JPH0897060A - Higher harmonic electric current restraining device - Google Patents
Higher harmonic electric current restraining deviceInfo
- Publication number
- JPH0897060A JPH0897060A JP25280494A JP25280494A JPH0897060A JP H0897060 A JPH0897060 A JP H0897060A JP 25280494 A JP25280494 A JP 25280494A JP 25280494 A JP25280494 A JP 25280494A JP H0897060 A JPH0897060 A JP H0897060A
- Authority
- JP
- Japan
- Prior art keywords
- iron core
- bypass
- coils
- magnetic
- magnetic flux
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000452 restraining effect Effects 0.000 title abstract 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 54
- 230000004907 flux Effects 0.000 claims abstract description 39
- 238000004804 winding Methods 0.000 abstract description 8
- 238000000034 method Methods 0.000 abstract 1
- 230000000149 penetrating effect Effects 0.000 abstract 1
- 239000003990 capacitor Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 7
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000005300 metallic glass Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Regulation Of General Use Transformers (AREA)
- Power Conversion In General (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高調波電流の影響を抑
止するための高調波電流抑制器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a harmonic current suppressor for suppressing the influence of harmonic current.
【0002】[0002]
【従来の技術】最近、都市部において高調波障害が原因
とみられるコンデンサ設備の爆発,焼損,停電等の事故
が多発している。この高調波は、産業用機器や、家庭用
電化製品等に内蔵されている整流器やサイリスタ等の半
導体が発生源となっており、この高調波電流が、送・配
電線を経由して発電機にまで逆流し、その電圧降下によ
り配電電圧を歪ませたり、高調波成分がノイズ成分とな
って機器に影響を与える等により、上述の種々の事故の
発生源となっている。この高調波で特に現在問題となっ
ているのは、第5高調波,第7高調波である。2. Description of the Related Art Recently, accidents such as explosion, burnout, and power failure of capacitor equipment, which are considered to be caused by harmonic interference, have frequently occurred in urban areas. These harmonics are generated by semiconductors such as rectifiers and thyristors built into industrial equipment and household appliances, and these harmonic currents are generated by generators via transmission and distribution lines. It is a source of the above-mentioned various accidents due to the fact that the current flows back to (1) and the voltage drop distorts the distribution voltage, and the harmonic component becomes a noise component and affects the equipment. The 5th harmonic and the 7th harmonic are particularly problematic at this time.
【0003】図8はこの高調波による波形歪を表わすも
のであり、基本波形成分Aに、高調波成分Bが合成さ
れ、歪波形Cとなることがわかる。FIG. 8 shows the waveform distortion due to this harmonic, and it can be seen that the fundamental waveform component A and the harmonic component B are combined to form a distorted waveform C.
【0004】この対策として、進相コンデンサにあって
は、該コンデンサに用いられる直列リアクトルのリアク
タンスを大きくして第5高調波の流入量を抑制するとい
った手段が講ぜられる。As a countermeasure against this, in a phase advancing capacitor, a measure is taken to increase the reactance of the series reactor used in the capacitor to suppress the inflow amount of the fifth harmonic.
【0005】[0005]
【発明が解決しようとする課題】ところで、上述の直列
リアクトルは、インバータ等が実用化される前の高調波
の量も少ない状況下において、専ら用いられてきたもの
であり、インバータやコンピュータの急速な普及に伴
い、高調波が著しく増加している状況下においては有効
に対応できず、進相コンデンサだけでなく、その対策用
の直列リアクトル自体にも加熱焼損が発生することとも
なっている。By the way, the above-mentioned series reactor has been used exclusively in a situation where the amount of harmonics before the practical use of the inverter or the like is small, and the series reactor is used rapidly. Due to the widespread use, it is not possible to effectively cope with the situation in which the harmonics are significantly increasing, and it is said that not only the phase-advancing capacitor but also the series reactor itself as a countermeasure against it will be burnt out by heating.
【0006】すなわち、よく用いられている直列リアク
トル(6%L)を使用したときの、第5調波におけるコ
ンデンサとリアクトルの合成インピーダンスは、基本周
波数時のコンデンサのリアクタンス値の10%にしかな
らない。従って、この場合の直列リアクトルはコンデン
サ回路を電源からみて誘導性負荷にしたに過ぎず、コン
デンサ回路に流入してきた高調波電流抑制に対してはま
ったく効果を持たないに等しい。That is, when a commonly used series reactor (6% L) is used, the combined impedance of the capacitor and the reactor at the fifth harmonic is only 10% of the reactance value of the capacitor at the fundamental frequency. . Therefore, the series reactor in this case merely serves as an inductive load when the capacitor circuit is viewed from the power supply, and has no effect on suppressing the harmonic current flowing into the capacitor circuit.
