[go: up one dir, main page]

JPH09106834A - Lithium-ion secondary battery - Google Patents

Lithium-ion secondary battery

Info

Publication number
JPH09106834A
JPH09106834A JP7263116A JP26311695A JPH09106834A JP H09106834 A JPH09106834 A JP H09106834A JP 7263116 A JP7263116 A JP 7263116A JP 26311695 A JP26311695 A JP 26311695A JP H09106834 A JPH09106834 A JP H09106834A
Authority
JP
Japan
Prior art keywords
lithium
electrolyte
bis
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7263116A
Other languages
Japanese (ja)
Inventor
Makoto Takizawa
誠 瀧澤
Yoshihiko Mori
吉彦 森
Masanori Ikeda
池田  正紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP7263116A priority Critical patent/JPH09106834A/en
Publication of JPH09106834A publication Critical patent/JPH09106834A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase capacity and cycle stability of capacity and to use A1 for a collector of a positive electrode, by using a negative electrode containing mainly a carbon material capable of storing Li-ions, a positive electrode containing mainly a Li-containing transition metal chalcogenide compound, and a predetermined compound contained as an electrolyte. SOLUTION: A Li-ion secondary battery is composed of a negative electrode 2 containing mainly a carbon material capable of storing Li-ions, a positive electrode 1 containing mainly a Li-containing transition metal chalcogenide compound, and an electrolyte solution containing, as an electrolyte, a Li bis-(fluoroalkylsulfonyl) imide having alkyl group of which the carbon number is two or more. The carbon material constituting the negative electrode is not limited in particular so far as it is capable of storing Li-ions. For example, graphite, activated carbon, or the like is used. For a collector, foil of metal such as Cu, Ni and the like is mentioned, and Cu is preferable from an aspect of electroconductivity. As a binder, a homopolymer or a copolymer, or the like of tetrafluoroethylene or trifluoroethylene is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルキル基の炭素
数が2以上であるビス(フルオロアルキルスルホニル)
イミドリチウムを電解質とする電解液を含むリチウムイ
オン二次電池に関する。
TECHNICAL FIELD The present invention relates to bis (fluoroalkylsulfonyl) having an alkyl group having 2 or more carbon atoms.
The present invention relates to a lithium ion secondary battery containing an electrolytic solution containing imide lithium as an electrolyte.

【0002】[0002]

【従来の技術】従来、リチウムイオン二次電池の非水系
電解液の電解質として四フッ化硼酸リチウム、六フッ化
燐酸リチウムといった無機電解質が用いられているが、
これらの無機電解質では電池を充電状態で長期に貯蔵し
た場合に自己放電を起こしたり、充放電サイクル中に溶
媒分子の一部と反応し電池容量を低下させるといった欠
点がある。これらの欠点を解決する電解質としてフルオ
ロアルキルスルホン酸リチウムが考えられたが、フルオ
ロアルキルスルホン酸リチウムの有機溶媒溶液の電気伝
導度は無機電解質の溶液に比べて低いため電池の性能は
低い。
2. Description of the Related Art Conventionally, inorganic electrolytes such as lithium tetrafluoroborate and lithium hexafluorophosphate have been used as electrolytes of non-aqueous electrolytes for lithium ion secondary batteries.
These inorganic electrolytes have the drawbacks of causing self-discharging when the battery is stored in a charged state for a long period of time, and reacting with a part of solvent molecules during a charge / discharge cycle to reduce the battery capacity. Lithium fluoroalkyl sulfonate has been considered as an electrolyte for solving these drawbacks, but the electric conductivity of the organic solvent solution of lithium fluoroalkyl sulfonate is lower than that of the solution of the inorganic electrolyte, so the battery performance is low.

【0003】一方、無機電解質及びフルオロアルキルス
ルホン酸リチウムの長所を併せ持った電解質として、特
開平5−326018号公報、特開平6−176769
号公報記載のビス(トリフルオロメタンスルホニル)イ
ミドリチウムが挙げられるが、この塩を電解質とした電
解液中ではアルミニウムの孔食が起こるため、電池の材
料して、軽く、加工が容易でかつ安価なアルミニウムが
使用できないという欠点があった。
On the other hand, as an electrolyte having the advantages of both an inorganic electrolyte and lithium fluoroalkyl sulfonate, JP-A-5-326018 and JP-A-6-176769 are known.
Although bis (trifluoromethanesulfonyl) imide lithium described in Japanese Patent Publication No. 1994-242242 is mentioned, pitting corrosion of aluminum occurs in an electrolytic solution using this salt as an electrolyte, so that it is light as a battery material, easy to process and inexpensive. There is a drawback that aluminum cannot be used.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、高容
量でかつ容量のサイクル安定性が高い、正極の集電体に
アルミニウムを用いることの可能な、非水系電解液を含
むリチウムイオン二次電池を提供することである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention An object of the present invention is to provide a lithium ion electrolyte containing a non-aqueous electrolyte solution, which has a high capacity and a high capacity cycle stability, and which can use aluminum for the current collector of the positive electrode. It is to provide the next battery.

