JPH09104940A - High-strength Al-Cu alloy with excellent weldability - Google Patents
High-strength Al-Cu alloy with excellent weldabilityInfo
- Publication number
- JPH09104940A JPH09104940A JP7261350A JP26135095A JPH09104940A JP H09104940 A JPH09104940 A JP H09104940A JP 7261350 A JP7261350 A JP 7261350A JP 26135095 A JP26135095 A JP 26135095A JP H09104940 A JPH09104940 A JP H09104940A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- alloy
- strength
- weldability
- stress corrosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Arc Welding In General (AREA)
Abstract
(57)【要約】
【課題】 高強度で、溶接性、耐応力腐食割れ性に優れ
ており、しかも加工性にも優れている、溶接構造用Al
合金を提供する。
【解決手段】 Cu2〜8重量%、Sc0.03〜3.
0重量%を含有し、且つ、Ti0.005〜0.2重量
%、B0.0001〜0.08重量%のうち少なくとも
1種を含み、更にSi0.07〜1.5重量%、Fe
0.1〜1.5重量%、Mg0.2〜2.0重量%、M
n0.01〜1.5重量%、Cr0.01〜0.6重量
%、V0.01〜0.5重量%、Ni0.05〜3.0
重量%、Mo0.01〜0.5重量%、Ag0.03〜
1.0重量%、Zr0.01〜0.25重量%、希土類
元素(La、Ce、Pr、Nd、Smのうち1種または
2種以上)0.03〜5.0重量%、のうち1種または
2種以上を含有し、残部アルミニウムおよび不可避不純
物からなることを特徴とする溶接性に優れた高力Al−
Cu系合金。(57) [Abstract] [Problem] Aluminum for welded structure, which has high strength, excellent weldability and stress corrosion cracking resistance, and also excellent workability.
Provide alloy. SOLUTION: Cu 2-8 wt%, Sc 0.03-3.
0 wt%, Ti 0.005 to 0.2 wt%, B 0.0001 to 0.08 wt% at least one kind, Si 0.07 to 1.5 wt%, Fe
0.1-1.5 wt%, Mg 0.2-2.0 wt%, M
n0.01-1.5 wt%, Cr0.01-0.6 wt%, V0.01-0.5 wt%, Ni0.05-3.0
% By weight, Mo 0.01 to 0.5% by weight, Ag 0.03 to
1.0 wt%, Zr 0.01 to 0.25 wt%, rare earth element (one or more of La, Ce, Pr, Nd, Sm) 0.03 to 5.0 wt%, 1 of Or more than one kind, and is composed of the balance aluminum and unavoidable impurities and has high weldability and high strength Al-
Cu-based alloy.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、圧延材、押出材、
鍛造材として溶接構造材に用いられる高力アルミニウム
合金に関し、さらに詳しくは、400N/mm2 以上の
引張強さが得られ、しかも溶接性、耐応力腐食割れ性に
優れた高力Al−Cu系合金に関するものである。The present invention relates to a rolled material, an extruded material,
Regarding a high-strength aluminum alloy used for a welded structural material as a forging material, more specifically, a high-strength Al-Cu-based alloy capable of obtaining a tensile strength of 400 N / mm 2 or more and having excellent weldability and stress corrosion cracking resistance It concerns alloys.
【0002】[0002]
【従来の技術】近年、建築、車両、船舶、航空機等にお
いては、益々薄肉軽量化が進み、溶接可能で、引張強さ
が400N/mm2 以上得られ、しかも耐応力腐食割れ
性に優れた高力アルミニウム合金の要求が高まって来て
いる。JISの1000系(純アルミニウム)、300
0系合金(Al−Mn系合金)、5000系合金(Al
−Mg系合金)は、溶接性は優れているが強度が低く、
引張強さが400N/mm2 以上は得られない。600
0系合金(Al−Mg−Si系合金)は、溶接時の熱影
響部にミクロ割れが発生し易く、引張強さも400N/
mm2 以上は得られない。7000系合金の内、Al−
Zn−Mg−Cu合金(A7075等)は引張強さ40
0N/mm2 以上得られるが、溶接性に劣る。7000
系合金の内、Al−Zn−Mg系合金(A7N01、A
7003等Cuを含まない合金)は引張強さが400N
/mm2 以上で溶接が可能な合金であるが、熱処理方
法、熱処理条件によっては応力腐食割れが発生する場合
があり、応力腐食割れを防止する為には、T6処理(2
段時効)やT7処理を施す必要がある。2000系合金
(Al−Cu系合金)は、強度は400N/mm2 以上
得られ、耐応力腐食割れ性にも優れるが溶接性に劣る。
Al−Cu系合金で唯一溶接が可能なA2219合金で
さえも溶接性は完全とは言いがたい。2. Description of the Related Art In recent years, construction, vehicles, ships, aircrafts, etc. have become thinner and lighter, weldability has been achieved, tensile strength of 400 N / mm 2 or more has been obtained, and stress corrosion cracking resistance has been excellent. The demand for high strength aluminum alloys is increasing. JIS 1000 series (pure aluminum), 300
0 series alloy (Al-Mn series alloy), 5000 series alloy (Al
-Mg-based alloy) has excellent weldability but low strength,
Tensile strength of 400 N / mm 2 or more cannot be obtained. 600
The 0-based alloy (Al-Mg-Si-based alloy) easily causes microcracks in the heat-affected zone during welding, and has a tensile strength of 400 N /
mm 2 or more cannot be obtained. Of the 7000 series alloys, Al-
A Zn-Mg-Cu alloy (A7075 etc.) has a tensile strength of 40.
0N / mm 2 or more is obtained, but the weldability is poor. 7000
Al-Zn-Mg-based alloy (A7N01, A
7003 and other Cu-free alloys) have a tensile strength of 400 N
Although it is an alloy that can be welded at a rate of / mm 2 or more, stress corrosion cracking may occur depending on the heat treatment method and heat treatment conditions. In order to prevent stress corrosion cracking, T6 treatment (2
Step aging) and T7 treatment are required. The 2000 series alloy (Al—Cu series alloy) has a strength of 400 N / mm 2 or more and is excellent in stress corrosion cracking resistance but poor in weldability.