【0007】さらには、13%直列リアクトルを用いて
も、その合成インピーダンスは45%になるだけであ
り、基本周波数時のコンデンサのリアクタンス値と同じ
値の合成インピーダンスを第5長波で持つには、24%
リアクトルを使用しなければならない。そして24%リ
アクトルを使用すれば、単にリアクトルのリアクタンス
を大きくするにとどまらず、基本周波数におけるリアク
トルの電圧降下を生じ、さらには、コンデンサは電圧が
6%リアクトルよりも大きくなり、過熱する。またリア
クトルの鉄損(ヒステリシス損、渦電流損)が大きくな
り冷却が問題となる。Furthermore, even if a 13% series reactor is used, its composite impedance is only 45%, and in order to have a composite impedance of the same value as the reactance value of the capacitor at the fundamental frequency in the fifth long wave, 24%
Reactor must be used. If the 24% reactor is used, the reactor reactance is not only increased, but a reactor voltage drop occurs at the fundamental frequency, and further, the capacitor becomes overheated when the voltage becomes larger than the 6% reactor. Further, iron loss of the reactor (hysteresis loss, eddy current loss) becomes large, and cooling becomes a problem.
【0008】このように直列リアクトルでは抑制能力が
低く、充分な抑止効果を挙げていない。そこで、従来で
は、直列リアクトルを用いるだけではなく、コンデンサ
回路を難燃化機器に統一したり、温度上昇検出用の保護
回路を設けたり、コンデンサの異常を検出する回路を設
けて回路を開放し停電等を防止したり、さらには高調波
チェッカーを用いて高調波レベルを監視する、等の対策
を合わせて講じる必要があった。As described above, the series reactor has a low suppressing ability and does not exhibit a sufficient suppressing effect. Therefore, in the past, in addition to using a series reactor, the capacitor circuit was unified into a flame-retardant device, a protection circuit for temperature rise detection was provided, and a circuit for detecting abnormality of the capacitor was provided to open the circuit. It was necessary to take measures such as preventing power outages and monitoring harmonic levels using a harmonic checker.
【0009】また、直列リアクトルは基本周波数の鉄損
があり、大寸法及び大重量となって高価であると共に、
例えば、第5高調波のリアクタンスが基本周波数のリア
クタンスの5倍にしかならず、かつ主磁路の鉄芯の断面
積は、基本周波数磁束と、高調波磁束の合計から決定し
なけらばならない等、設計が面倒であり、さらにはギャ
ップを有するので、騒音が変圧器よりも大きい等の問題
点もあった。Further, the series reactor has iron loss at the fundamental frequency, is large in size and heavy in weight, and is expensive.
For example, the reactance of the fifth harmonic is only 5 times the reactance of the fundamental frequency, and the cross-sectional area of the iron core of the main magnetic path must be determined from the sum of the fundamental frequency magnetic flux and the harmonic magnetic flux. Since the design is troublesome and there is a gap, there is a problem that the noise is larger than that of the transformer.
【0010】本発明は、高調波電流の抑制能力が大き
く、小型化,軽量化を実現できる高調波電流抑制器の提
供を目的とするものである。It is an object of the present invention to provide a harmonic current suppressor which has a large capability of suppressing harmonic current and which can be made compact and lightweight.
【0011】[0011]
【課題を解決するための手段】本発明は、負荷と電源間
に介挿されて並列的に接続される二つのコイルを、同一
の環状主磁路に同一方向へ巻回して配設し、かつ夫々の
コイルにその内側から外側へ、前記主磁路に比して飽和
磁束量が小さな環状バイパス磁路を形成したことを特徴
とする高調波電流抑制器である。According to the present invention, two coils, which are inserted between a load and a power source and connected in parallel, are arranged in the same annular main magnetic path by being wound in the same direction, Further, the harmonic current suppressor is characterized in that an annular bypass magnetic path having a smaller saturation magnetic flux amount than the main magnetic path is formed in each coil from the inside to the outside thereof.