【0005】[0005]

【課題を解決するための手段】本発明者らは、鋭意検討
を行い、その結果炭素数が2以上のアルキル基を持つビ
ス(フルオロアルキルスルホニル)イミドリチウムを電
解質として用いると上記の課題を解決することが可能で
あることを見いだし、本発明に至った。すなわち、本発
明は下記のとおりである。 1.リチウムイオンを吸蔵可能な炭素材料を主体とする
負極及びリチウム含有遷移金属カルコゲン化合物を主体
とする正極と、アルキル基の炭素数が2以上であるビス
(フルオロアルキルスルホニル)イミドリチウムを電解
質とする電解液からなるリチウムイオン二次電池。 2.銅箔を負極の集電体とし、アルミニウム箔を正極の
集電体とし、かつアルキル基の炭素数が2以上であるビ
ス(フルオロアルキルスルホニル)イミドリチウムを電
解質とする上記1のリチウムイオン二次電池。
Means for Solving the Problems The inventors of the present invention have made extensive studies, and as a result, the use of bis (fluoroalkylsulfonyl) imide lithium having an alkyl group having 2 or more carbon atoms as an electrolyte solves the above problems. It was found that it is possible to achieve the present invention. That is, the present invention is as follows. 1. Negative electrode mainly composed of carbon material capable of occluding lithium ions, positive electrode mainly composed of lithium-containing transition metal chalcogen compound, and electrolysis using bis (fluoroalkylsulfonyl) imide lithium having an alkyl group having 2 or more carbon atoms as an electrolyte Lithium ion secondary battery consisting of liquid. 2. The lithium ion secondary battery as described in 1 above, wherein the copper foil serves as a negative electrode current collector, the aluminum foil serves as a positive electrode current collector, and bis (fluoroalkylsulfonyl) imide lithium having an alkyl group having 2 or more carbon atoms is used as an electrolyte. battery.

【0006】以下、本発明について詳しく述べる。本発
明のリチウムイオン二次電池はリチウムイオンを吸蔵可
能な炭素材料を主体とする負極及びリチウム含有遷移金
属カルコゲン化合物を主体とする正極と、アルキル基の
炭素数が2以上であるビス(フルオロアルキルスルホニ
ル)イミドリチウムを電解質とする電解液で構成され
る。
The present invention will be described in detail below. The lithium ion secondary battery of the present invention includes a negative electrode mainly composed of a carbon material capable of storing lithium ions, a positive electrode mainly composed of a lithium-containing transition metal chalcogen compound, and a bis (fluoroalkyl) having an alkyl group having 2 or more carbon atoms. (Sulfonyl) imide Lithium is used as an electrolyte.

【0007】本発明のリチウムイオン二次電池を構成す
る負極は、リチウムイオンを吸蔵可能な炭素材料を主体
として、集電体、バインダー等からなる。炭素材料はリ
チウムイオンを吸蔵可能であれば特に限定するものでは
なく、例えば黒鉛、ニードルコークス等の易黒鉛化性炭
素、活性炭、グラッシーカーボン等の難黒鉛化性炭素が
挙げられる。集電体としては具体的には銅、ニッケル等
の金属箔が挙げられ、導電性等の面から銅が好ましい。
バインダーとしては具体的にはテトラフルオロエチレン
の単独重合体又は共重合体、トリフルオロエチレンの単
独重合体又は共重合体、フッ化ビニリデンの単独重合体
又は共重合体、フッ化ビニルの単独重合体又は共重合
体、ポリブタジエンゴム(BR)、スチレン−ブタジエ
ンゴム(SBR)、ニトリルゴム(NBR)、イソプレ
ンゴム(IR)、ブチルゴム(IIR)等の合成ゴム、
ポリエチレン(LDPE又はHDPE)及びエチレンの
共重合体、ポリスチレン(PS)、ポリアクリロニトリ
ル(PAN)等が挙げられる。
The negative electrode constituting the lithium ion secondary battery of the present invention is composed mainly of a carbon material capable of storing lithium ions, and a current collector, a binder and the like. The carbon material is not particularly limited as long as it can absorb lithium ions, and examples thereof include graphitizable carbon such as graphite and needle coke, and non-graphitizable carbon such as activated carbon and glassy carbon. Specific examples of the current collector include metal foils of copper, nickel and the like, and copper is preferable in terms of conductivity and the like.
Specific examples of the binder include a homopolymer or copolymer of tetrafluoroethylene, a homopolymer or copolymer of trifluoroethylene, a homopolymer or copolymer of vinylidene fluoride, or a homopolymer of vinyl fluoride. Or synthetic rubber such as copolymer, polybutadiene rubber (BR), styrene-butadiene rubber (SBR), nitrile rubber (NBR), isoprene rubber (IR), butyl rubber (IIR),
Polyethylene (LDPE or HDPE) and ethylene copolymers, polystyrene (PS), polyacrylonitrile (PAN) and the like can be mentioned.

