JPH091292A - Continuous casting of thin slabs - Google Patents
Continuous casting of thin slabsInfo
- Publication number
- JPH091292A JPH091292A JP15480495A JP15480495A JPH091292A JP H091292 A JPH091292 A JP H091292A JP 15480495 A JP15480495 A JP 15480495A JP 15480495 A JP15480495 A JP 15480495A JP H091292 A JPH091292 A JP H091292A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- thin
- slab
- section
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Continuous Casting (AREA)
Abstract
(57)【要約】
【目的】異形断面鋳型と未凝固圧下を用いる薄鋳片の連
続鋳造方法の提供。
【構成】偏平8角形状水平断面と可動壁とを有する鋳型
を用いて一定寸法の薄鋳片を鋳造し、薄鋳片を未凝固状
態で鋳型直下の案内ロールで圧下することにより、薄鋳
片の水平断面形状を矩形に整形する薄鋳片の連続鋳造方
法。この方法では鋳造中に幅、厚み替えを行うこともで
きる。
【効果】内部割れのない矩形状断面の薄鋳片を安定して
製造することができる。
(57) [Abstract] [Purpose] To provide a continuous casting method for thin slabs using a modified cross-section mold and unsolidified reduction. [Structure] A thin slab of a certain size is cast using a mold having a flat octagonal horizontal cross section and a movable wall, and the thin slab is pressed in a non-solidified state by a guide roll immediately below the mold to form a thin cast. A method for continuously casting thin slabs in which the horizontal cross-sectional shape of the slab is shaped into a rectangle. In this method, the width and thickness can be changed during casting. [Effect] It is possible to stably manufacture a thin slab having a rectangular cross section without internal cracks.
Description
【0001】[0001]
【産業上の利用分野】本発明は薄鋳片の連続鋳造方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously casting thin slabs.
【0002】[0002]
【従来の技術】近年、精錬技術や鋳造技術の著しい進歩
により品質性状の良好な鋳片の製造が容易化したことや
省力・省エネルギー思想の高まり等を背景にして、熱間
圧延工程の大幅な省略や熱間圧延を施すことなく溶湯か
ら直接的かつ連続的に薄鋳片(薄板材)を製造しようと
する試みが、比較的融点の低い非鉄金属ばかりでなく鉄
系金属にまで行われるようになってきた。2. Description of the Related Art In recent years, due to the fact that the production of slabs with good quality has been facilitated by the remarkable progress of refining technology and casting technology, and the idea of labor saving and energy saving has been increased, the hot rolling process has been greatly reduced. It seems that attempts to directly and continuously produce thin cast pieces (thin plate materials) from molten metal without omission or hot rolling will be applied to not only non-ferrous metals with relatively low melting points but also ferrous metals. Has become.
【0003】この薄鋳片を連続的に鋳造する手段とし
て、これまで以下の (1)〜(3) のような方法が提案され
ている。The following methods (1) to (3) have been proposed so far as means for continuously casting the thin cast pieces.
【0004】(1)ベルト式壁面移動鋳型を使用する連続
鋳造法 (2)異形断面鋳型を使用する連続鋳造法(SMS方式) (3)双ロール式連続鋳造法 しかし、これらの方法には次のような問題点が存在して
いる。すなわち、上記(1) のベルト式連続鋳造法ではベ
ルト冷却の困難さによるメンテナンス費用やランニング
コストが高いことのほか、この種の鋳型では配設に大き
な困難性を伴いがちな浸漬ノズルによる断気鋳造を行わ
ないと、表面品質を維持することが非常に難しい。(2)
の異形断面鋳型による連続鋳造法には、漸次ではあるが
鋳型内の断面積を鋳込み方向に向かって減少させるため
に、鋳型内面と鋳片表面との間に大きな摩擦力が生じ、
この摩擦抵抗により鋳片表面疵が発生するとともに鋳型
内面の摩耗が激しく、鋳型寿命が短くなる。(3) の双ロ
ール式連続鋳造法では、未凝固部でのロール圧下時に溶
湯の流動が激しく介在物の浮上分離が困難であり、偏析
が生じ易い。(1) Continuous casting method using a belt type wall surface moving mold (2) Continuous casting method using a modified cross-section mold (SMS method) (3) Twin roll type continuous casting method There are problems such as. In other words, in the belt type continuous casting method of (1) above, maintenance costs and running costs are high due to difficulty in cooling the belt, and degassing by the immersion nozzle, which tends to be difficult to dispose with this type of mold. Without casting it is very difficult to maintain surface quality. (2)
In the continuous casting method using the modified cross-section mold, in order to gradually reduce the cross-sectional area in the mold toward the casting direction, a large frictional force is generated between the mold inner surface and the slab surface,
This frictional resistance causes slab surface flaws and causes severe wear on the inner surface of the mold, resulting in shortened mold life. In the twin roll continuous casting method of (3), the molten metal flows so strongly that the inclusions are difficult to float and separate during roll pressure in the unsolidified portion, and segregation easily occurs.