【0012】このような高調波電流抑制器の一例として
は、負荷と電源間に介挿されて並列的に接続される二つ
のコイルを、同一の環状主鉄芯に同一方向へ巻回して配
設し、かつ前記環状主鉄芯に比して飽和磁束量が小さな
バイパス鉄芯を、両コイルの前後間を短絡するようにし
て環状主鉄芯に橋渡して構成することができる。As an example of such a harmonic current suppressor, two coils inserted between a load and a power source and connected in parallel are wound around the same annular main iron core in the same direction. A bypass iron core, which is provided and has a smaller saturation magnetic flux amount than the annular main iron core, can be configured by bridging the annular main iron core such that the front and rear of both coils are short-circuited.
【0013】[0013]
【作用】両コイルに基本周波数の電流が流れると磁束が
発生するが、両コイルの磁束方向は対向しているため、
主磁路で打ち消しあう。従って、この主磁路によって
は、逆起電力を生じない。一方、磁束は環状バイパス磁
路にも流れるが、この磁路の飽和磁束量は小さく、従っ
て基本周波数成分による磁束量は大きいから直に飽和状
態となり、磁束の変化が無しとなって、同様に逆起電力
を生じない。このため、基本周波数に対するインダクタ
ンスは小さい。[Function] When a current of a fundamental frequency flows through both coils, magnetic flux is generated, but since the magnetic flux directions of both coils are opposite,
The main magnetic paths cancel each other. Therefore, no back electromotive force is generated by this main magnetic path. On the other hand, although the magnetic flux also flows in the annular bypass magnetic path, the saturation magnetic flux amount in this magnetic path is small, and therefore the magnetic flux amount due to the fundamental frequency component is large, so that the magnetic flux enters the saturated state directly and there is no change in the magnetic flux. No back electromotive force is generated. Therefore, the inductance with respect to the fundamental frequency is small.
【0014】一方、高調波が両コイルに流れると、この
高調波では環状バイパス磁路を飽和させることができな
いから、該環状バイパス磁路により逆起電力が発生す
る。このため、高調波に対するインダクタンスは大きく
なる。On the other hand, when a harmonic wave flows through both coils, the harmonic wave cannot saturate the annular bypass magnetic path, so that a counter electromotive force is generated by the annular bypass magnetic path. For this reason, the inductance with respect to harmonics becomes large.
【0015】従って、この高調波電流抑制器に電流を流
すと、高調波のみが環状バイパス磁路により逆起電力を
受け、該高調波電流のみが低減することとなる。Therefore, when a current is passed through this harmonic current suppressor, only the harmonic wave receives the counter electromotive force by the annular bypass magnetic path, and only the harmonic current is reduced.
【0016】[0016]
【実施例】添付図面について本発明の一実施例を説明す
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described with reference to the accompanying drawings.
【0017】図1,2は本発明の一実施例を示す。1 and 2 show an embodiment of the present invention.
【0018】ここで本発明に係る高調波電流抑制器1
は、負荷Lと電源S間に介挿される。この高調波電流抑
制器1は並列的に接続される二つのコイル2,2を、同
一の矩形環状主鉄芯3の両側に同一方向へ巻回して配設
される。そして、環状主鉄芯3の上下部をバイパス鉄芯
4で橋渡して、両コイル2,2の前後間を短絡するよう
にしている。前記バイパス鉄芯4は、その横断面積を、
環状主鉄芯3の横断面積に比して小さくし、これにより
バイパス鉄芯4を環状主鉄芯3に比して飽和磁束量を小
さなものとしている。そして、後述するように環状主鉄
芯3により環状主磁路を構成し、該環状主鉄芯3とバイ
パス鉄芯4とで環状バイパス磁路5,5を構成してい
る。Here, the harmonic current suppressor 1 according to the present invention
Is inserted between the load L and the power source S. The harmonic current suppressor 1 is provided by winding two coils 2 and 2 connected in parallel on both sides of the same rectangular annular main iron core 3 in the same direction. Then, the upper and lower parts of the annular main iron core 3 are bridged by the bypass iron core 4 to short-circuit the front and rear of the coils 2, 2. The bypass iron core 4 has a cross-sectional area of
It is made smaller than the cross-sectional area of the annular main iron core 3, thereby making the bypass iron core 4 have a smaller saturation magnetic flux amount than the annular main iron core 3. As will be described later, the annular main iron core 3 constitutes an annular main magnetic path, and the annular main iron core 3 and the bypass iron core 4 constitute annular bypass magnetic paths 5, 5.
【0019】次にかかる構成の一般的特性につき説明す
る。Next, general characteristics of such a configuration will be described.