【0008】本発明のリチウムイオン二次電池を構成す
る正極は、リチウム含有遷移金属カルコゲン化合物を主
体として、集電体、バインダー、導電剤等からなる。リ
チウム含有遷移金属カルコゲン化合物は、Li(1-x)
oO2 、Li(1-x) NiO2、Li(1-x) Co(1-y)
y 2 、LiMn2 4 、Li(1-x) Co(1-y) y
2 、Li(1-x) z Co(1-y) y 2 (MはCo、
Ni以外の遷移金属、Al、In、Snを表し、AはL
i以外のアルカリ金属を表す。)等が挙げられる。集電
体としては具体的にはアルミニウム、アルミニウム合
金、ステンレス鋼等の金属箔が挙げられ、加工性、価格
等の面からアルミニウムが好ましい。バインダーとして
は具体的にはテトラフルオロエチレンの単独重合体又は
共重合体、トリフルオロエチレンの単独重合体又は共重
合体、フッ化ビニリデンの単独重合体又は共重合体、フ
ッ化ビニルの単独重合体又は共重合体等が挙げられる。
導電剤としては、アセチレンブラック、カーボンブラッ
ク等が挙げられる。
The lithium ion secondary battery of the present invention is constructed.
The positive electrode mainly contains a lithium-containing transition metal chalcogen compound.
The body is composed of a current collector, a binder, a conductive agent and the like. Re
The transition metal chalcogen compound containing titanium is Li(1-x)C
oOTwo, Li(1-x)NiOTwo, Li(1-x)Co(1-y)N
iyOTwo, LiMnTwoOFour, Li(1-x)Co(1-y)M y
OTwo, Li(1-x)AzCo(1-y)MyOTwo(M is Co,
Represents a transition metal other than Ni, Al, In, Sn, where A is L
Represents an alkali metal other than i. ) And the like. Current collection
As the body, specifically, aluminum, aluminum alloy
Metal foil of gold, stainless steel, etc. can be mentioned, processability, price
Aluminum is preferable from the viewpoint of the above. As a binder
Is specifically a homopolymer of tetrafluoroethylene or
Copolymer, homopolymer or copolymer of trifluoroethylene
Polymer, vinylidene fluoride homopolymer or copolymer, polymer
A homopolymer or a copolymer of vinyl fluoride can be used.
Conductive agents include acetylene black and carbon black.
Ku and the like.

【0009】本発明のリチウムイオン二次電池を構成す
る電解液は、電解質である、アルキル基の炭素数が2以
上であるビス(フルオロアルキルスルホニル)イミドリ
チウムと溶媒からなる。アルキル基の炭素数が2以上で
あるビス(フルオロアルキルスルホニル)イミドリチウ
ムは、下記一般式で表される化合物である。 一般式; (Cn (2n-m+1)m SO2 2 NLi (但し、nは2以上、通常は2以上8以下の整数を表
し、好ましくは2以上6以下の整数、更に好ましくは3
又は4であり、mは0以上2n以下の整数を表す。) nが2以上の場合正極の集電体にアルミニウムを用いる
ことができる。また、nが8を超えると該イミドリチウ
ムは非水系溶媒溶液に実質的に不溶となるため好ましく
ない。該イミドリチウムの具体例として、ビス(ヘプタ
フルオロプロパンスルホニル)イミドリチウム、ビス
(1,1,2,2,3,3−ヘキサフルオロプロパンス
ルホニル)イミドリチウム、ビス(1,1−ジフルオロ
プロパンスルホニル)イミドリチウム、ビス(ノナフル
オロブタンスルホニル)イミドリチウム等が挙げられ
る。
The electrolytic solution constituting the lithium ion secondary battery of the present invention comprises an electrolyte, bis (fluoroalkylsulfonyl) imide lithium having an alkyl group having 2 or more carbon atoms, and a solvent. Bis (fluoroalkylsulfonyl) imide lithium having an alkyl group having 2 or more carbon atoms is a compound represented by the following general formula. General formula; (C n F (2n-m + 1) H m SO 2 ) 2 NLi (where n is an integer of 2 or more, usually 2 or more and 8 or less, preferably 2 or more and 6 or less, and further, Preferably 3
Or 4, and m represents an integer of 0 or more and 2n or less. ) When n is 2 or more, aluminum can be used for the collector of the positive electrode. Further, when n exceeds 8, the imidolithium becomes substantially insoluble in the non-aqueous solvent solution, which is not preferable. Specific examples of the lithium imide include bis (heptafluoropropanesulfonyl) imide lithium, bis (1,1,2,2,3,3-hexafluoropropanesulfonyl) imide lithium, and bis (1,1-difluoropropanesulfonyl). Examples thereof include imide lithium and bis (nonafluorobutanesulfonyl) imide lithium.