It is difficult to say that even the A2219 alloy, which is the only Al-Cu alloy that can be welded, has perfect weldability.
【0003】[0003]
【発明が解決しようとする課題】JISで規定している
2000系合金(Al−Cu系合金)の中には、A20
14、A2017、A2024、A2219等があり、
それらのT6材の引張強さはいずれも400N/mm2
以上であり、応力腐食割れも発生しない。しかし、A2
219を除いた他の材料は溶接割れが発生し易いため溶
接構造材料としてはほとんど用いられていない。Al−
Cu系合金のCu量と溶接割れ長さの関係は図1のごと
くであり、Cuが1〜3wt%の時、最も割れ易い(同
図において、cmはcomposition of m
etalの略である)。A2219はこの割れのピーク
値以上Cuが添加されているため割れが比較的起こりに
くいのであるが、他の合金は、このピーク値の近傍のC
u量であるため溶接割れが発生し易い。しかし、このA
2219でさえも割れに関して全く問題がないかと言う
と、実際にはA5083等の5000系合金と比べると
割れやすい方に属する。Among the 2000 series alloys (Al-Cu series alloys) specified by JIS, there is A20.
14, A2017, A2020, A2219, etc.,
The tensile strength of each of these T6 materials is 400 N / mm 2
Therefore, stress corrosion cracking does not occur. However, A2
Other materials except 219 are seldom used as a welded structural material because weld cracking easily occurs. Al-
The relationship between the Cu content of the Cu-based alloy and the weld crack length is as shown in FIG. 1, and is the easiest to crack when Cu is 1 to 3 wt% (in the figure, cm is the composition of m).
is an abbreviation for etal). In A2219, Cu is added more than the peak value of this cracking, so cracking is relatively unlikely to occur, but in other alloys, C in the vicinity of this peak value is used.
Since the amount is u, weld cracking is likely to occur. But this A
Speaking of the fact that even 2219 has no problem with cracking, it actually belongs to one that is more susceptible to cracking than 5000 alloys such as A5083.
【0004】上記のごとく従来の技術では、引張強さ4
00N/mm2 以上で、耐応力腐食割れ性、溶接性の全
ての面で満足が得られ、しかも押出、圧延、鍛造等の成
形性にも優れたアルミニウム合金を得ることは甚だ困難
であった。本発明は、従来の技術では解決できなかっ
た、引張強さ400N/mm2 以上で、耐応力腐食割れ
性、溶接性の全ての面で満足が得られ、しかも、押出、
圧延、鍛造等の成形性にも優れたAl−Cu系合金材料
を提供することを目的とするものである。As described above, in the conventional technique, the tensile strength is 4
It was very difficult to obtain an aluminum alloy having a stress corrosion cracking resistance and weldability of more than 00 N / mm 2 and having excellent formability such as extrusion, rolling and forging. . INDUSTRIAL APPLICABILITY The present invention has a tensile strength of 400 N / mm 2 or more, which is unsolvable by conventional techniques, and is satisfactory in all aspects of stress corrosion cracking resistance and weldability.
It is an object of the present invention to provide an Al-Cu based alloy material which is excellent in formability such as rolling and forging.
【0005】[0005]
【課題を解決するための手段】本発明は上記の点に鑑み
種々検討の結果、引張強さ400N/mm2 以上で、耐
応力腐食割れ性、溶接性の全ての面で満足が得られ、し
かも、押出、圧延、鍛造等の成形性にも優れた溶接用高
力アルミニウム合金を開発したものである。即ち、本願
発明は、Cu2〜8重量%、Sc0.03〜3.0重量
%を含有し、且つ、Ti0.005〜0.2重量%、B
0.0001〜0.08重量%のうち少なくとも1種を
含み、更にSi0.07〜1.5重量%、Fe0.1〜
1.5重量%、Mg0.2〜2.0重量%、Mn0.0
1〜1.5重量%、Cr0.01〜0.6重量%、V
0.01〜0.5重量%、Ni0.05〜3.0重量
%、Mo0.01〜0.5重量%、Ag0.03〜1.
0重量%、Zr0.01〜0.25重量%、希土類元素
(La、Ce、Pr、Nd、Smのうち1種または2種
以上)0.03〜5.0重量%、のうち1種または2種
以上を含有し、残部アルミニウムおよび不可避不純物か
らなることを特徴とする溶接性に優れた高力Al−Cu
系合金である。As a result of various investigations in view of the above points, the present invention has a tensile strength of 400 N / mm 2 or more and is satisfactory in all aspects of stress corrosion cracking resistance and weldability. Moreover, this is a high-strength aluminum alloy for welding which is excellent in formability such as extrusion, rolling and forging. That is, the present invention contains Cu 2 to 8 wt%, Sc 0.03 to 3.0 wt%, and Ti 0.005 to 0.2 wt%, B
At least one of 0.0001 to 0.08% by weight, Si0.07 to 1.5% by weight, Fe0.1 to 0.1% by weight
1.5 wt%, Mg 0.2-2.0 wt%, Mn 0.0
1 to 1.5% by weight, Cr 0.01 to 0.6% by weight, V
0.01-0.5 wt%, Ni 0.05-3.0 wt%, Mo 0.01-0.5 wt%, Ag 0.03-1.
0% by weight, Zr 0.01 to 0.25% by weight, rare earth element (one or more of La, Ce, Pr, Nd, Sm) 0.03 to 5.0% by weight, one of High strength Al-Cu excellent in weldability, characterized by containing two or more kinds and the balance aluminum and unavoidable impurities
It is a system alloy.
