substrate. In addition, as another analysis method, there is also a method in which the composition of a tungsten silicide film on a silicon substrate is analyzed by a fluorescent X-ray analysis method.
【0005】また、上記タングステンシリサイド膜の代
わりにMo−Si,Cr−Si等のシリサイド膜も用い
られている。Further, instead of the above-mentioned tungsten silicide film, a silicide film of Mo-Si, Cr-Si or the like is also used.
【0006】[0006]
【発明が解決しようとする課題】ところが、上記電気抵
抗値の測定による推定では、測定に時間がかかるためイ
ンラインで測定できず、また測定精度も悪いと言う欠点
があった。However, the estimation by measuring the electric resistance value described above has drawbacks in that it cannot be measured inline because the measurement takes a long time and the measurement accuracy is poor.
【0007】また、蛍光X線分析法によるものでは、シ
リコン基板の影響でバックグラウンドにシリコンのピー
クが強く検出され、測定精度が悪いという欠点があっ
た。例えば、シリコン基板上にタングステンシリサイド
膜を形成し、蛍光X線分析で分光結晶としてEDDTを
用いた場合、タングステンMαのピークは105.0
゜、シリコンKαは108.1°と近い位置に検出さ
れ、しかもバックグラウンドのシリコンのピークが強く
検出されてしまうため、上記二つのピークが重なってし
まい、正確な分析ができなかった。In addition, the fluorescent X-ray analysis method has a drawback that a silicon peak is strongly detected in the background due to the influence of the silicon substrate and the measurement accuracy is poor. For example, when a tungsten silicide film is formed on a silicon substrate and EDDT is used as a dispersive crystal in fluorescent X-ray analysis, the peak of tungsten Mα is 105.0.
.Degree. And silicon K.alpha. Are detected at a position close to 108.1.degree., And the background silicon peak is strongly detected, so that the above two peaks overlap and accurate analysis cannot be performed.
【0008】なお、上記タングステンシリサイド膜以外
に用いられるMo−Si,Cr−Si等のシリサイド膜
についても同様の理由で正確な分析ができないという問
題点があった。Incidentally, there is a problem in that a silicide film such as Mo-Si or Cr-Si used in addition to the above tungsten silicide film cannot be accurately analyzed for the same reason.
【0009】また、いずれの分析方法においてもシリコ
ン基板上にタングステンシリサイド膜を形成して分析を
行っているが、分析後のシリコン基板は再利用すること
ができず、さらにシリコン基板は耐熱性に劣るために、
熱変形を起こしやすいと言う問題点もあった。In any of the analysis methods, a tungsten silicide film is formed on a silicon substrate for analysis. However, the silicon substrate after analysis cannot be reused, and the silicon substrate has high heat resistance. To be inferior
There is also a problem that thermal deformation is likely to occur.
【0010】[0010]
【課題を解決するための手段】上記に鑑みて本発明で
は、サファイア基板に中心線平均粗さ(Ra)0.01
μm以下の極めて滑らかな表面を形成し、この面に膜を
形成してその組成を分析するようにしたことを特徴とす
る。In view of the above, in the present invention, the sapphire substrate has a center line average roughness (Ra) of 0.01.
It is characterized in that an extremely smooth surface having a size of μm or less is formed, a film is formed on this surface, and its composition is analyzed.
【0011】さらに、本発明では、タングステンシリサ
イド膜の組成分析において、サファイア基板上にスパッ
タ法やCVD法等でタングステンシリサイド等のシリサ
イド膜を形成した後、蛍光X線分析法でその組成を分析
するようにしたものである。Further, in the present invention, in the composition analysis of a tungsten silicide film, after forming a silicide film of tungsten silicide or the like on a sapphire substrate by a sputtering method, a CVD method or the like, the composition is analyzed by a fluorescent X-ray analysis method. It was done like this.
【0012】[0012]
【作用】本発明の分析方法によれば、蛍光X線分析で分
光結晶としてEDDTを用いた場合、タングステンMα
のピークが105.0°にあり、シリコンKαのピーク
が108.1°であることは変わらないが、バックグラ
ウンドを成すサファイアのアルミニウムのピークが14
2.48°にあるため、タングステンMαとシリコンK
α二つのピークを明確に分離して測定でき、タングステ
ンシリサイド膜の正確な組成分析ができる。According to the analysis method of the present invention, when EDDT is used as a dispersive crystal in fluorescent X-ray analysis, tungsten Mα
Of the sapphire aluminum which is the background is 14 peaks, although the peak at 105.0 ° and the silicon Kα peak at 108.1 ° remain unchanged.
