[go: up one dir, main page]

JPH0896737A - electronic microscope - Google Patents

electronic microscope

Info

Publication number
JPH0896737A
JPH0896737A JP6234762A JP23476294A JPH0896737A JP H0896737 A JPH0896737 A JP H0896737A JP 6234762 A JP6234762 A JP 6234762A JP 23476294 A JP23476294 A JP 23476294A JP H0896737 A JPH0896737 A JP H0896737A
Authority
JP
Japan
Prior art keywords
magnetic field
lens
image
electron beam
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6234762A
Other languages
Japanese (ja)
Inventor
Osamu Nasu
修 那須
Yuji Sato
雄司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6234762A priority Critical patent/JPH0896737A/en
Publication of JPH0896737A publication Critical patent/JPH0896737A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【構成】対物レンズ5内に設けた磁場印加手段7と,対
物レンズ5と結像レンズ9の間に設けた電子線の偏向補
正手段と,交流磁場の任意の位相を選択して印加する手
段および像表示手段の同期信号による印加磁場の駆動手
段を具備する電子顕微鏡。 【効果】従来の試料位置で磁区の観察が可能になり、偏
向補正手段として従来具備するレンズを代用可能にな
る。また磁区の運動方向とその大きさおよび、磁区の運
動の様子を動的に観察可能になる。
(57) [Summary] [Structure] Magnetic field applying means 7 provided in the objective lens 5, electron beam deflection correcting means provided between the objective lens 5 and the imaging lens 9, and an arbitrary phase of the alternating magnetic field An electron microscope comprising: a means for selectively applying and a means for driving an applied magnetic field by a synchronizing signal of an image display means. [Effect] The magnetic domain can be observed at the conventional sample position, and the lens conventionally provided as the deflection correction means can be substituted. Further, it becomes possible to dynamically observe the moving direction and size of the magnetic domain and the motion state of the magnetic domain.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁性試料に磁場を印加し
て磁区の運動を観察するのに適した電子顕微鏡に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron microscope suitable for observing the motion of magnetic domains by applying a magnetic field to a magnetic sample.

【0002】[0002]

【従来の技術】近年、磁場を印加した磁性試料の電子顕
微鏡像を観察することにより磁区構造に関する多くの知
見が得られている。特に特公昭59−8025号では周期的に
変化する磁場を試料に印加し、磁場印加用コイルと対物
レンズの間に配置した補正用コイルで電子線を光軸上に
戻し対物レンズに入射させている。対物レンズ通過後
は、磁場印加手段からのトリガ信号により特定周期時の
電子線だけを二次電子増倍管に取り込み陰極管上に像を
表示している。
2. Description of the Related Art In recent years, much knowledge about the magnetic domain structure has been obtained by observing an electron microscope image of a magnetic sample to which a magnetic field is applied. In particular, in Japanese Examined Patent Publication No. 59-8025, a magnetic field that changes periodically is applied to the sample, and an electron beam is returned to the optical axis by a correction coil placed between the magnetic field application coil and the objective lens and made incident on the objective lens. There is. After passing through the objective lens, only the electron beam at a specific period is taken into the secondary electron multiplier by the trigger signal from the magnetic field applying means and the image is displayed on the cathode tube.

【0003】[0003]

【発明が解決しようとする課題】従来では、磁場印加手
段と偏向補正手段が対物レンズより上方に位置するた
め、試料ホルダを対物レンズ位置だけでなく磁場印加手
段位置にも設ける必要があった。さらに印加磁場の特定
周期時の静止像しか表示できなかった。
Conventionally, since the magnetic field applying means and the deflection correcting means are located above the objective lens, it is necessary to provide the sample holder not only at the objective lens position but also at the magnetic field applying means position. Furthermore, only a static image of a specific period of the applied magnetic field could be displayed.

【0004】[0004]

【課題を解決するための手段】本発明では対物レンズの
間に磁場印加手段を配置して試料に直流磁場あるいは任
意の位相,周期,振幅を持つ交流磁場を印加できるよう
にし、前記対物レンズと結像レンズの間に配置した偏向
補正手段にて前記磁場印加手段による電子線の偏向を補
正できるようにし、磁区の運動を観察する。また像表示
手段からの同期信号により前記磁場印加手段と前記偏向
補正手段を駆動し、印加した磁場による磁区の運動を動
的に観察可能にする。
In the present invention, a magnetic field applying means is arranged between objective lenses so that a DC magnetic field or an AC magnetic field having an arbitrary phase, period and amplitude can be applied to a sample, The deflection correcting means arranged between the imaging lenses is used to correct the deflection of the electron beam by the magnetic field applying means, and the motion of the magnetic domain is observed. Further, the magnetic field application means and the deflection correction means are driven by a synchronization signal from the image display means, and the motion of the magnetic domain due to the applied magnetic field can be dynamically observed.