【0006】[0006]
【発明の実施の形態】以下、本願発明の溶接用高力アル
ミニウム合金について、添加元素の役割とその含有量の
限定理由を説明する。Cuは、本合金の強度向上に寄与
し、400N/mm2 以上の引張強さを得るためには不
可欠の元素である。Cuが2重量%未満では十分な強度
が得られず、8重量%を越えると溶接性、加工性が劣化
する。従って、Cuは2〜8重量%とするが、最も好ま
しい範囲は、2.5〜7.5重量%である。Scは、耐
溶接割れ性を改善する効果が顕著であり、溶接性に優れ
たAl−Cu系合金を得るために最も重要な元素であ
り、しかも耐応力腐食割れ性を改善する効果もあり、ま
た、本合金の強度向上に寄与し、400N/mm2 以上
の引張強さを得るためには不可欠な元素である。Scが
0.03重量%未満ではその効果が少なく、3.0重量
%を越えて含有させると強度、加工性を劣化させる可能
性がある。従って、Scは0.03〜3.0とするが、
最も好ましい範囲は、0.1〜1.0重量%である。BEST MODE FOR CARRYING OUT THE INVENTION The role of additional elements and the reasons for limiting the content of the high-strength aluminum alloy for welding of the present invention will be described below. Cu contributes to the strength improvement of the present alloy and is an essential element for obtaining a tensile strength of 400 N / mm 2 or more. If Cu is less than 2% by weight, sufficient strength cannot be obtained, and if it exceeds 8% by weight, weldability and workability deteriorate. Therefore, Cu is set to 2 to 8% by weight, but the most preferable range is 2.5 to 7.5% by weight. Sc has a remarkable effect of improving the weld cracking resistance, is the most important element for obtaining an Al-Cu alloy having excellent weldability, and also has the effect of improving the stress corrosion cracking resistance. It is also an essential element that contributes to the strength improvement of the present alloy and obtains a tensile strength of 400 N / mm 2 or more. If the content of Sc is less than 0.03% by weight, its effect is small, and if it exceeds 3.0% by weight, the strength and workability may be deteriorated. Therefore, Sc is 0.03 to 3.0,
The most preferred range is 0.1 to 1.0% by weight.
【0007】Ti、およびBは、組織を微細化し、溶接
性を向上させる元素である。Tiは、0.005重量%
未満ではその効果が少なく、0.2重量%を越えると巨
大化合物が発生し、靱性、加工性が劣化する可能性があ
る。従って、Tiは、0.005〜0.2重量%とする
が、最も好ましい範囲は、0.008〜0.1重量%で
ある。Bは、0.0001重量%未満では結晶粒微細化
の効果が少なく、0.08重量%を越えて含有される
と、靱性、加工性を劣化させる可能性がある。従って、
Bは、0.0001〜0.08重量%とする。Ti and B are elements that refine the structure and improve the weldability. Ti is 0.005% by weight
If it is less than 0.2%, the effect is small, and if it exceeds 0.2% by weight, a huge compound is generated, which may deteriorate toughness and workability. Therefore, Ti is set to 0.005 to 0.2% by weight, and the most preferable range is 0.008 to 0.1% by weight. If B is less than 0.0001% by weight, the effect of refining crystal grains is small, and if it exceeds 0.08% by weight, toughness and workability may be deteriorated. Therefore,
B is 0.0001 to 0.08% by weight.
【0008】Si、Fe、Mg、Mn、Cr、V、N
i、Mo、Ag、Zr、希土類元素はそれぞれ強度改善
効果、溶接性改善効果、耐応力腐食割れ性を向上させる
効果があり、1種または2種以上添加する。特にMg、
Mn、Agは強度改善効果が大きく、ZrはScと一緒
に添加することによって更に強度、溶接性の改善効果が
顕著になる。含有量が Si:0.07重量%未満、F
e:0.1重量%未満、Mg:0.2重量%未満、M
n:0.01重量%未満、Cr:0.01重量%未満、
V:0.01重量%未満、Ni:0.05重量%未満、
Mo:0.01重量%未満、Ag:0.03重量%未
満、Zr:0.01重量%未満、希土類元素(ミッシュ
メタル):0.03重量%未満では上記効果が無い。Si, Fe, Mg, Mn, Cr, V, N
Each of i, Mo, Ag, Zr, and the rare earth element has an effect of improving strength, an effect of improving weldability, and an effect of improving stress corrosion cracking resistance, and one or more kinds thereof are added. Especially Mg,
Mn and Ag have a large effect of improving the strength, and Zr together with Sc makes the effect of improving the strength and weldability more remarkable. Content: Si: less than 0.07% by weight, F
e: less than 0.1% by weight, Mg: less than 0.2% by weight, M
n: less than 0.01% by weight, Cr: less than 0.01% by weight,
V: less than 0.01% by weight, Ni: less than 0.05% by weight,
If Mo: less than 0.01% by weight, Ag: less than 0.03% by weight, Zr: less than 0.01% by weight, and rare earth element (Misch metal): less than 0.03% by weight, the above effect is not obtained.
【0009】また、それぞれSi:1.5重量%、F
e:1.5重量%、Mg:2.0重量%、Mn:1.5
重量%、Cr:0.6重量%、V:0.5重量%、N
i:3.0重量%、Mo:0.5重量%、Ag:1.0
重量%、Zr:0.25重量%、希土類元素(ミッシュ
メタル):5.0重量%を越えて含有されると巨大晶出
物が発生し、靱性、加工性を劣化させる可能性がある。
従って、Siは0.07〜1.5重量%、Feは0.1
〜1.5重量%、Mgは0.2〜2.0重量%、Mnは
0.01〜1.5重量%、Crは0.01〜0.6重量
%、Vは0.01〜0.5重量%、Niは0.05〜
3.0重量%、Moは0.01〜0.5重量%、Agは
0.03〜1.0重量%、 Zrは0.03〜0.25
重量%、希土類元素は0.03〜5.0重量%とする
が、最も好ましい範囲は、Si:0.08〜1.2重量
%、Fe:0.12〜1.2重量%、Mg:0.3〜
1.8重量%、Mn:0.1〜1.0重量%、Cr:
0.05〜0.4重量%、V:0.05〜0.3重量
%、Ni:0.1〜2.0重量%、Mo:0.03〜
0.3重量%、Ag:0.05〜0.7重量%、Zr:
0.05〜0.2重量%、希土類元素:0.05〜3.