【0010】これらのリチウム塩を合成する方法として
は、Inorganic Chemistry,23
(23) P.3727(1984)記載の、フルオロ
アルキルスルホニルフルオライドとアンモニアの反応生
成物フルオロアルキルスルホニルアミドをナトリウムメ
チラートと反応させスルホニルアルキルスルホニルアミ
ドナトリウムを合成した後、ヘキサメチルジシラザンと
反応させトリメチルシリルフルオロアルキルスルホニル
イミドナトリウムとして、さらにフルオロアルキルスル
ホニルフルオライドを反応させた後、硫酸で中和、ビス
(フルオロアルキルスルホニル)イミドを得、さらに炭
酸リチウムと反応させて該ビス(フルオロアルキルスル
ホニル)イミドリチウムを得る方法、特表平3−501
860号公報記載のフルオロアルキルスルホニルハライ
ドとリチウムビス(トリメチルシリル)アミドとの反応
で該ビス(フルオロアルキルスルホニル)イミドリチウ
ムを得る方法等が挙げられる。
A method for synthesizing these lithium salts is described in Inorganic Chemistry, 23.
(23) P. 3727 (1984), a reaction product of a fluoroalkylsulfonyl fluoride and ammonia, a fluoroalkylsulfonylamide is reacted with sodium methylate to synthesize sodium sulfonylalkylsulfonylamide, and then reacted with hexamethyldisilazane and trimethylsilylfluoroalkylsulfonyl. Method of further reacting fluoroalkylsulfonyl fluoride as sodium imide, then neutralizing with sulfuric acid to obtain bis (fluoroalkylsulfonyl) imide, and further reacting with lithium carbonate to obtain the bis (fluoroalkylsulfonyl) imide lithium , Tokuhei Hira 3-501
Examples thereof include a method of obtaining the bis (fluoroalkylsulfonyl) imide lithium by reacting a fluoroalkylsulfonyl halide described in JP-A 860 with lithium bis (trimethylsilyl) amide.

【0011】該電解液を構成するもう1つの成分である
溶媒は、電解質であるビス(フルオロアルキルスルホニ
ル)イミドリチウムを溶解するものであれば、特に限定
しない。具体的には、プロピレンカーボネート(P
C)、エチレンカーボネート(EC)等に代表される環
状カーボネート類、ジメチルカーボネート(DMC)、
メチルエチルカーボネート(MEC)、ジエチルカーボ
ネート(DEC)等に代表される非環状カーボネート
類、γ−ブチロラクトン(γBL)、ε−カプロラクト
ン(εCL)、プロピオン酸メチル(MP)、酪酸エチ
ル(EA)等に代表される環状及び非環状エステル類、
テトラヒドロフラン(THF)、ジメトキシエタン(D
ME)、ジエチレングリコールジメチルエーテル等に代
表されるエーテル類、アセトニトリル(AN)、プロピ
オニトリル等に代表されるニトリル類等が挙げられ、単
独で又は2つ以上の混合系で用いられる。2つ以上の混
合溶媒系の場合は、誘電率が高い溶媒と該高誘電率溶媒
より、粘度が低くかつリチウムイオンに対する配位力が
高い溶媒の組み合わせが好ましく、具体的な組み合わせ
として、PCとγBL、DMC、MEC、DEC、TH
F、DME、ECとγBL、DMC、MEC、DEC、
THF、DME等が挙げられる。高誘電率溶媒と低粘度
溶媒の体積比率は2:1〜1:2が好ましく、更に好ま
しくは1.5:1〜1:1.5である。
The solvent which is another component of the electrolytic solution is not particularly limited as long as it dissolves the bis (fluoroalkylsulfonyl) imide lithium which is the electrolyte. Specifically, propylene carbonate (P
C), cyclic carbonates represented by ethylene carbonate (EC), dimethyl carbonate (DMC),
Acyclic carbonates represented by methyl ethyl carbonate (MEC), diethyl carbonate (DEC), γ-butyrolactone (γBL), ε-caprolactone (εCL), methyl propionate (MP), ethyl butyrate (EA), etc. Representative cyclic and acyclic esters,
Tetrahydrofuran (THF), dimethoxyethane (D
ME), ethers typified by diethylene glycol dimethyl ether, nitriles typified by acetonitrile (AN), propionitrile, and the like, and they are used alone or in a mixture of two or more. In the case of a mixed solvent system of two or more, a combination of a solvent having a high dielectric constant and a solvent having a lower viscosity and a higher coordinating power for lithium ions than the high dielectric constant solvent is preferable. γBL, DMC, MEC, DEC, TH
F, DME, EC and γBL, DMC, MEC, DEC,
THF, DME and the like can be mentioned. The volume ratio of the high dielectric constant solvent to the low viscosity solvent is preferably 2: 1 to 1: 2, more preferably 1.5: 1 to 1: 1.5.

【0012】かかる負極、正極及び電解液からなるリチ
ウムイオン二次電池の形状は特に限定するものではな
く、円筒型、角型、偏円型等の種々の形状をとりうる。
The shape of the lithium ion secondary battery composed of the negative electrode, the positive electrode and the electrolytic solution is not particularly limited and may be various shapes such as a cylindrical shape, a square shape and an elliptic shape.