【0020】a)磁気飽和を起こさない場合A) When magnetic saturation does not occur
【0021】前記コイル2,2に夫々電圧を印加する
と、電流が流れて、磁束が発生するが、主磁路では両巻
線の位相が逆となり、磁束方向が対向しているため、両
巻線の磁束は、磁気抵抗の低いバイパス鉄芯4へ流れて
加算される。ここでバイパス鉄芯4が次の(1)式を満
足する断面積をもっていれば、環状主鉄芯3とバイパス
鉄芯4とで構成される環状バイパス磁路5,5を磁束が
還流することでコイル2,2に逆起電力が生じ、巻線の
インダクタンスは(2)式で表わされることとなる。こ
こで、図1矢線は、磁束の経路を示す。When a voltage is applied to each of the coils 2 and 2, a current flows and a magnetic flux is generated, but in the main magnetic path, the phases of both windings are opposite and the directions of the magnetic flux are opposite to each other. The magnetic flux of the wire flows to the bypass iron core 4 having a low magnetic resistance and is added. Here, if the bypass iron core 4 has a cross-sectional area that satisfies the following expression (1), the magnetic flux should recirculate in the annular bypass magnetic paths 5, 5 composed of the annular main iron core 3 and the bypass iron core 4. Then, the counter electromotive force is generated in the coils 2 and 2, and the inductance of the winding is expressed by the equation (2). Here, the arrow in FIG. 1 indicates the path of the magnetic flux.
【0022】 S=E/(21/2 πfNB) (1) S = E / (2 1/2 πfNB) (1)
【0023】ここで、S;断面積[m2 ] E;電圧
[V] f;周波数[Hz] N;巻数 B;磁束密度
[Wb/m2 ]Here, S; sectional area [m 2 ] E; voltage [V] f; frequency [Hz] N; number of turns B; magnetic flux density [Wb / m 2 ]
【0024】 L=4πN2 Sμs ×10-7/l (2) L = 4πN 2 Sμ s × 10 −7 / l (2)
【0025】ここで、L;インダクタンス[H] S;
バイパス鉄芯断面積[m2 ] μs ;バイパス鉄芯の比透磁率 l;鉄芯の磁路長
[m]Here, L; inductance [H] S;
Bypass iron core cross-sectional area [m 2 ] μ s ; Bypass iron core relative permeability 1; Iron core magnetic path length [m]
【0026】b)磁気飽和を起こす場合B) When magnetic saturation occurs
【0027】電圧印加に伴って、コイル2,2に発生し
た磁束が、磁気抵抗の低いバイパス鉄芯4(バイパス磁
路5,5)へ流れた場合に、バイパス鉄芯4(バイパス
磁路5,5)が(1)式を満足する断面積よりも小さい
断面積しか有していなければ、バイパス磁路は磁気飽和
状態になる。このときの磁気飽和開始角を(3)式に示
す。When the magnetic flux generated in the coils 2 and 2 accompanying the voltage application flows to the bypass iron core 4 (bypass magnetic paths 5 and 5) having a low magnetic resistance, the bypass iron core 4 (bypass magnetic path 5 , 5) has a cross-sectional area smaller than the cross-sectional area satisfying the expression (1), the bypass magnetic path is in a magnetic saturation state. The magnetic saturation start angle at this time is shown in Expression (3).
【0028】 α=2×sin -1(4.44fNBS/E)1/2 (3) ここで、α;磁気飽和開始角Α = 2 × sin −1 (4.44 fNBS / E) 1/2 (3) where α: magnetic saturation start angle
【0029】ところでバイパス磁路5,5が磁気飽和を
起こすと磁気抵抗が著しく増大するため磁束はバイパス
鉄芯4を通らず、主磁路(主鉄芯3)上で打ち消しあ
う。このとき、一部の磁束は打ち消しあうことなく還流
し漏れ磁束となる。漏れ磁束による電圧降下は変圧器の
リアクタンスとまったく同じ式で計算ができる。従っ
て、コイル2,2を同軸対称配置にしたり、交互配置に
することでリアクタンスを小さくすることができる。図
2に磁束の経路を示す。When magnetic saturation occurs in the bypass magnetic paths 5 and 5, the magnetic resistance remarkably increases, so that the magnetic fluxes do not pass through the bypass iron core 4 and cancel each other out on the main magnetic path (main iron core 3). At this time, a part of the magnetic flux recirculates without canceling each other and becomes a leakage magnetic flux. The voltage drop due to the leakage flux can be calculated by the same formula as the transformer reactance. Therefore, the reactance can be reduced by arranging the coils 2 and 2 coaxially symmetrically or alternately. FIG. 2 shows the path of magnetic flux.