0重量%である。In addition, Si: 1.5% by weight, F
e: 1.5 wt%, Mg: 2.0 wt%, Mn: 1.5
% By weight, Cr: 0.6% by weight, V: 0.5% by weight, N
i: 3.0% by weight, Mo: 0.5% by weight, Ag: 1.0
If it is contained in an amount exceeding 5.0% by weight, Zr: 0.25% by weight, and rare earth element (Misch metal): 5.0% by weight, a huge crystallized substance may be generated, which may deteriorate toughness and workability.
Therefore, Si is 0.07 to 1.5% by weight and Fe is 0.1
~ 1.5 wt%, Mg 0.2-2.0 wt%, Mn 0.01-1.5 wt%, Cr 0.01-0.6 wt%, V 0.01-0. 0.5 wt%, Ni is 0.05 to
3.0 wt%, Mo 0.01-0.5 wt%, Ag 0.03-1.0 wt%, Zr 0.03-0.25
The weight% and the rare earth element are 0.03 to 5.0% by weight, but the most preferable ranges are Si: 0.08 to 1.2% by weight, Fe: 0.12 to 1.2% by weight, and Mg: 0.3 ~
1.8% by weight, Mn: 0.1 to 1.0% by weight, Cr:
0.05-0.4% by weight, V: 0.05-0.3% by weight, Ni: 0.1-2.0% by weight, Mo: 0.03-
0.3% by weight, Ag: 0.05 to 0.7% by weight, Zr:
0.05-0.2% by weight, rare earth element: 0.05-3.
0% by weight.
【0010】尚、希土類元素としては、La、Ce、P
r、Nd、Sm等のうち1種または2種以上を用いるこ
とができ、これらのうちのいずれか1種の量、あるいは
2種以上の合計量が0.03〜5.0重量%の範囲内で
あればよい。これらのうち2種類以上を含む合金として
は、例えばCe、Laを主成分とするミッシュメタル
(通常Ce45〜50重量%、La20〜40重量%、
残部その他の希土類元素(Pr、Nd、Sm等)からな
る)を用いることができる。上記希土類元素のうちのい
ずれか1種、あるいはミッシュメタルは、いずれも同等
の効果を示すが、希土類元素単体では高価であり、ミッ
シュメタルとして添加する方が経済的に有利である。As rare earth elements, La, Ce, P
One or two or more of r, Nd, Sm and the like can be used, and the amount of any one of them or the total amount of two or more thereof is in the range of 0.03 to 5.0% by weight. It should be inside. As an alloy containing two or more kinds of these, for example, a misch metal containing Ce and La as main components (usually Ce 45 to 50% by weight, La 20 to 40% by weight,
The balance and other rare earth elements (made of Pr, Nd, Sm, etc.) can be used. Any one of the above rare earth elements or a misch metal exhibits the same effect, but the rare earth element alone is expensive, and it is economically advantageous to add it as a misch metal.
【0011】[0011]
【実施例】次に本発明の実施例について説明する。表1
〜6に示す組成の合金(本発明合金No.1〜110、
比較合金No.111〜147、および従来合金No.
148〜156)を半連続水冷鋳造装置を用いて、押出
用鋳塊(9インチ径)に鋳造した。この鋳塊を470〜
490℃で12時間均質化処理した後、420〜470
℃に加熱し、それぞれ厚さ10mm、幅150mmの平
角材に押出した。押出加工するに際して、前記平角材が
表面欠陥や割れ発生が無く押出し得る最高押出速度(限
界押出速度)をもって、各合金の押出性の良否を○、×
の2段階で評価し、その結果を表7〜10に示した。評
価基準は下記の通りである。 ○・・押出速度がA2219の限界押出速度(0.07
m/min)以上。 ×・・押出速度がA2219の限界押出速度(0.07
m/min)未満。Next, an embodiment of the present invention will be described. Table 1
To alloys of the present invention (invention alloy Nos. 1 to 110,
Comparative alloy No. 111-147, and conventional alloy No.
148 to 156) were cast into extrusion ingots (9 inch diameter) using a semi-continuous water-cooled casting device. 470 to this ingot
420-470 after homogenizing treatment at 490 ° C. for 12 hours
The mixture was heated to 0 ° C. and extruded into flat rectangular members each having a thickness of 10 mm and a width of 150 mm. At the time of extrusion processing, the flat material has a maximum extrusion speed (critical extrusion speed) at which it can be extruded without the occurrence of surface defects or cracks.
The evaluation was made in two stages, and the results are shown in Tables 7 to 10. The evaluation criteria are as follows. ○ ... Extrusion speed is A2219 limit extrusion speed (0.07
m / min) or higher. × ... Extrusion speed is A2219 limit extrusion speed (0.07
m / min) or less.
【0012】各々の材料は押出後、Al−Cu系合金は
490〜530℃で1時間の溶体化処理後水焼入し、A
l−Zn−Mg系合金、Al−Zn−Mg−Cu系合金
は460〜470℃で1時間の溶体化処理後水焼入し
た。その後、Al−Cu系合金は160〜195℃で2
0時間の人工時効処理を、Al−Zn−Mg系合金、A
l−Zn−Mg−Cu系合金は120〜130℃で24
時間の人工時効処理を行った。A5083は、押出後、
360℃で1時間焼鈍して下記試験に供した。After each material was extruded, the Al--Cu alloy was solution-quenched at 490 to 530 ° C. for 1 hour and water-quenched.
The 1-Zn-Mg-based alloy and the Al-Zn-Mg-Cu-based alloy were water-quenched after solution treatment at 460 to 470 ° C for 1 hour. After that, the Al-Cu based alloy is 2 at 160 to 195 ° C.
The artificial aging treatment for 0 hours was performed using Al-Zn-Mg alloy, A
The l-Zn-Mg-Cu-based alloy is 24 at 120 to 130 ° C.