Since it is at 2.48 °, tungsten Mα and silicon K
The two α peaks can be clearly separated and measured, and the composition of the tungsten silicide film can be accurately analyzed.
【0013】[0013]
【実施例】以下、本発明の具体的な実施例を示す。EXAMPLES Specific examples of the present invention will be described below.
【0014】図1に示すように、本発明の膜組成分析用
サファイア基板1は、単結晶サファイアからなる板状体
であり、中心線平均粗さ(Ra)0.01μm以下の極
めて滑らかな表面1aを有している。As shown in FIG. 1, a sapphire substrate 1 for film composition analysis of the present invention is a plate-like body made of single crystal sapphire, and has an extremely smooth surface with a center line average roughness (Ra) of 0.01 μm or less. 1a.
【0015】このサファイア基板1を用いてタングステ
ンシリサイド膜の組成分析を行う場合は、表面1a上に
所定条件のスパッタ法またはCVD法によりタングステ
ンシリサイド膜2を形成する。When the composition analysis of the tungsten silicide film is performed using this sapphire substrate 1, the tungsten silicide film 2 is formed on the surface 1a by a sputtering method or a CVD method under predetermined conditions.
【0016】次にこのタングステンシリサイド膜2の組
成を蛍光X線分析法により測定する。タングステンシリ
サイド膜2に対して斜め方向から角度を変化させながら
X線3を照射し、反射X線4とは別に生じる蛍光X線5
を検出器6で検出する。この時、X線3を照射した部分
の組成に応じて、所定の角度で蛍光X線5が生じること
から、蛍光X線5の検出ピークを調べることによって、
タングステンシリサイド膜2中の成分を分析することが
できるのである。Next, the composition of the tungsten silicide film 2 is measured by a fluorescent X-ray analysis method. The tungsten silicide film 2 is irradiated with X-rays 3 while changing the angle from an oblique direction, and fluorescent X-rays 5 generated separately from the reflected X-rays 4 are irradiated.
Is detected by the detector 6. At this time, the fluorescent X-rays 5 are generated at a predetermined angle depending on the composition of the portion irradiated with the X-rays 3. Therefore, by examining the detection peak of the fluorescent X-rays 5,
The components in the tungsten silicide film 2 can be analyzed.
【0017】この時、サファイア基板1はAl2 O3 の
単結晶体であることから、蛍光X線分析を行うとアルミ
ニウムのピークが検出されることになるが、アルミニウ
ムの検出ピークとタングステン、シリコンの検出ピーク
は大きく離れているため、タングステンシリサイド膜2
中のタングステン及びシリコンのピークを明確に分析で
きるのである。At this time, since the sapphire substrate 1 is a single crystal of Al 2 O 3 , a peak of aluminum will be detected by fluorescent X-ray analysis. Since the detection peaks of are widely separated, the tungsten silicide film 2
The peaks of tungsten and silicon in it can be clearly analyzed.
【0018】また、上記サファイア基板1の表面1a
は、中心線平均粗さ(Ra)0.01μm以下の極めて
滑らかな面としてあるため、高精度にタングステンシリ
サイド膜2の組成分析を行うことができる。さらに、サ
ファイア基板1の形状は自由であるが、分析装置等との
関係から通常のシリコン基板の形状と一致させることが
好ましく、直径4〜8インチの円形で一部にオリエンテ
ーションフラットを有する形状とし、厚みは0.5〜
0.7mmの範囲内としてある。The surface 1a of the sapphire substrate 1
Has a center line average roughness (Ra) of 0.01 μm or less, which is an extremely smooth surface, so that the composition analysis of the tungsten silicide film 2 can be performed with high accuracy. Further, although the shape of the sapphire substrate 1 is arbitrary, it is preferable that the shape of the sapphire substrate 1 is the same as the shape of a normal silicon substrate in view of the relationship with an analyzer and the like. , Thickness is 0.5 ~
It is within the range of 0.7 mm.
【0019】また、単結晶サファイアには代表的な面方
位としてC面、A面、R面の3つの面方位があり、上記
表面1aはR面としてあるが、その他のどの面方位とな
っていても良い。Further, single crystal sapphire has three typical plane orientations, that is, C plane, A plane, and R plane, and the surface 1a is R plane, but any other plane orientation. May be.