【0030】このときの巻線のインダクタンスは次の
(4)式によって求めたリアクタンスを2πfで除すこ
とで求められる。The inductance of the winding at this time is obtained by dividing the reactance obtained by the following equation (4) by 2πf.
【0031】 XL = 7.9fN2 Um κ(d+2a/3)×10-6/h (4) X L = 7.9 fN 2 U m κ (d + 2a / 3) × 10 −6 / h (4)
【0032】ここで、XL ;漏れリアクタンス[Ω]
Um ;コイルの平均周長[m] κ;ロゴスキー係数 d;コイルの間隔長[m] a;
コイルの厚み[m] h;コイルの高さ[m]Where X L ; leakage reactance [Ω]
U m ; average circumference of coil [m] κ; Rogowski coefficient d; interval length of coil [m] a;
Coil thickness [m] h; Coil height [m]
【0033】高調波電流抑制器1は上述した特性を備え
るものである。そこで、実際の電流に対する応答特性を
述べる。The harmonic current suppressor 1 has the above-mentioned characteristics. Therefore, the response characteristics to the actual current will be described.
【0034】電源電圧が印加されると、その中の基本周
波数成分については、そのコイル2,2に発生する磁束
は大きく、従って、(3)式で定まる磁気飽和開始角度
で、バイパス鉄芯4で磁気飽和を起こす。そしてバイパ
ス鉄芯4で磁気飽和を起こすと、磁気抵抗が著しく大き
くなり、バイパス磁路を通らず漏れ磁束を除いて環状主
鉄芯3で打ち消しあう。このため、コイル2,2のリア
クタンスは磁気飽和期間中漏れリアクタンスとほぼ等し
くなり、回路の基本周波数電流に対してはほとんど影響
を与えない。従って電圧降下も回路電圧に対して巻線を
交互配置にすれば、変圧器の漏れリアクタンスは通常2
〜5%であることから、4%程度に納めることができ
る。また、交互配置等のコイル構造を取ればさらに小さ
くすることも可能となる。When a power supply voltage is applied, the magnetic flux generated in the coils 2 and 2 of the fundamental frequency component therein is large, and therefore, the bypass iron core 4 has a magnetic saturation start angle determined by the equation (3). Causes magnetic saturation. Then, when magnetic saturation occurs in the bypass iron core 4, the magnetic resistance becomes remarkably large, the leakage magnetic flux is removed without passing through the bypass magnetic path, and the annular main iron core 3 cancels each other. Therefore, the reactance of the coils 2 and 2 becomes substantially equal to the leakage reactance during the magnetic saturation period, and has almost no effect on the fundamental frequency current of the circuit. Therefore, if the windings are arranged alternately for the voltage drop, the leakage reactance of the transformer is usually 2
Since it is ~ 5%, it can be paid to about 4%. Further, it is possible to further reduce the size by adopting a coil structure such as an alternating arrangement.
【0035】一方、高調波電圧による磁束ではバイパス
磁路が磁気飽和を起こさないため、高調波磁束だけがバ
イパス磁路を通って、打ち消しあうことなく還流する。
このため高調波電流に対しては(2)式で決まる励磁イ
ンダクタンスにより抑制される。ここで対象となる周波
数は商用周波数に対して数倍の周波数であるから、励磁
電流を回路電流の5%以下に押えることは何ら難しいこ
とではなく、巻鉄芯型のバイパス磁路を採用するなら、
簡単に1%以下にすることもできる。On the other hand, since the magnetic flux due to the harmonic voltage does not cause magnetic saturation in the bypass magnetic path, only the harmonic magnetic flux flows back through the bypass magnetic path without canceling each other.
Therefore, the harmonic current is suppressed by the exciting inductance determined by the equation (2). Since the target frequency is several times higher than the commercial frequency, it is not difficult to suppress the exciting current to 5% or less of the circuit current, and a winding core type bypass magnetic path is adopted. Then
It can be easily reduced to 1% or less.
【0036】また基本周波におけるリアクタンスに対す
る高調波におけるリアクタンスの比は、少なくとも百倍
以上になり、普通のリアクトルのリアクタンスが周波数
に比例する程度であることと比較すると、高調波電流抑
制器1のリアクタンス変化の大きさが理解される。Further, the ratio of the reactance in the harmonic to the reactance in the fundamental frequency is at least 100 times or more, and the reactance change of the harmonic current suppressor 1 is compared with the fact that the reactance of an ordinary reactor is approximately proportional to the frequency. The size of is understood.