An artificial aging treatment of time was performed. A5083 is, after extrusion,
It annealed at 360 degreeC for 1 hour, and used for the following test.
【0013】このようにして製造した材料について、引
張試験、応力腐食割れ試験、および溶接割れ試験を行
い、その結果を表7〜10に併記した。なお,試験方法
は下記に示す通りである。 (1)引張試験 (a)試験片 :JIS Z 2201の5号試験片 (b)試験方法 :アムスラー万能試験機を用いて、JIS Z 2241 に基づき試験する。 (c)測定値 :引張強さを測定し、次の基準で判定する。 ○・・引張強さ400N/mm2 以上 ×・・引張強さ400N/mm2 未満The materials thus produced were subjected to a tensile test, a stress corrosion cracking test, and a welding cracking test, and the results are also shown in Tables 7-10. The test method is as shown below. (1) Tensile test (a) Test piece: JIS Z 2201 No. 5 test piece (b) Test method: An Amsler universal tester is used to perform a test based on JIS Z 2241. (C) Measured value: The tensile strength is measured and judged according to the following criteria. ○ ・ ・ Tensile strength 400N / mm 2 or more × ・ ・ Tensile strength less than 400N / mm 2
【0014】 (2)応力腐食割れ試験 (a)試験片 :JIS H 8711の1号試験片 板厚3mmに加工。 (b)試験方法 :JIS H 8711基づく。 応力負荷:1号試験片用ジグを用いて耐力の75%を負荷 試験液、浸漬:3.5%NaCl液、交互浸漬(周期:10分浸 漬、50分乾燥)100日間。 (c)評価 :応力腐食割れ発生の有無観察。 ×・・・30日以内に割れ発生。 ○・・・30日をこえても割れ発生せず。 (2) Stress corrosion cracking test (a) Test piece: JIS H 8711 No. 1 test piece Processed to a plate thickness of 3 mm. (B) Test method: Based on JIS H8711. Stress load: Load 75% of proof stress using No. 1 jig for test solution, immersion: 3.5% NaCl solution, alternate immersion (cycle: immersion for 10 minutes, drying for 50 minutes) for 100 days. (C) Evaluation: Observation of occurrence of stress corrosion cracking. ×: Cracking occurred within 30 days. ◯: No cracks occurred after 30 days.
【0015】 (3)溶接割れ試験 (a)試験片 :図2に示す、フィッシュボーン形試験片 板厚3mmに切削加工。 (b)溶接条件 :溶接方法・・・TIG 溶加材・・・・使用せず 電極棒・・・・セリウム入りW、3.2mmφ 溶接電流・・・110A アーク電圧・・19V 溶接速度・・・30cm/min アルゴンガス流量・・・10リットル/min (c)割れ評価 :割れ長さを測定し,次の基準で判定する。 ○・・・ 割れ長さ50mm未満 ×・・・ 割れ長さ50mm以上 (3) Weld crack test (a) Test piece: Fishbone type test piece shown in FIG. 2 Cut into a plate thickness of 3 mm. (B) Welding conditions: Welding method ... TIG filler metal ... not used Electrode rod ... W containing cerium, 3.2mmφ welding current ... 110A arc voltage ... 19V welding speed ...・ 30 cm / min Argon gas flow rate ... 10 liters / min (c) Crack evaluation: The crack length is measured and judged according to the following criteria. ◯: Cracking length is less than 50 mm × ... Cracking length is 50 mm or more
【0016】[0016]
【表1】 [Table 1]
【0017】[0017]
【表2】 [Table 2]
【0018】[0018]
【表3】 [Table 3]
【0019】[0019]
【表4】 [Table 4]
【0020】[0020]
【表5】 [Table 5]
【0021】[0021]
【表6】 [Table 6]
【0022】[0022]
【表7】 [Table 7]
【0023】[0023]
【表8】 [Table 8]
【0024】[0024]
【表9】 [Table 9]
【0025】[0025]
【表10】 [Table 10]
【0026】表7〜9から明らかなように、本発明合金
No.1〜110はいずれも、引張強さは400N/m
m2 以上であり、強度、押出加工性、耐応力腐食割れ
性、溶接性の全てにおいて優れている。一方、表9〜1
0から明らかなように、比較合金No.111〜14
7、および従来合金No.148〜156は、上記特性
の内のいずれかにおいて劣っている。As is clear from Tables 7 to 9, the alloy No. of the present invention. 1 to 110, tensile strength is 400 N / m
It is at least m 2 , and is excellent in all of strength, extrusion processability, stress corrosion cracking resistance, and weldability. On the other hand, Tables 9 to 1
As is clear from No. 0, comparative alloy No. 111-14
7, and conventional alloy No. 148-156 are inferior in any of the above properties.
【0027】[0027]
【発明の効果】以上のように、本発明の高力Al−Cu
系合金は、引張強さ400N/mm2以上の高強度を有
し、かつ従来から溶接構造用材料としては不適と考えら
れていたAl−Cu系合金であるにもかかわらず溶接性
が良好であり、しかも耐応力腐食割れ性や加工性(押出
加工、圧延加工、鍛造加工等)にも優れており、工業上
顕著な効果を奏する。As described above, the high strength Al-Cu of the present invention is used.
The alloys have a high tensile strength of 400 N / mm 2 or more, and have good weldability despite being Al-Cu alloys that have been conventionally considered unsuitable as materials for welded structures. In addition, it is excellent in stress corrosion cracking resistance and workability (extrusion, rolling, forging, etc.), and has a remarkable industrial effect.
【図1】Cu含有量と溶接割れ長さの関係を示す説明
図。FIG. 1 is an explanatory diagram showing the relationship between Cu content and weld crack length.