【0020】このサファイア基板1の製造方法は、EF
G法(Edge−definedFilm−fed G
rowth Method)等によりルツボ中のアルミ
ナ融液から種子結晶を用いて板状のサファイアを引き上
げ、所定形状に切断し、表面を研磨して中心線平均粗さ
(Ra)0.01μm以下とすれば良い。The method of manufacturing the sapphire substrate 1 is based on the EF
G method (Edge-defined Film-fed G
If the plate-shaped sapphire is pulled up from the alumina melt in the crucible by using a seed crystal, cut into a predetermined shape, and the surface is polished to have a center line average roughness (Ra) of 0.01 μm or less. good.
【0021】また、表1に特性を示すように、サファイ
アは硬度、抗折強度、ヤング率等の機械的物性が高いた
め、変形しにくく傷や欠け等が生じにくい。また、融点
が2053℃と高いことから耐熱性に優れており熱変形
しにくく、熱伝導率も高いため放熱性に優れる。さら
に、サファイアは耐食性が高いため、組成分析を行った
後はエッチングによってタングステンシリサイド膜2を
除去すれば、サファイア基板1は何度でも再利用するこ
とができる。As shown in Table 1, sapphire has high mechanical properties such as hardness, flexural strength, Young's modulus, etc., and is therefore unlikely to be deformed, and scratches or chips are unlikely to occur. Further, since the melting point is as high as 2053 ° C., it has excellent heat resistance, is less likely to be deformed by heat, and has high thermal conductivity, so that it has excellent heat dissipation. Further, since sapphire has high corrosion resistance, the sapphire substrate 1 can be reused many times if the tungsten silicide film 2 is removed by etching after the composition analysis.
【0022】[0022]
【表1】 [Table 1]
【0023】ここで、実際に直径6インチ、厚み0.6
25mmのサファイア基板1を用いて、CVD法により
膜厚0.2μmのタングステンシリサイド膜2を形成し
た。これに対し、分光結晶としてEDDTを用いた蛍光
X線分析を行った結果のチャート図を図2に示す。Here, the actual diameter is 6 inches and the thickness is 0.6.
Using a 25 mm sapphire substrate 1, a tungsten silicide film 2 having a thickness of 0.2 μm was formed by the CVD method. On the other hand, FIG. 2 shows a chart of the result of fluorescent X-ray analysis using EDDT as a dispersive crystal.
【0024】図2より明らかに、サファイア基板1のア
ルミニウムKαのピークが142.48°と離れた位置
にあるため、タングステンシリサイド膜2中のタングス
テンMαのピーク(105.0°)とシリコンKαのピ
ーク(108.1°)を明確に分離することができ、両
者の組成比を明確に測定できることがわかる。As apparent from FIG. 2, since the peak of aluminum Kα of the sapphire substrate 1 is at a position distant from 142.48 °, the peak of tungsten Mα (105.0 °) in the tungsten silicide film 2 and that of silicon Kα. It can be seen that the peak (108.1 °) can be clearly separated, and the composition ratio of the two can be clearly measured.
【0025】なお、以上の実施例ではタングステンシリ
サイド膜の組成分析について述べたが、本発明はその他
のシリサイド膜の組成分析についても適用することがで
きる。例えば、Mg−Si,Ca−Si,Ti−Si,
V−Si,Cr−Si,Mn−Si,Fe−Si,Co
−Si,Ni−Si,Zr−Si,Nb−Si,Mo−
Si,Ru−Si,Rh−Si,Pd−Si,Hf−S
i,Ta−Si,Re−Si,Os−Si,Ir−S
i,Pt−Si等のシリサイド膜の分析についても本発
明を適用すれば、シリコン成分を明確に検出することが
でき、正確な組成分析を行うことができる。Although the composition analysis of the tungsten silicide film is described in the above embodiments, the present invention can be applied to the composition analysis of other silicide films. For example, Mg-Si, Ca-Si, Ti-Si,
V-Si, Cr-Si, Mn-Si, Fe-Si, Co
-Si, Ni-Si, Zr-Si, Nb-Si, Mo-
Si, Ru-Si, Rh-Si, Pd-Si, Hf-S
i, Ta-Si, Re-Si, Os-Si, Ir-S
If the present invention is applied to the analysis of a silicide film of i, Pt-Si, etc., the silicon component can be clearly detected, and accurate composition analysis can be performed.