【0013】[0013]

【発明の実施の形態】以下に実施例を挙げ本発明を具体
的に説明する。 <参考例> ビス(パーフルオロ−1−ブタンスルホニル)イミドリ
チウムの合成 テフロン回転子、コンデンサー、滴下漏斗を取り付けた
300mlの4つ口フラスコにリチウムビス(トリメチ
ルシリル)アミドの1Mテトラヒドロフラン溶液150
mlを入れ0℃に冷却した後、撹拌しながら滴下漏斗か
らパーフルオロ−1−ブタンスルホニルフルオライド9
0.6g(=0.300mol)を約1時間かけて滴下
した。滴下完了後、撹拌を続けながら温度を徐々に室温
に戻し、更に約7日間反応させた。反応終了後、溶媒を
留去して得た粗ビス(パーフルオロ−1−ブタンスルホ
ニル)イミドリチウムをジエチルカーボネートに溶解し
て不溶分を濾別し、溶媒を留去した後、さらに水に溶解
して不溶分を濾別して真空乾燥し、75.0g(0.1
28mol)の精製ビス(パーフルオロ−1−ブタンス
ルホニル)イミドリチウムを得た。収率85.2%。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below with reference to Examples. <Reference example> Synthesis of lithium bis (perfluoro-1-butanesulfonyl) imide In a 300 ml four-necked flask equipped with a Teflon rotor, a condenser, and a dropping funnel, a 1M tetrahydrofuran solution of lithium bis (trimethylsilyl) amide 150
After adding ml and cooling to 0 ° C., perfluoro-1-butanesulfonyl fluoride 9 was added from a dropping funnel with stirring.
0.6 g (= 0.300 mol) was added dropwise over about 1 hour. After completion of the dropping, the temperature was gradually returned to room temperature while continuing stirring, and the reaction was continued for about 7 days. After completion of the reaction, the crude bis (perfluoro-1-butanesulfonyl) imide lithium obtained by distilling off the solvent was dissolved in diethyl carbonate, the insoluble matter was filtered off, the solvent was distilled off, and then dissolved in water. Then, the insoluble matter is filtered off and dried under vacuum to obtain 75.0 g (0.1
28 mol) of purified bis (perfluoro-1-butanesulfonyl) imide lithium was obtained. Yield 85.2%.

【0014】[0014]

【実施例1】図1に示す円筒型非水電解液電池を下記の
ようにして作製した。まず、LiCoO2 をボールミル
で平均粒径3μmに粉砕した後、この粉末1重量部に対
しグラファイト0.025重量部、アセチレンブラック
0.025重量部、結合剤としてポリフッ化ビニリデン
0.02重量部を加え、ジメチルホルムアミドを用いて
ペースト状にしたものを、厚さ15μmのアルミ箔の片
面に乾燥膜厚が100μmになるように塗布して正極1
を作製した。一方、市販の石油系ニードルコークス(興
亜石油社製、KOA−SJ Coke)をボールミルで
平均粒径10μmに粉砕した。このニードルコークスの
BET表面積、真密度、X線回折より得られる面間隔d
002 、Lc(002) はそれぞれ、11m2 ・g-1、2.1
3g・cm-3、3.44Å、52Åであった。この粉末
1重量部に対して結合剤としてポリフッ化ビニリデン
0.05重量部を加え、ジメチルホルムアミドを用いて
ペースト状にし、厚さ10μmの銅箔の片面に乾燥膜厚
が130μmになるように塗布して負極2を作製した。
なお、正極1及び負極2には、集電を行うためのアルミ
ニウム製の正極リード端子3、銅製の負極リード端子4
をそれぞれ溶接した。そして、正極1と負極2の間に、
ポリエチレン製の微多孔膜からなるセパレータ5を介在
させて互いに積層し、多数回捲回して、渦巻型の電極体
を作製した。そして、この渦巻型の電極体をSUS製電
池容器6中に収納した。負極リード端子4を電池容器6
の内底部にスポット溶接により接続し、正極リード端子
3は電池封口板7に同様にして接続した。
Example 1 A cylindrical non-aqueous electrolyte battery shown in FIG. 1 was produced as follows. First, LiCoO 2 was crushed with a ball mill to an average particle size of 3 μm, and then 0.025 part by weight of graphite, 0.025 part by weight of acetylene black, and 0.02 part by weight of polyvinylidene fluoride as a binder per 1 part by weight of this powder. In addition, a paste prepared by using dimethylformamide was applied to one surface of an aluminum foil having a thickness of 15 μm so that the dry film thickness was 100 μm, and the positive electrode 1
Was prepared. On the other hand, a commercially available petroleum-based needle coke (KOA-SJ Coke manufactured by Koa Oil Co., Ltd.) was pulverized with a ball mill to an average particle size of 10 μm. BET surface area of this needle coke, true density, surface spacing d obtained from X-ray diffraction
002 and Lc (002) are 11 m 2 · g −1 and 2.1, respectively.
It was 3 g · cm −3 , 3.44 Å, 52 Å. To 1 part by weight of this powder, 0.05 part by weight of polyvinylidene fluoride was added as a binder, and made into a paste using dimethylformamide, and applied to one side of a copper foil having a thickness of 10 μm so that the dry film thickness was 130 μm. Then, the negative electrode 2 was produced.
The positive electrode 1 and the negative electrode 2 have a positive electrode lead terminal 3 made of aluminum and a negative electrode lead terminal 4 made of copper for collecting current.
Welded respectively. Then, between the positive electrode 1 and the negative electrode 2,
By laminating each other with the separator 5 made of a microporous film made of polyethylene interposed, and winding many times, a spirally wound electrode body was produced. Then, the spirally wound electrode body was housed in the SUS battery container 6. The negative electrode lead terminal 4 into the battery container 6
Was connected to the inner bottom of the battery by spot welding, and the positive electrode lead terminal 3 was similarly connected to the battery sealing plate 7.