【図2】フィッシュボーン形割れ試験片の形状(溶接
後)を示す平面説明図。 1・・・・フィッシュボーン形割れ試験片 1a・・・溶接ビード 1b・・・溶接割れ 1c・・・割れ長さ 1d・・・溶接方向 2・・・・切り込みFIG. 2 is an explanatory plan view showing the shape (after welding) of a fishbone-shaped crack test piece. 1 ... Fishbone type crack test piece 1a ... Weld bead 1b ... Weld crack 1c ... Crack length 1d ... Welding direction ... Cut
Claims (1)
0重量%を含有し、且つ、Ti0.005〜0.2重量
%、B0.0001〜0.08重量%のうち少なくとも
1種を含み、更にSi0.07〜1.5重量%、Fe
0.1〜1.5重量%、Mg0.2〜2.0重量%、M
n0.01〜1.5重量%、Cr0.01〜0.6重量
%、V0.01〜0.5重量%、Ni0.05〜3.0
重量%、Mo0.01〜0.5重量%、Ag0.03〜
1.0重量%、Zr0.01〜0.25重量%、希土類
元素(La、Ce、Pr、Nd、Smのうち1種または
2種以上)0.03〜5.0重量%、のうち1種または
2種以上を含有し、残部アルミニウムおよび不可避不純
物からなることを特徴とする溶接性に優れた高力Al−
Cu系合金。1. Cu 2 to 8% by weight, Sc 0.03 to 3.
0 wt%, Ti 0.005 to 0.2 wt%, B 0.0001 to 0.08 wt% at least one kind, Si 0.07 to 1.5 wt%, Fe
0.1-1.5 wt%, Mg 0.2-2.0 wt%, M
n0.01-1.5 wt%, Cr0.01-0.6 wt%, V0.01-0.5 wt%, Ni0.05-3.0
% By weight, Mo 0.01 to 0.5% by weight, Ag 0.03 to
1.0 wt%, Zr 0.01 to 0.25 wt%, rare earth element (one or more of La, Ce, Pr, Nd, Sm) 0.03 to 5.0 wt%, 1 of Or more than one kind, and is composed of the balance aluminum and unavoidable impurities and has high weldability and high strength Al-
Cu-based alloy.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7261350A JPH09104940A (en) | 1995-10-09 | 1995-10-09 | High-strength Al-Cu alloy with excellent weldability |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7261350A JPH09104940A (en) | 1995-10-09 | 1995-10-09 | High-strength Al-Cu alloy with excellent weldability |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH09104940A true JPH09104940A (en) | 1997-04-22 |
Family
ID=17360628
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP7261350A Pending JPH09104940A (en) | 1995-10-09 | 1995-10-09 | High-strength Al-Cu alloy with excellent weldability |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH09104940A (en) |
Cited By (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100410406C (en) * | 2006-08-14 | 2008-08-13 | 吉林大学 | High-strength and high-toughness cast aluminum alloy |
| EP1776486A4 (en) * | 2004-07-15 | 2009-09-30 | Alcoa Inc | 2000 SERIES ALLOYS WITH IMPROVED DAMAGE PERFORMANCE FOR AIR AND SPACE APPLICATIONS |
| EP2110452A1 (en) * | 2008-04-18 | 2009-10-21 | United Technologies Corporation | High strength L12 aluminium alloys |
| EP2241644A1 (en) | 2009-04-07 | 2010-10-20 | United Technologies Corporation | Heat treatable L12 aluminum alloys |
| US7871477B2 (en) | 2008-04-18 | 2011-01-18 | United Technologies Corporation | High strength L12 aluminum alloys |
| US7875133B2 (en) | 2008-04-18 | 2011-01-25 | United Technologies Corporation | Heat treatable L12 aluminum alloys |
| US7875131B2 (en) | 2008-04-18 | 2011-01-25 | United Technologies Corporation | L12 strengthened amorphous aluminum alloys |
| US7879162B2 (en) | 2008-04-18 | 2011-02-01 | United Technologies Corporation | High strength aluminum alloys with L12 precipitates |
| US8002912B2 (en) | 2008-04-18 | 2011-08-23 | United Technologies Corporation | High strength L12 aluminum alloys |
| US8017072B2 (en) | 2008-04-18 | 2011-09-13 | United Technologies Corporation | Dispersion strengthened L12 aluminum alloys |
| US8409497B2 (en) | 2009-10-16 | 2013-04-02 | United Technologies Corporation | Hot and cold rolling high strength L12 aluminum alloys |
| US8409373B2 (en) | 2008-04-18 | 2013-04-02 | United Technologies Corporation | L12 aluminum alloys with bimodal and trimodal distribution |
| US8409496B2 (en) | 2009-09-14 | 2013-04-02 | United Technologies Corporation | Superplastic forming high strength L12 aluminum alloys |
| CN103388093A (en) * | 2013-07-26 | 2013-11-13 | 广西德骏门窗幕墙有限公司 | Novel die-casting aluminium material |
| CN103952608A (en) * | 2014-04-10 | 2014-07-30 | 安徽银力铸造有限公司 | Preparation process of automobile aluminium alloy sheet material with excellent machinability |
| CN103981412A (en) * | 2014-04-10 | 2014-08-13 | 安徽乾通教育制造有限公司 | Impact-resistant aluminum alloy section and preparation method thereof |
| CN103981409A (en) * | 2014-04-10 | 2014-08-13 | 安徽乾通教育制造有限公司 | Heatproof aluminum alloy section and preparation method thereof |
| CN104726749A (en) * | 2015-03-19 | 2015-06-24 | 苏州欢颜电气有限公司 | Aluminum alloy conductor material |
| CN105345308A (en) * | 2015-10-29 | 2016-02-24 | 中国航空工业集团公司北京航空材料研究院 | Welding wire used for Al-Cu-Li system aluminum lithium alloy and Al-Cu system aluminum alloy |
| CN105385909A (en) * | 2015-11-26 | 2016-03-09 | 辽宁工程技术大学 | Fe-Mo-containing heat-resisting aluminum copper alloy and preparation method thereof |
| CN105401029A (en) * | 2015-12-15 | 2016-03-16 | 常熟市虹桥铸钢有限公司 | Heat-resisting casting alloy |
| CN107267825A (en) * | 2017-06-09 | 2017-10-20 | 中国兵器科学研究院宁波分院 | Casting Al-Cu alloy material and its preparation method and application |
| CN107475586A (en) * | 2017-09-13 | 2017-12-15 | 湖南工业大学 | A kind of polynary Al Cu alloys of high-strength and high ductility and its preparation method and application |
| CN108559895A (en) * | 2018-05-04 | 2018-09-21 | 安徽兴广泰新能源技术有限公司 | Corrosion-resistant ground connection alloy of one kind and preparation method thereof |