【0026】[0026]
【発明の効果】以上のように本発明によれば、サファイ
ア基板に中心線平均粗さ(Ra)0.01μm以下の極
めて滑らかな表面を形成し、この面に膜を形成してその
組成を分析するようにしたことによって、サファイア基
板は耐熱性が高いため熱変形がなく、耐薬品性が高いた
め分析後の膜を除去すれば繰り返し何度でも使うことが
でき、極めて効率的である。As described above, according to the present invention, an extremely smooth surface having a center line average roughness (Ra) of 0.01 μm or less is formed on a sapphire substrate, and a film is formed on this surface to form a composition thereof. By performing the analysis, the sapphire substrate has high heat resistance and thus does not undergo thermal deformation, and since it has high chemical resistance, it can be used repeatedly as long as the film after analysis is removed, which is extremely efficient.
【0027】また、半導体基板上に形成するシリサイド
膜の組成を分析するために、予めサファイア基板上に同
条件でシリサイド膜を形成した後、蛍光X線分析法によ
りこのシリサイド膜の組成を分析することによって、シ
リコンのピークを明確に検出することができ、高精度に
シリサイド膜の組成分析を行うことができる。Further, in order to analyze the composition of the silicide film formed on the semiconductor substrate, after forming the silicide film on the sapphire substrate under the same conditions in advance, the composition of the silicide film is analyzed by the fluorescent X-ray analysis method. As a result, the peak of silicon can be clearly detected, and the composition analysis of the silicide film can be performed with high accuracy.
【図1】本発明の膜組成分析用サファイア基板を用いた
膜組成分析方法を説明するための図である。FIG. 1 is a diagram for explaining a film composition analysis method using a sapphire substrate for film composition analysis of the present invention.
【図2】本発明の膜組成分析方法による、蛍光X線分析
のチャート図である。FIG. 2 is a chart of fluorescent X-ray analysis by the film composition analysis method of the present invention.
1:サファイア基板 2:タングステンシリサイド膜 3:X線 4:反射X線 5:蛍光X線 6:検出器 1: Sapphire substrate 2: Tungsten silicide film 3: X-ray 4: Reflected X-ray 5: Fluorescent X-ray 6: Detector
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C23C 16/42 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location // C23C 16/42
Claims (2)
の極めて滑らかな表面を有し、この面に膜を形成してそ
の組成を分析するようにしたことを特徴とする膜組成分
析用サファイア基板。1. A film composition analysis characterized by having an extremely smooth surface having a center line average roughness (Ra) of 0.01 μm or less, and forming a film on this surface and analyzing the composition thereof. Sapphire substrate.
成を分析するために、予めサファイア基板上に所定条件
でシリサイド膜を形成した後、蛍光X線分析法により上
記シリサイド膜の組成を分析することを特徴とする膜組
成分析方法。2. In order to analyze the composition of a silicide film formed on a semiconductor substrate, a silicide film is previously formed on a sapphire substrate under predetermined conditions, and then the composition of the silicide film is analyzed by a fluorescent X-ray analysis method. A method for analyzing a film composition, comprising:
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP17823694A JP3559315B2 (en) | 1994-07-29 | 1994-07-29 | Film composition analysis method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP17823694A JP3559315B2 (en) | 1994-07-29 | 1994-07-29 | Film composition analysis method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH0840797A true JPH0840797A (en) | 1996-02-13 |
| JP3559315B2 JP3559315B2 (en) | 2004-09-02 |
Family
ID=16044980
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP17823694A Expired - Fee Related JP3559315B2 (en) | 1994-07-29 | 1994-07-29 | Film composition analysis method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3559315B2 (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7045223B2 (en) | 2003-09-23 | 2006-05-16 | Saint-Gobain Ceramics & Plastics, Inc. | Spinel articles and methods for forming same |
| US7326477B2 (en) | 2003-09-23 | 2008-02-05 | Saint-Gobain Ceramics & Plastics, Inc. | Spinel boules, wafers, and methods for fabricating same |
| US7919815B1 (en) | 2005-02-24 | 2011-04-05 | Saint-Gobain Ceramics & Plastics, Inc. | Spinel wafers and methods of preparation |
| US9632537B2 (en) | 2013-09-23 | 2017-04-25 | Apple Inc. | Electronic component embedded in ceramic material |
| US9678540B2 (en) | 2013-09-23 | 2017-06-13 | Apple Inc. | Electronic component embedded in ceramic material |
| US9692113B2 (en) | 2014-02-12 | 2017-06-27 | Apple Inc. | Antenna on sapphire structure |
| US10052848B2 (en) | 2012-03-06 | 2018-08-21 | Apple Inc. | Sapphire laminates |
| US10324496B2 (en) | 2013-12-11 | 2019-06-18 | Apple Inc. | Cover glass arrangement for an electronic device |
| US10406634B2 (en) | 2015-07-01 | 2019-09-10 | Apple Inc. | Enhancing strength in laser cutting of ceramic components |
-
1994
- 1994-07-29 JP JP17823694A patent/JP3559315B2/en not_active Expired - Fee Related