【0037】図5は、かかる構成の高調波電流抑制器1
と、他の従来機器とのリアクタンスを比較したものであ
る。この図から高調波次数が大きくなるにつれて、当該
高調波に対するリアクタンスが大きくなることが解る。FIG. 5 shows a harmonic current suppressor 1 having such a configuration.
And the reactance with other conventional equipment. From this figure, it can be seen that as the harmonic order increases, the reactance for the harmonic increases.
【0038】また図6は、高調波電流抑制器1と、他の
従来機器との電流を比較したものである。ここでf1
(基本周波数)は1に近い程よく、f3 〜f11は小さい
程よい。FIG. 6 compares the currents of the harmonic current suppressor 1 and other conventional devices. Where f 1
The (fundamental frequency) is better as it is closer to 1, and the smaller f 3 to f 11 is, the better.
【0039】さらに図7は合成電流と、共振周波数とを
比較したものである。この合成電流は小さいほど良く、
また共振周波数はないほうが良い。Further, FIG. 7 compares the synthetic current with the resonance frequency. The smaller this combined current, the better,
Moreover, it is better that there is no resonance frequency.
【0040】上述の構成にあっては、バイパス鉄芯4に
よりバイパス磁路を構成するものであるが、基本周波に
おいては、このバイパス鉄芯4は飽和路としての役割を
有するのみであり、コイル2,2で発生した磁束は環状
主鉄芯3上の主磁路で打ち消しあうこととなる。従っ
て、バイパス鉄芯4は、高調波電圧との関係において、
はじめて意味を有するものといえる。そこで、環状主鉄
芯3とは別異にバイパス磁路を設けるようにしても良
い。図3,4はその一例を示す。In the above-mentioned configuration, the bypass magnetic core 4 constitutes the bypass magnetic path, but at the fundamental frequency, the bypass iron core 4 only serves as a saturation path, The magnetic fluxes generated in 2 and 2 cancel each other out in the main magnetic path on the annular main iron core 3. Therefore, the bypass iron core 4 has the following relationship with the harmonic voltage:
It can be said that it has meaning for the first time. Therefore, a bypass magnetic path may be provided separately from the annular main iron core 3. 3 and 4 show an example thereof.
【0041】すなわち、コイル2,2に環状主鉄芯から
なる環状主磁路11を設けると共に、各コイル2,2
に、夫々その内側から外側へ、前記主磁路11に比して
飽和磁束量が小さな環状バイパス磁路10を形成したも
のである。この環状バイパス磁路10,10は、飽和磁
束量が小さくなるように断面積が環状主磁路11に比し
て著しく小さくすることが可能なアモルファス金属等か
らなる可撓性薄膜状金属材を用いて、前記コイル2,2
の内外周を絶縁材を介して巻回することにより容易に構
成され得る。この構成にあっても、基本周波において発
生する磁束は環状主磁路11上で相互に打ち消され、か
つ各コイル2,2の環状バイパス磁路10,10では飽
和状態となる。そして一方、高調波にあっては、各環状
バイパス磁路10,10で非飽和状態を維持して磁束が
還流し、上述と同様に、高調波電流に対しては(2)式
で決まる励磁インダクタンスにより抑制され、而して、
高調波電流のみが低減されることとなる。That is, the coils 2, 2 are provided with an annular main magnetic path 11 made of an annular main iron core, and each coil 2, 2
In addition, the annular bypass magnetic path 10 having a smaller saturation magnetic flux amount than the main magnetic path 11 is formed from the inside to the outside thereof. The annular bypass magnetic paths 10 and 10 are made of a flexible thin film metallic material made of an amorphous metal or the like whose cross-sectional area can be made significantly smaller than that of the annular main magnetic path 11 so that the saturation magnetic flux amount becomes small. Using the coils 2, 2
It can be easily constructed by winding the inner and outer peripheries of the same through an insulating material. Even with this configuration, the magnetic fluxes generated at the fundamental frequency are canceled out on the annular main magnetic path 11 and the annular bypass magnetic paths 10 and 10 of the coils 2 and 2 are saturated. On the other hand, in the case of harmonics, the magnetic flux circulates while maintaining the non-saturated state in each of the annular bypass magnetic paths 10 and 10, and the harmonic current is excited by the equation (2) similarly to the above. It is suppressed by the inductance, and
Only the harmonic current will be reduced.