【0005】[0005]

【作用】対物レンズの間に設置した磁場印加手段に磁場
印加用電源で発生させた直流電流あるいは任意の位相,
周期,振幅を持つ交流電流を任意の同期信号で印加す
る。対物レンズに入射した電子線は磁場印加手段により
偏向される。磁場印加手段のX成分とY成分をそれぞれ
任意の比率で分配した電流を加算して偏向補正用コイル
に印加し、電子線の偏向を振り戻して電子線を光軸上に
戻して補正する。また像表示手段の同期信号により磁場
印加手段と補正手段を駆動し、1画面毎に交互に磁場印
加のある場合とない場合の像を同位相または位相を変え
て表示し、磁区の運動方向とその大きさを動的に観察す
る。
[Function] A DC current generated by a magnetic field applying power source or an arbitrary phase in the magnetic field applying means installed between the objective lenses,
An alternating current with a period and amplitude is applied with an arbitrary synchronization signal. The electron beam incident on the objective lens is deflected by the magnetic field applying means. The X component and the Y component of the magnetic field application means are added with respective currents distributed at arbitrary ratios and applied to the deflection correction coil to deflect the electron beam back to return the electron beam on the optical axis for correction. Further, the magnetic field applying means and the correcting means are driven by the synchronizing signal of the image display means, and the images in the case where the magnetic field is applied and the case where the magnetic field is applied are alternately displayed for each screen, and the images are displayed in the same phase or in different phases, and the direction of movement of the magnetic domain is displayed. The size is observed dynamically.

【0006】[0006]

【実施例】本発明は対物レンズ内に設けられた磁場印加
手段と,印加磁場による電子線の偏向を補正するための
補正手段と,磁場印加手段に静磁場あるいは任意の位
相,周期,振幅を持つ交流磁場を印加することにより磁
性試料の動的観察を可能にするもので、以下図面に基づ
き説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is a magnetic field applying means provided in an objective lens, a correcting means for correcting the deflection of an electron beam due to the applied magnetic field, and a static magnetic field or an arbitrary phase, period, amplitude in the magnetic field applying means. It is possible to dynamically observe a magnetic sample by applying an alternating magnetic field, which will be described below with reference to the drawings.