【0015】次に、この電極体が収納された電池缶容器
6中に、プロピレンカーボネート、ジメトキシエタンを
体積比1対1で混合した混合溶媒に、電解質として参考
例で合成したビス(パーフルオロ−1−ブタンスルホニ
ル)イミドリチウムを0.7mol・dm-3になるよう
に溶解させて調整した電解液を注液し、該電池容器6と
前記電池封口板7とをポリプロピレン製パッキング8を
介し、嵌合してかしめることで密封し、外径20mm、
高さ50mmの円筒型非水電解液電池を作製した。この
電池を、充放電電流1A、充電終止電圧4.2V、放電
終止電圧2.7Vで室温(約20℃)において充放電試
験を行ったところ、1サイクルめの放電容量0.88A
h、200サイクルめの放電容量保持率(200サイク
ルめの放電容量を1サイクルめの容量で割った百分率)
91%という結果を得た。
Next, in the battery can container 6 accommodating the electrode body, bis (perfluoro-) synthesized as an electrolyte in a mixed solvent prepared by mixing propylene carbonate and dimethoxyethane at a volume ratio of 1: 1. An electrolytic solution prepared by dissolving 1-butanesulfonyl) imidolithium so as to have a concentration of 0.7 mol · dm −3 was poured, and the battery container 6 and the battery sealing plate 7 were packed through a polypropylene packing 8. Sealed by fitting and caulking, outer diameter 20 mm,
A cylindrical non-aqueous electrolyte battery having a height of 50 mm was produced. This battery was subjected to a charge / discharge test at room temperature (about 20 ° C.) with a charge / discharge current of 1 A, a charge end voltage of 4.2 V, and a discharge end voltage of 2.7 V. The discharge capacity of the first cycle was 0.88 A.
h, discharge capacity retention rate for the 200th cycle (percentage of the discharge capacity for the 200th cycle divided by the capacity for the 1st cycle)
The result was 91%.

【0016】[0016]

【実施例2】実施例1と同様にして、電解液のみビス
(パ−フルオロ−1−ブタンスルホニル)イミドリチウ
ムの0.7mol・dm-3プロピレンカーボネート/ジ
メトキシエタンの体積比1/1.25混合溶媒溶液とし
た外径20mm、高さ50mmの円筒型非水電解電池を
作製し、充放電電流1A、充電終止電圧4.2V、放電
終止電圧2.7Vで室温(約20℃)において充放電試
験を行ったところ、1サイクルめの放電容量は0.86
Ah、200サイクルめの放電容量保持率(200サイ
クルめの放電容量を1サイクルめの容量で割った百分
率)90%という結果を得た。
Example 2 In the same manner as in Example 1, only the electrolytic solution contained 0.7 mol · dm −3 propylene carbonate / dimethoxyethane of bis (perfluoro-1-butanesulfonyl) imide lithium in a volume ratio of 1 / 1.25. A cylindrical nonaqueous electrolytic battery having an outer diameter of 20 mm and a height of 50 mm was prepared as a mixed solvent solution, and charged at a charge / discharge current of 1 A, a charge end voltage of 4.2 V, and a discharge end voltage of 2.7 V at room temperature (about 20 ° C.). When a discharge test was conducted, the discharge capacity in the first cycle was 0.86.
Ah, the discharge capacity retention rate at the 200th cycle (the discharge capacity at the 200th cycle divided by the capacity at the 1st cycle) was 90%.

【0017】[0017]

【実施例3】実施例1と同様にして、電解液のみビス
(パ−フルオロ−1−ブタンスルホニル)イミドリチウ
ムの0.25mol・dm-3プロピレンカーボネート溶
液とした外径20mm、高さ50mmの円筒型非水電解
電池を作製し、充放電電流1A、充電終止電圧4.2
V、放電終止電圧2.7Vで室温(約20℃)において
充放電試験を行ったところ、1サイクルめの放電容量は
0.67Ah、200サイクルめの放電容量保持率(2
00サイクルめの放電容量を1サイクルめの容量で割っ
た百分率)94%という結果を得た。
Example 3 In the same manner as in Example 1, a 0.25 mol · dm −3 propylene carbonate solution of lithium bis (perfluoro-1-butanesulfonyl) imide was used as the electrolytic solution only, with an outer diameter of 20 mm and a height of 50 mm. A cylindrical non-aqueous electrolyte battery was produced, and the charge / discharge current was 1 A and the end-of-charge voltage was 4.2.
When a charge / discharge test was performed at room temperature (about 20 ° C.) with V and discharge end voltage of 2.7 V, the discharge capacity at the first cycle was 0.67 Ah, and the discharge capacity retention ratio at the 200th cycle (2
As a result, the discharge capacity at the 00th cycle was divided by the capacity at the first cycle to obtain 94%.