【0042】図4は、かかる構成の具体例を示し、前記
コイル2,2の内外に絶縁層13,13を介してU字形
金属片14,14を対向状に当接して環状構造とし、こ
れにより環状バイパス磁路10を周設したものである。
この環状バイパス磁路10も絶縁層15により、主磁路
11と絶縁するようにする。FIG. 4 shows a concrete example of such a structure, in which U-shaped metal pieces 14, 14 are abutted against each other via insulating layers 13, 13 inside and outside the coils 2, 2 to form an annular structure. Thus, the annular bypass magnetic path 10 is provided around.
The annular bypass magnetic path 10 is also insulated from the main magnetic path 11 by the insulating layer 15.
【0043】前記環状バイパス磁路10,10の構成手
段としては、可撓性薄膜状金属材,環状鉄板等により構
成される。さらには磁性粉体を環状に保持して構成して
も良い。The annular bypass magnetic paths 10 and 10 are constituted by a flexible thin film metal material, an annular iron plate or the like. Further, the magnetic powder may be held in a ring shape.
【0044】[0044]
【発明の効果】本発明は、負荷と電源間に介挿されて並
列的に接続される二つのコイルを、同一の環状主磁路に
同一方向へ巻回して配設し、かつ夫々のコイルにその内
側から外側へ、前記主磁路に比して飽和磁束量が小さな
環状バイパス磁路を形成したものであるから、両コイル
に基本周波数の電流が流れると、主磁路で打ち消しあ
い、高調波が両コイルに流れると、この高調波では環状
バイパス磁路を飽和させることができずに、該環状バイ
パス磁路により逆起電力が発生し、高調波に対するイン
ダクタンスは大きくなる。このため、該高調波電流のみ
を有効に低減することができる。そして、これを従来の
直列リアクトルに比較すると、高調波電流の抑制能力
が、飛躍的に向上するのみではなく、基本周波時の鉄損
が発生せず、騒音はバイパス磁路のみに発生するから小
さく、鉄芯の断面積を小さくできて小寸法、小重量とす
ることができ、かつ構造が簡易,軽量かつ低廉であり、
さらには設計が容易である等の利点がある。According to the present invention, two coils, which are interposed between a load and a power source and connected in parallel, are arranged in the same annular main magnetic path so as to be wound in the same direction, and the respective coils are provided. From the inside to the outside, since an annular bypass magnetic path having a smaller saturation magnetic flux amount than the main magnetic path is formed, when a current of a fundamental frequency flows in both coils, they cancel each other out in the main magnetic path, When the higher harmonic wave flows through both coils, the higher harmonic wave cannot saturate the annular bypass magnetic path, so that the counter electromotive force is generated by the annular bypass magnetic path, and the inductance for the higher harmonic wave increases. Therefore, only the harmonic current can be effectively reduced. Comparing this with a conventional series reactor, not only is the ability to suppress harmonic currents dramatically improved, but iron loss does not occur at the fundamental frequency, and noise occurs only in the bypass magnetic path. It is small, the cross-sectional area of the iron core can be made small, the size and weight can be small, and the structure is simple, lightweight and inexpensive.
Further, there are advantages such as easy design.
【図1】第一実施例の非飽和状態を示す回路図である。FIG. 1 is a circuit diagram showing a non-saturated state of a first embodiment.
【図2】第一実施例の飽和状態を示す回路図である。FIG. 2 is a circuit diagram showing a saturated state of the first embodiment.
【図3】第二実施例の回路図である。FIG. 3 is a circuit diagram of a second embodiment.
【図4】要部の縦断側面図である。FIG. 4 is a vertical sectional side view of a main part.
【図5】本発明と従来機器とのリアクタンスの比較図で
ある。FIG. 5 is a comparison diagram of reactances of the present invention and a conventional device.
【図6】本発明と従来機器との電流の比較図である。FIG. 6 is a comparison diagram of currents of the present invention and a conventional device.
【図7】本発明と従来機器との合成電流及び共振周波数
の比較図である。FIG. 7 is a comparison diagram of a synthetic current and a resonance frequency of the present invention and a conventional device.
【図8】歪波形Cの成り立ちを示す波形図である。FIG. 8 is a waveform diagram showing how the distorted waveform C is formed.