【0007】図1は本発明の一実施例を説明するための
ブロック図であり、図中1は電子銃であり、電子銃1よ
り発生した電子線2は集束レンズ3に入射して平行ビー
ムにされ、光軸4に沿って磁性試料6に入射する。対物
レンズ5内には試料6に磁場を印加するための二つのコ
イル7a,7bが配置されそれぞれX,Y方向の磁場を
発生する。コイル7a,7bには磁場印加電源20より
直流あるいは任意の交流電流が供給される。交流電流
は、同期回路14の任意の信号または像表示手段11か
らの同期信号21で正弦波発生回路15に発生した任意
周期の正弦波,方形波,三角波等の交流信号を位相調整
器16に導入し、任意の位相,振幅の交流電流にし電流
増幅器17a,17bで増幅してコイル7a,7bに導
入される。従ってコイル7a,7bにより試料6には任
意の磁場が印加され試料6内の磁性部分が動く。また電
子線は試料6に印加された磁場により偏向されて二つの
コイルにより構成される補正コイル8a,8bに入射す
る。補正コイル8a,8bは、コイル7a,7bで電子
線2が受けた偏向を打ち消すような磁場を印加して電子
線を光軸4上に戻し補正している。このとき補正コイル
8a,8bには図2に示すようにコイル7a,7bの
X,Y方向の電流をそれぞれ分配器18a,18bにより
任意の比率で分配し、分配した電流の合成値が電流増幅
器19a,19bで増幅して印加されるためコイル7
a,7bとは電気的に同期している。補正コイル8a,
8bの後段には結像レンズ9が配置されており、結像レ
ンズ9で結像された像は撮像する変換手段10で光学像
に変換された後、像表示手段11で表示される。勿論、
偏向補正用コイルの前段にも他の結像レンズが配置され
うる。
FIG. 1 is a block diagram for explaining one embodiment of the present invention. In the figure, 1 is an electron gun, and an electron beam 2 generated by the electron gun 1 is incident on a focusing lens 3 to form a parallel beam. And is incident on the magnetic sample 6 along the optical axis 4. Two coils 7a and 7b for applying a magnetic field to the sample 6 are arranged in the objective lens 5 to generate magnetic fields in the X and Y directions, respectively. A direct current or an arbitrary alternating current is supplied from the magnetic field applying power source 20 to the coils 7a and 7b. As the alternating current, an arbitrary signal of the synchronizing circuit 14 or an alternating signal of a sine wave, a square wave, a triangular wave or the like having an arbitrary period generated in the sine wave generating circuit 15 by the synchronizing signal 21 from the image display means 11 is supplied to the phase adjuster 16. It is introduced, converted into an alternating current of arbitrary phase and amplitude, amplified by the current amplifiers 17a and 17b, and introduced into the coils 7a and 7b. Therefore, an arbitrary magnetic field is applied to the sample 6 by the coils 7a and 7b, and the magnetic portion in the sample 6 moves. The electron beam is deflected by the magnetic field applied to the sample 6 and enters the correction coils 8a and 8b composed of two coils. The correction coils 8a and 8b apply a magnetic field that cancels the deflection of the electron beam 2 received by the coils 7a and 7b to return the electron beam to the optical axis 4 for correction. At this time, the currents in the X and Y directions of the coils 7a and 7b are distributed to the correction coils 8a and 8b by the distributors 18a and 18b at arbitrary ratios as shown in FIG. Coil 7 because it is amplified and applied by 19a and 19b
It is electrically synchronized with a and 7b. Correction coil 8a,
An image forming lens 9 is arranged in the subsequent stage of 8b, and an image formed by the image forming lens 9 is converted into an optical image by a converting means 10 for picking up the image, and then displayed by an image displaying means 11. Of course,
Another imaging lens may be arranged in front of the deflection correction coil.

【0008】[0008]

【発明の効果】本発明によれば、試料位置を新たに対物
レンズ上方に設ける必要がなくなり、従来の試料位置で
磁区の観察が可能になる。さらにイメージシフトコイル
を偏向補正手段として代用することが可能になる。
According to the present invention, it is not necessary to newly provide a sample position above the objective lens, and it becomes possible to observe magnetic domains at the conventional sample position. Further, it becomes possible to substitute the image shift coil as the deflection correction means.

【0009】また像表示手段の同期信号によって磁場印
加手段が駆動され、像表示手段には磁場を印加した時と
印加しない時の電子線像が交互に表示される。印加して
いる交流磁場の位相を選択することにより、印加磁場が
同位相時には磁区の運動方向とその大きさを静止像とし
て観察することができ、位相を変えた場合は磁区が運動
する様子を動的に観察することが可能になる。
Further, the magnetic field applying means is driven by the synchronizing signal of the image display means, and the electron beam images when the magnetic field is applied and when the magnetic field is not applied are alternately displayed on the image display means. By selecting the phase of the applied AC magnetic field, it is possible to observe the motion direction and size of the magnetic domain as a static image when the applied magnetic field is in phase, and to see how the magnetic domain moves when the phase is changed. It becomes possible to observe dynamically.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】図1の詳細の説明図。FIG. 2 is a detailed explanatory diagram of FIG.

【符号の説明】[Explanation of symbols]