【0018】[0018]

【比較例1】実施例1と同様にして、電解液のみビス
(トリフルオロメタンスルホニル)イミドリチウムの
1.0mol・dm-3プロピレンカーボネート/ジメト
キシエタンの体積比1/1混合溶媒溶液とした外径20
mm、高さ50mmの円筒型非水電解液電池を作製し、
充放電電流1A、充電終止電圧4.2V、放電終止電圧
2.7Vで室温(約20℃)において充放電試験を行っ
たところ、1サイクルめの放電容量は0.90Ahだっ
たが、2サイクルめには充電及び放電が不可能になっ
た。電池を解体して調べたところ、正極のアルミニウム
箔が腐食によって切断されていた。
[Comparative Example 1] In the same manner as in Example 1, the outer diameter of the electrolytic solution was a mixed solvent solution of 1.0 mol · dm −3 propylene carbonate / dimethoxyethane volume ratio 1/1 of bis (trifluoromethanesulfonyl) imide lithium. 20
mm, height 50 mm, a cylindrical non-aqueous electrolyte battery was prepared,
When a charge / discharge test was conducted at a room temperature (about 20 ° C.) with a charge / discharge current of 1 A, a charge end voltage of 4.2 V, and a discharge end voltage of 2.7 V, the discharge capacity at the first cycle was 0.90 Ah, but 2 cycles. In the end, charging and discharging became impossible. When the battery was disassembled and examined, the aluminum foil of the positive electrode was cut due to corrosion.

【0019】[0019]

【比較例2】実施例1と同様にして、電解液のみ六フッ
化燐酸リチウムの1.0mol・dm−3プロピレンカ
ーボネート/ジメトキシエタンの体積比1/1混合溶媒
溶液とした外径20mm、高さ50mmの円筒型非水電
解液電池を作製し、充放電電流1A、充電終止電圧4.
2V、放電終止電圧2.7Vで室温(約20℃)におい
て充放電試験を行ったところ、1サイクルめの放電容量
は0.89Ah、200サイクルめの放電容量保持率
(200サイクルめの放電容量を1サイクルめの容量で
割った百分率)72%という結果を得た。
[Comparative Example 2] In the same manner as in Example 1, except that only the electrolytic solution was a 1.0 mol · dm-3 propylene carbonate / dimethoxyethane volume ratio 1/1 mixed solvent solution, the outer diameter was 20 mm and the height was high. A cylindrical non-aqueous electrolyte battery having a length of 50 mm was prepared, and the charge / discharge current was 1 A and the charge end voltage was 4.
When a charge / discharge test was performed at room temperature (about 20 ° C.) with a discharge end voltage of 2 V and a discharge end voltage of 2.7 V, the discharge capacity at the first cycle was 0.89 Ah and the discharge capacity retention ratio at the 200th cycle (discharge capacity at the 200th cycle). Was divided by the capacity of the first cycle) and the result was 72%.

【0020】[0020]

【比較例3】実施例1と同様にして、電解液のみパーフ
ルオロ−1−ブタンスルホン酸リチウムの1.0mol
・dm-3プロピレンカーボネート/ジメトキシエタンの
体積比1/1混合溶媒溶液とした外径20mm、高さ5
0mmの円筒型非水電解液電池を作製し、充放電電流1
A、充電終止電圧4.2V、放電終止電圧2.7Vで室
温(約20℃)において充放電試験を行ったところ、1
サイクルめの放電容量は0.49Ahだった。
Comparative Example 3 In the same manner as in Example 1, except for the electrolytic solution, 1.0 mol of lithium perfluoro-1-butanesulfonate was used.
・ Dm -3 propylene carbonate / dimethoxyethane volume ratio 1/1 mixed solvent solution, outer diameter 20 mm, height 5
A 0 mm cylindrical non-aqueous electrolyte battery was prepared, and the charging / discharging current was 1
A, a charge-discharge test was performed at room temperature (about 20 ° C.) with a charge end voltage of 4.2 V and a discharge end voltage of 2.7 V.
The discharge capacity in the first cycle was 0.49 Ah.

【0021】[0021]

【発明の効果】本発明により、高容量でかつ容量のサイ
クル安定性が高く、しかも正極の集電体にアルミニウム
を用いることの可能なリチウムイオン二次電池を提供す
ることができ、大いに有用である。
According to the present invention, it is possible to provide a lithium ion secondary battery having a high capacity and a high capacity cycle stability, and capable of using aluminum for the current collector of the positive electrode. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1で用いた非水電解液電池の縦
断面図である。
FIG. 1 is a vertical cross-sectional view of a non-aqueous electrolyte battery used in Example 1 of the present invention.