1 高調波電流抑制器 2,2 コイル 3 環状主鉄芯(環状主磁路) 4 バイパス鉄芯 5,5 環状バイパス磁路 10,10 環状バイパス磁路 11 環状主磁路 1 Harmonic current suppressor 2, 2 Coil 3 Annular main iron core (annular main magnetic path) 4 Bypass iron core 5, 5 Annular bypass magnetic path 10, 10 Annular bypass magnetic path 11 Annular main magnetic path
Claims (2)
れる二つのコイルを、同一の環状主磁路に同一方向へ巻
回して配設し、かつ夫々のコイルにその内側から外側
へ、前記主磁路に比して飽和磁束量が小さな環状バイパ
ス磁路を形成したことを特徴とする高調波電流抑制器。1. Two coils, which are inserted between a load and a power source and connected in parallel, are arranged in the same annular main magnetic path so as to be wound in the same direction, and each coil is arranged from the inside thereof. A harmonic current suppressor characterized in that an annular bypass magnetic path having a smaller amount of saturation magnetic flux than the main magnetic path is formed outward.
れる二つのコイルを、同一の環状主鉄芯に同一方向へ巻
回して配設し、かつ前記環状主鉄芯に比して飽和磁束量
が小さなバイパス鉄芯を、両コイルの前後間を短絡する
ようにして環状主鉄芯に橋渡したことを特徴とする請求
項1記載の高調波電流抑制器。2. Two coils, which are inserted between a load and a power source and are connected in parallel, are wound around the same annular main iron core in the same direction, and are arranged in the same direction. 2. The harmonic current suppressor according to claim 1, wherein the bypass iron core having a small saturation magnetic flux amount is bridged to the annular main iron core by short-circuiting the front and rear of both coils.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP25280494A JPH0897060A (en) | 1994-09-20 | 1994-09-20 | Higher harmonic electric current restraining device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP25280494A JPH0897060A (en) | 1994-09-20 | 1994-09-20 | Higher harmonic electric current restraining device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH0897060A true JPH0897060A (en) | 1996-04-12 |
Family
ID=17242462
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP25280494A Pending JPH0897060A (en) | 1994-09-20 | 1994-09-20 | Higher harmonic electric current restraining device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0897060A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002033711A1 (en) * | 2000-10-18 | 2002-04-25 | Koninklijke Philips Electronics N.V. | Inductor arrangement |
| TWI475578B (en) * | 2010-05-26 | 2015-03-01 | Tyco Electronics Corp | Planar inductor devices |
| TWI641005B (en) * | 2011-09-30 | 2018-11-11 | 英特爾公司 | Electronic apparatus with inductor that switches between coupled and decoupled states |
-
1994
- 1994-09-20 JP JP25280494A patent/JPH0897060A/en active Pending
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002033711A1 (en) * | 2000-10-18 | 2002-04-25 | Koninklijke Philips Electronics N.V. | Inductor arrangement |
| TWI475578B (en) * | 2010-05-26 | 2015-03-01 | Tyco Electronics Corp | Planar inductor devices |
| TWI641005B (en) * | 2011-09-30 | 2018-11-11 | 英特爾公司 | Electronic apparatus with inductor that switches between coupled and decoupled states |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9613745B2 (en) | Adjustable integrated combined common mode and differential mode three phase inductors and methods of manufacture and use thereof | |
| US8373952B2 (en) | Integrated DC link inductor and common mode current sensor winding | |
| US8692644B2 (en) | Harmonic mitigation devices and applications thereof | |
| US9356503B2 (en) | Combined active and passive harmonic mitigation devices and applications thereof | |
| KR20130036264A (en) | Eco-friendly energy-saving hybrid transformer and the energy-saving methods | |
| JPH0328142B2 (en) | ||
| JPH0691335B2 (en) | Shield of electromagnetic equipment | |
| JPH0897060A (en) | Higher harmonic electric current restraining device | |
| JP2567363Y2 (en) | Noise prevention choke coil | |
| JP2567360Y2 (en) | Noise prevention choke coil | |
| JP2004288882A (en) | Noise filter | |
| JPH10223454A (en) | Eddy current shield device and three-phase transformer | |
| JPH08222456A (en) | Harmonic current suppressor | |
| JPH09153423A (en) | Higher harmonic current inhibiting device | |
| JP4532034B2 (en) | Zero phase current transformer | |
| US2137579A (en) | Alternating current power circuit | |
| KR101337948B1 (en) | Generator improving harmonics waveform | |
| JPH0783960A (en) | Zero-phase current transformer | |
| JPH04258106A (en) | Power supply transformer device | |
| JPH0556009B2 (en) | ||
| JP2009290907A (en) | Noise filter | |
| JPH039309Y2 (en) | ||
| JP2000500929A (en) | Current compensated radio disturbance suppression choke with enhanced leakage inductance | |
| JPH09153424A (en) | Higher harmonic current absorber | |
| JPH0426068B2 (en) |