1…電子銃、2…電子線、3…集束レンズ、4…光軸、
5,5a,5b…対物レンズ、6…試料、7a,7b…
コイル、8a,8b…補正コイル、9…結像レンズ、1
0…変換手段、11…像表示手段、14…同期回路、1
5…正弦波発生回路、16…位相調整器、17a,17
b,19a,19b…電流増幅器、18a,18b…分配
器、20…磁場印加電源、21…同期信号。
1 ... Electron gun, 2 ... Electron beam, 3 ... Focusing lens, 4 ... Optical axis,
5, 5a, 5b ... Objective lens, 6 ... Sample, 7a, 7b ...
Coil, 8a, 8b ... Correction coil, 9 ... Imaging lens, 1
0 ... conversion means, 11 ... image display means, 14 ... synchronization circuit, 1
5 ... Sine wave generating circuit, 16 ... Phase adjuster, 17a, 17
b, 19a, 19b ... Current amplifier, 18a, 18b ... Distributor, 20 ... Magnetic field applying power supply, 21 ... Synchronizing signal.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電子銃と,前記電子銃から発生した電子線
を試料上に収束するための収束レンズと,前記試料を透
過した電子線が入射する対物レンズと,前記試料に磁場
を印加する手段と,前記電子線による像を結像する複数
の結像レンズと,前記結像レンズによる像を撮像する手
段と,像を表示する手段とを具備した電子顕微鏡におい
て、前記磁場印加手段による電子線の偏向を補正する手
段を対物レンズと結像レンズの間に設けたことおよび前
記磁場印加手段と偏向補正手段を前記像表示手段よりの
信号にて駆動させる手段を設けたことを特徴とする電子
顕微鏡。
1. An electron gun, a converging lens for converging an electron beam generated from the electron gun onto a sample, an objective lens into which an electron beam transmitted through the sample is incident, and a magnetic field is applied to the sample. In an electron microscope comprising: means, a plurality of image forming lenses for forming an image by the electron beam, means for capturing an image by the image forming lens, and means for displaying the image, A means for correcting the deflection of the line is provided between the objective lens and the imaging lens, and a means for driving the magnetic field applying means and the deflection correcting means with a signal from the image display means is provided. electronic microscope.
JP6234762A 1994-09-29 1994-09-29 electronic microscope Pending JPH0896737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6234762A JPH0896737A (en) 1994-09-29 1994-09-29 electronic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6234762A JPH0896737A (en) 1994-09-29 1994-09-29 electronic microscope

Publications (1)

Publication Number Publication Date
JPH0896737A true JPH0896737A (en) 1996-04-12

Family

ID=16975965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6234762A Pending JPH0896737A (en) 1994-09-29 1994-09-29 electronic microscope

Country Status (1)

Country Link
JP (1) JPH0896737A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002080218A1 (en) * 2001-03-29 2002-10-10 Japan Science And Technology Corporation Magnetic field applying sample observing system
EP1598848A3 (en) * 2004-05-21 2006-11-02 Tohoku University Electron microscope
JP2007080724A (en) * 2005-09-15 2007-03-29 Tohoku Univ Magnetic field application device for electron microscope
US8158940B2 (en) 2009-05-20 2012-04-17 Jeol Ltd. Magnetic domain imaging system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002080218A1 (en) * 2001-03-29 2002-10-10 Japan Science And Technology Corporation Magnetic field applying sample observing system
US6838675B2 (en) * 2001-03-29 2005-01-04 Hitachi, Ltd. Specimen observation system for applying external magnetic field
EP1598848A3 (en) * 2004-05-21 2006-11-02 Tohoku University Electron microscope
US7241995B2 (en) 2004-05-21 2007-07-10 Tohoku University Electron microscope equipped with magnetic microprobe
JP2007080724A (en) * 2005-09-15 2007-03-29 Tohoku Univ Magnetic field application device for electron microscope
US8158940B2 (en) 2009-05-20 2012-04-17 Jeol Ltd. Magnetic domain imaging system

Similar Documents

Publication Publication Date Title
US4223220A (en) Method for electronically imaging the potential distribution in an electronic component and arrangement for implementing the method
JPS6246943B2 (en)
JPH0896737A (en) electronic microscope
SU572230A3 (en) Microscope scanning system
JP2016110767A (en) Charged particle beam device and image achieving method
EP0121309B1 (en) Scan line type dynamic observation apparatus
JP2011003533A (en) Magnetic domain imaging system
JPS598025B2 (en) electronic microscope
JPH0360297A (en) Imaging device and its operating method
JPH0228601Y2 (en)
JP2712184B2 (en) Axis adjustment device for charged particle beam
JPS63116348A (en) Field-of-view device for electron beam equipment
JP3383175B2 (en) Image display method of scanning microscope and scanning microscope
KR830002860Y1 (en) Scanning apparatus for scanning electron microscope and similar devices
JPH024440Y2 (en)
CA1052011A (en) Stero scanning electron microscopy
JPS62198043A (en) Three-dimensional observation device
JPS6134840A (en) Astigmatism correction method in sample scanning sample image display device using particle beam
JPS6314811B2 (en)
JPH04282543A (en) Scanning electron microscope
JPH0425803Y2 (en)
JP3250287B2 (en) Method and apparatus for measuring displacement of beam spot of cathode ray tube
JPS5840758A (en) Astigmatism correction in sample-scanning-type sample- image displayer by means of particle rays
JPS585321Y2 (en) electronic microscope
JPS6212044A (en) scanning electron microscope