| CN109022848A (en) * | 2018-08-23 | 2018-12-18 | 山东创新金属科技有限公司 | A kind of high-strength corrosion-resisting Aluminum alloy production method |
| CN109797327A (en) * | 2019-04-10 | 2019-05-24 | 南通市荣力达铝业有限公司 | A kind of car body of aluminum alloy part of high intensity and preparation method thereof |
| CN110983132A (en) * | 2019-12-02 | 2020-04-10 | 徐州恒科重工机械有限公司 | Multiphase composite metal material |
| CN115323230A (en) * | 2022-07-29 | 2022-11-11 | 西安交通大学 | A kind of aluminum-copper-cerium heat-resistant aluminum alloy and preparation method thereof |
| CN117551950A (en) * | 2024-01-11 | 2024-02-13 | 中北大学 | Al-Cu-Mg-Ag alloy with excellent long-term thermal stability and heat treatment process thereof |
| WO2025113560A1 (en) * | 2023-11-30 | 2025-06-05 | 华为技术有限公司 | Aluminum alloy and preparation method therefor, die casting, welding assembly, and electronic device |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05195172A (en) * | 1990-12-03 | 1993-08-03 | Aluminum Co Of America <Alcoa> | Aluminum-based alloy flat product manufacturing method |
| JPH0995750A (en) * | 1995-09-30 | 1997-04-08 | Kobe Steel Ltd | Aluminum alloy excellent in heat resistance |
| JPH10505282A (en) * | 1994-05-25 | 1998-05-26 | アシュースト、コーポレーション | Aluminum-scandium alloy and method of using same |
-
1995
- 1995-10-09 JP JP7261350A patent/JPH09104940A/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05195172A (en) * | 1990-12-03 | 1993-08-03 | Aluminum Co Of America <Alcoa> | Aluminum-based alloy flat product manufacturing method |
| JPH10505282A (en) * | 1994-05-25 | 1998-05-26 | アシュースト、コーポレーション | Aluminum-scandium alloy and method of using same |
| JPH0995750A (en) * | 1995-09-30 | 1997-04-08 | Kobe Steel Ltd | Aluminum alloy excellent in heat resistance |
Cited By (39)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1776486A4 (en) * | 2004-07-15 | 2009-09-30 | Alcoa Inc | 2000 SERIES ALLOYS WITH IMPROVED DAMAGE PERFORMANCE FOR AIR AND SPACE APPLICATIONS |
| EP2458026A1 (en) * | 2004-07-15 | 2012-05-30 | Alcoa Inc. | 2000 series alloys with enhanced damage tolerance performance for aerospace applications |
| CN100410406C (en) * | 2006-08-14 | 2008-08-13 | 吉林大学 | High-strength and high-toughness cast aluminum alloy |
| US8017072B2 (en) | 2008-04-18 | 2011-09-13 | United Technologies Corporation | Dispersion strengthened L12 aluminum alloys |
| US7909947B2 (en) | 2008-04-18 | 2011-03-22 | United Technologies Corporation | High strength L12 aluminum alloys |
| US7871477B2 (en) | 2008-04-18 | 2011-01-18 | United Technologies Corporation | High strength L12 aluminum alloys |
| US7875133B2 (en) | 2008-04-18 | 2011-01-25 | United Technologies Corporation | Heat treatable L12 aluminum alloys |
| US7875131B2 (en) | 2008-04-18 | 2011-01-25 | United Technologies Corporation | L12 strengthened amorphous aluminum alloys |
| US7879162B2 (en) | 2008-04-18 | 2011-02-01 | United Technologies Corporation | High strength aluminum alloys with L12 precipitates |
| US7883590B1 (en) | 2008-04-18 | 2011-02-08 | United Technologies Corporation | Heat treatable L12 aluminum alloys |
| US8409373B2 (en) | 2008-04-18 | 2013-04-02 | United Technologies Corporation | L12 aluminum alloys with bimodal and trimodal distribution |
| US8002912B2 (en) | 2008-04-18 | 2011-08-23 | United Technologies Corporation | High strength L12 aluminum alloys |
| US7811395B2 (en) | 2008-04-18 | 2010-10-12 | United Technologies Corporation | High strength L12 aluminum alloys |
| EP2110452A1 (en) * | 2008-04-18 | 2009-10-21 | United Technologies Corporation | High strength L12 aluminium alloys |
| EP2241644A1 (en) | 2009-04-07 | 2010-10-20 | United Technologies Corporation | Heat treatable L12 aluminum alloys |
| US8409496B2 (en) | 2009-09-14 | 2013-04-02 | United Technologies Corporation | Superplastic forming high strength L12 aluminum alloys |
| US8409497B2 (en) | 2009-10-16 | 2013-04-02 | United Technologies Corporation | Hot and cold rolling high strength L12 aluminum alloys |
| CN103388093A (en) * | 2013-07-26 | 2013-11-13 | 广西德骏门窗幕墙有限公司 | Novel die-casting aluminium material |
| CN103952608A (en) * | 2014-04-10 | 2014-07-30 | 安徽银力铸造有限公司 | Preparation process of automobile aluminium alloy sheet material with excellent machinability |
| CN103981409A (en) * | 2014-04-10 | 2014-08-13 | 安徽乾通教育制造有限公司 | Heatproof aluminum alloy section and preparation method thereof |
| CN103952608B (en) * | 2014-04-10 | 2016-08-17 | 安徽银力铸造有限公司 | A kind of aluminium alloy car preparation of plates technique with excellent machinability |
| CN103981412A (en) * | 2014-04-10 | 2014-08-13 | 安徽乾通教育制造有限公司 | Impact-resistant aluminum alloy section and preparation method thereof |
| CN104726749A (en) * | 2015-03-19 | 2015-06-24 | 苏州欢颜电气有限公司 | Aluminum alloy conductor material |
| CN104726749B (en) * | 2015-03-19 | 2016-10-12 | 苏州欢颜电气有限公司 | A kind of aluminium alloy conductor material |