【符号の説明】[Explanation of symbols]

1 帯状正極 2 帯状負極 3 正極リード端子 4 負極リード端子 5 セパレーター 6 電池容器 7 電池封口板 8 パッキング 9 絶縁板 1 band positive electrode 2 band negative electrode 3 positive electrode lead terminal 4 negative electrode lead terminal 5 separator 6 battery container 7 battery sealing plate 8 packing 9 insulating plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵可能な炭素材料を
主体とする負極及びリチウム含有遷移金属カルコゲン化
合物を主体とする正極と、アルキル基の炭素数が2以上
であるビス(フルオロアルキルスルホニル)イミドリチ
ウムを電解質とする電解液からなるリチウムイオン二次
電池。
1. A negative electrode mainly composed of a carbon material capable of absorbing lithium ions, a positive electrode mainly composed of a lithium-containing transition metal chalcogen compound, and a bis (fluoroalkylsulfonyl) imide lithium having an alkyl group having 2 or more carbon atoms. A lithium-ion secondary battery comprising an electrolyte solution containing the electrolyte.
【請求項2】 銅箔を負極の集電体とし、アルミニウム
箔を正極の集電体とし、かつアルキル基の炭素数が2以
上であるビス(フルオロアルキルスルホニル)イミドリ
チウムを電解質とする請求項1記載のリチウムイオン二
次電池。
2. A copper foil as a negative electrode current collector, an aluminum foil as a positive electrode current collector, and an bis (fluoroalkylsulfonyl) imide lithium whose alkyl group has 2 or more carbon atoms as an electrolyte. 1. The lithium ion secondary battery according to 1.
JP7263116A 1995-10-11 1995-10-11 Lithium-ion secondary battery Withdrawn JPH09106834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7263116A JPH09106834A (en) 1995-10-11 1995-10-11 Lithium-ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7263116A JPH09106834A (en) 1995-10-11 1995-10-11 Lithium-ion secondary battery

Publications (1)

Publication Number Publication Date
JPH09106834A true JPH09106834A (en) 1997-04-22

Family

ID=17385056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7263116A Withdrawn JPH09106834A (en) 1995-10-11 1995-10-11 Lithium-ion secondary battery

Country Status (1)

Country Link
JP (1) JPH09106834A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH117962A (en) * 1997-04-24 1999-01-12 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
US6280883B1 (en) 1997-12-10 2001-08-28 3M Innovative Properties Company Bis (perfluoralkanesulfonyl)imide surfactant salts in electrochemical systems
EP1174940A1 (en) * 2000-07-17 2002-01-23 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrochemical apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH117962A (en) * 1997-04-24 1999-01-12 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
US6280883B1 (en) 1997-12-10 2001-08-28 3M Innovative Properties Company Bis (perfluoralkanesulfonyl)imide surfactant salts in electrochemical systems
EP1174940A1 (en) * 2000-07-17 2002-01-23 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrochemical apparatus
US6958198B2 (en) 2000-07-17 2005-10-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrochemical apparatus

Similar Documents

Publication Publication Date Title
JP3737729B2 (en) Non-aqueous electrolyte battery and non-aqueous electrolyte
JP5125379B2 (en) Electrolytic solution for lithium secondary battery containing benzenesulfonic acid ester, and lithium secondary battery using the same
JP5519862B2 (en) Ionic liquid, electrolyte for lithium secondary battery containing the ionic liquid, and lithium secondary battery including the electrolyte
US20130136972A1 (en) Nonaqueous secondary battery electrode, nonaqueous secondary battery including the same, and assembled battery
JP6600631B2 (en) Non-aqueous electrolyte containing monofluorophosphate ester salt and non-aqueous electrolyte battery using the same
JP2002198092A (en) Phosphate additive for non-aqueous electrolyte cell capable of recharging
JPH07122296A (en) Non-aqueous electrolyte secondary battery
JP4626020B2 (en) Non-aqueous electrolyte secondary battery
JPH06333594A (en) Nonaqueous electrolyte secondary battery
JP4489207B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP5516673B2 (en) Benzenesulfonic acid ester, electrolytic solution for lithium secondary battery using the same, and lithium secondary battery using the same
JP3820748B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP4512776B2 (en) Non-aqueous electrolyte solution containing additive for capacity enhancement of lithium ion battery and lithium ion battery using the same
JPH09147910A (en) Lithium secondary battery
JPH0837025A (en) Non-aqueous electrolyte
JP3874435B2 (en) Organosulfonylimide lithium
JP3815180B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
US8734988B2 (en) Lithium batteries having anodes based on polythiocyanogen
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2002008721A (en) Non-aqueous electrolyte and lithium secondary battery
JP2008234838A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP6270634B2 (en) Active material, sodium ion battery and lithium ion battery using the same
JP3836691B2 (en) Non-aqueous electrolyte battery
JPH09106834A (en) Lithium-ion secondary battery
JP4134414B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040203