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7045223B2 (en) | 2003-09-23 | 2006-05-16 | Saint-Gobain Ceramics & Plastics, Inc. | Spinel articles and methods for forming same |
| US7326477B2 (en) | 2003-09-23 | 2008-02-05 | Saint-Gobain Ceramics & Plastics, Inc. | Spinel boules, wafers, and methods for fabricating same |
| US7919815B1 (en) | 2005-02-24 | 2011-04-05 | Saint-Gobain Ceramics & Plastics, Inc. | Spinel wafers and methods of preparation |
| US10052848B2 (en) | 2012-03-06 | 2018-08-21 | Apple Inc. | Sapphire laminates |
| US9632537B2 (en) | 2013-09-23 | 2017-04-25 | Apple Inc. | Electronic component embedded in ceramic material |
| US9678540B2 (en) | 2013-09-23 | 2017-06-13 | Apple Inc. | Electronic component embedded in ceramic material |
| US10324496B2 (en) | 2013-12-11 | 2019-06-18 | Apple Inc. | Cover glass arrangement for an electronic device |
| US10386889B2 (en) | 2013-12-11 | 2019-08-20 | Apple Inc. | Cover glass for an electronic device |
| US9692113B2 (en) | 2014-02-12 | 2017-06-27 | Apple Inc. | Antenna on sapphire structure |
| US10406634B2 (en) | 2015-07-01 | 2019-09-10 | Apple Inc. | Enhancing strength in laser cutting of ceramic components |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3559315B2 (en) | 2004-09-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Patsalas et al. | Surface kinetics and subplantation phenomena affecting the texture, morphology, stress, and growth evolution of titanium nitride films | |
| JPH0840797A (en) | Sapphire substrate for film composition analysis and film composition analysis method using the same | |
| GB2181298A (en) | Platinum resistance thermometer and manufacture thereof | |
| Hwang et al. | Grain boundary diffusion of aluminum in polycrystalline silicon films | |
| Dorner et al. | Sims investigations on the diffusion of Cu in Ag single crystals | |
| Noggle et al. | Crystal perfection in aluminum single crystals | |
| Kyutt et al. | Structural perfection of GaN epitaxial layers according to x-ray diffraction measurements | |
| Miura et al. | Determination of boundary energies of Cu from the shape of boundary SiO2 particles | |
| Lim et al. | Do residual nano indentations in metals and ceramics relax withtime? | |
| CN100468055C (en) | Preparation method of X-ray diffraction sample holder | |
| Kupczyk | Improvement of adhesion force of hard coatings to cemented carbides by laser heating | |
| Wittmer | Self‐aligned diffusion barrier by nitridation of TiSi2 | |
| Shute et al. | Residual Stress Analysis of Al Alloy Thin Films by X-Ray Diffraction as a Function of Film Thickness | |
| JP2938651B2 (en) | X-ray stress measurement method | |
| Goucher | XXII. Further studies on the deformation of tungsten single crystals | |
| JPH04324656A (en) | Performance evaluation of metal wiring film | |
| Revesz et al. | 12C (α, α) 12C resonance as a tool for quantitative analysis | |
| TW558784B (en) | Sample making technology and analysis method for the same | |
| Vu et al. | Low Temperature Thermal Conductivity | |
| JPS5942916A (en) | Method of processing single crystal | |
| JPH09281061A (en) | Crystal orientation evaluation system | |
| JP2852682B2 (en) | Strength measurement method for ceramic parts | |
| CN109839398B (en) | Preparation method of standard sample for synchrotron radiation confocal fluorescence experiment | |
| Holloway et al. | Interfacial Reactions in Titanium-Silicon Multilayers | |
| Herniman et al. | Improved resolution SIMS analysis of annealed Pt/Zn/Pt/ZrB2/Au ohmic contacts to p-InGaAs on InP substrates using back-surface profiling |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A977 | Report on retrieval |
Effective date: 20040130 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040217 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040416 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040518 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040521 |
|
| R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090528 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20090528 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100528 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20110528 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110528 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20120528 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20120528 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20130528 |
|
| LAPS | Cancellation because of no payment of annual fees |