| CN105345308A (en) * | 2015-10-29 | 2016-02-24 | 中国航空工业集团公司北京航空材料研究院 | Welding wire used for Al-Cu-Li system aluminum lithium alloy and Al-Cu system aluminum alloy |
| CN105345308B (en) * | 2015-10-29 | 2020-01-10 | 中国航发北京航空材料研究院 | Welding wire for Al-Cu-Li series aluminum lithium alloy and Al-Cu series aluminum alloy |
| CN105385909A (en) * | 2015-11-26 | 2016-03-09 | 辽宁工程技术大学 | Fe-Mo-containing heat-resisting aluminum copper alloy and preparation method thereof |
| CN105401029A (en) * | 2015-12-15 | 2016-03-16 | 常熟市虹桥铸钢有限公司 | Heat-resisting casting alloy |
| CN107267825A (en) * | 2017-06-09 | 2017-10-20 | 中国兵器科学研究院宁波分院 | Casting Al-Cu alloy material and its preparation method and application |
| CN107475586B (en) * | 2017-09-13 | 2019-03-26 | 湖南工业大学 | A kind of polynary made of Al-Cu alloy of high-strength and high ductility and its preparation method and application |
| CN107475586A (en) * | 2017-09-13 | 2017-12-15 | 湖南工业大学 | A kind of polynary Al Cu alloys of high-strength and high ductility and its preparation method and application |
| CN108559895A (en) * | 2018-05-04 | 2018-09-21 | 安徽兴广泰新能源技术有限公司 | Corrosion-resistant ground connection alloy of one kind and preparation method thereof |
| CN109022848A (en) * | 2018-08-23 | 2018-12-18 | 山东创新金属科技有限公司 | A kind of high-strength corrosion-resisting Aluminum alloy production method |
| CN109797327A (en) * | 2019-04-10 | 2019-05-24 | 南通市荣力达铝业有限公司 | A kind of car body of aluminum alloy part of high intensity and preparation method thereof |
| CN110983132A (en) * | 2019-12-02 | 2020-04-10 | 徐州恒科重工机械有限公司 | Multiphase composite metal material |
| CN115323230A (en) * | 2022-07-29 | 2022-11-11 | 西安交通大学 | A kind of aluminum-copper-cerium heat-resistant aluminum alloy and preparation method thereof |
| WO2025113560A1 (en) * | 2023-11-30 | 2025-06-05 | 华为技术有限公司 | Aluminum alloy and preparation method therefor, die casting, welding assembly, and electronic device |
| CN117551950A (en) * | 2024-01-11 | 2024-02-13 | 中北大学 | Al-Cu-Mg-Ag alloy with excellent long-term thermal stability and heat treatment process thereof |
| CN117551950B (en) * | 2024-01-11 | 2024-04-09 | 中北大学 | Al-Cu-Mg-Ag alloy with excellent long-term thermal stability and heat treatment process thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPH09104940A (en) | High-strength Al-Cu alloy with excellent weldability | |
| JP4554088B2 (en) | Peel-resistant aluminum-magnesium alloy | |
| JPH09279284A (en) | High-strength aluminum alloy for welding with excellent resistance to stress corrosion cracking | |
| JP3398085B2 (en) | Aluminum alloy materials for welded structures and their welded joints | |
| WO1995028250A1 (en) | Al-cu-li weld filler alloy, process for the preparation thereof and process for welding therewith | |
| JP3594270B2 (en) | Al-Mg-Si based alloy with excellent weldability | |
| JP3446947B2 (en) | Heat treatment method for welding material using filler metal for welding Al-Zn-Mg-Cu alloy | |
| EP1078109B1 (en) | Formable, high strength aluminium-magnesium alloy material for application in welded structures | |
| US20040086417A1 (en) | High conductivity bare aluminum finstock and related process | |
| JP6632839B2 (en) | Aluminum alloy filler metal and aluminum alloy welding method | |
| JP2915488B2 (en) | High strength aluminum alloy for welded structural materials with excellent resistance to stress corrosion cracking | |
| JPH03122248A (en) | High strength aluminum alloy for welding excellent in stress corrosion cracking resistance | |
| JP2915481B2 (en) | High strength aluminum alloy for welded structural materials with excellent resistance to stress corrosion cracking | |
| JPH03122243A (en) | High-strength aluminum alloy plate material for welding with excellent stress corrosion cracking resistance | |
| JP2915491B2 (en) | High strength aluminum alloy for welded structural materials with excellent resistance to stress corrosion cracking | |
| JPH06346177A (en) | Aluminum alloy for weld structure excellent in stress corrosion cracking resistance and proof stress value after welding | |
| JP2915489B2 (en) | High strength aluminum alloy for welded structural materials with excellent resistance to stress corrosion cracking | |
| JP2915490B2 (en) | High strength aluminum alloy for welded structural materials with excellent resistance to stress corrosion cracking | |
| JPH03122247A (en) | High-strength aluminum alloy for welding with excellent stress corrosion cracking resistance | |
| JP2915487B2 (en) | High strength aluminum alloy for welded structural materials with excellent resistance to stress corrosion cracking | |
| JP2915497B2 (en) | Aluminum alloy for welding with excellent stress corrosion cracking resistance | |
| JP3123682B2 (en) | High strength aluminum alloy material for welding | |
| JP2000144293A (en) | Bending and arc welding-use automotive frame structural material consisting of aluminum-magnesium- silicon alloy extruded material | |
| JPS6111155B2 (en) | ||
| JPH03122246A (en) | High strength aluminum alloy for welding excellent in stress corrosion cracking resistance |