【0005】このように従来の薄鋳片連続鋳造法は、い
ずれも充分に満足できる品質の薄鋳片を良好な作業性の
下で安定製造するという観点からは多くの未解決な問題
を有し、特に鉄系金属薄板材の工業的製造において熱間
圧延を伴う従来法に代替し得るほどの域に達していな
い。As described above, the conventional continuous casting method of thin slabs has many unsolved problems from the viewpoint of stably producing thin slabs of sufficiently satisfactory quality with good workability. However, it has not reached the level of being able to substitute for the conventional method involving hot rolling particularly in the industrial production of iron-based metal sheet materials.
【0006】特に、薄肉厚の鋳型への給湯方法が最大の
問題点であり、これに対していろいろな提案がなされて
いる。In particular, the hot water supply method for a thin mold is the biggest problem, and various proposals have been made for this.
【0007】方法別に整理すると、下記 (1)、(2) に分
類される。The methods are classified into the following (1) and (2).
【0008】(1)異形断面鋳型を用いる給湯(特開昭60
−158955、特開平62−220249、特開平2−295659、特開
平2−500501の各号公報参照) (2)浸漬ノズルの偏平化による給湯(特開昭58−74258
、特開昭60−12264 、特開昭60−130456、特開昭62−1
97252、特開昭62−292255、特開昭63−53900 の各号公
報参照) しかし、鋳型の水平および横断面形状の異形化では、前
述のように鋳片および鋳型の表面疵の問題があり、偏平
浸漬ノズル給湯法についても、吐出流速の上昇や不均
一、またノズル詰まりなどの問題点が発生する。(1) Hot water supply using a modified cross-section mold (JP-A-60
-158955, JP-A-62-220249, JP-A-2-295659, and JP-A-2-500501) (2) Hot water supply by flattening the immersion nozzle (JP-A-58-74258)
, JP-A-60-12264, JP-A-60-130456, JP-A-62-1
97252, JP-A-62-292255, JP-A-63-53900) However, when the horizontal and cross-sectional shapes of the mold are modified, there is a problem of surface defects of the slab and the mold as described above. Also in the flat dipping nozzle hot water supply method, there are problems such as increase in discharge flow velocity and non-uniformity, and nozzle clogging.
【0009】[0009]
【発明が解決しようとする課題】広幅薄鋳片を製造する
手段として鋳型厚みを直接目標の鋳片厚みとする鋳造方
法では、浸漬ノズルの形状を従来のような厚肉の円筒状
とするのは困難であり、偏平化せざるを得ないので、ノ
ズル吐出孔の幅が20〜30mmと狭くなり、ノズル詰
まりや片流れが発生しやすく、安定した給湯ができな
い。さらに、ノズルからの溶鋼吐出流速度が10〜20
cm/sec と非常に大きくなり、片流れが発生しやすく
なる。In the casting method in which the thickness of the mold is directly set as the target thickness of the cast piece as a means for producing wide and thin cast pieces, the shape of the dipping nozzle is set to the conventional thick-walled cylindrical shape. Since it is difficult to flatten the nozzle, the width of the nozzle discharge hole is narrowed to 20 to 30 mm, nozzle clogging and one-way flow easily occur, and stable hot water supply cannot be performed. Further, the molten steel discharge flow velocity from the nozzle is 10 to 20.
cm / sec becomes very large, and one-sided flow easily occurs.
【0010】すなわち、浸漬ノズルの形状を偏平化する
場合、通常の浸漬ノズル形状よりも薄肉厚化および広幅
化が必要であり、放熱面積が大きくなることに加えて必
然的に溶鋼が通過する領域も薄くなり、ノズル詰まりが
発生しやすくなるのである。That is, in order to flatten the shape of the immersion nozzle, it is necessary to make the wall thickness thinner and wider than the shape of a normal immersion nozzle, and in addition to a large heat radiation area, an area through which molten steel inevitably passes. Is also thinned, and nozzle clogging is likely to occur.
【0011】また、ノズル詰まりによる片流れの悪影響
が大きいため、湯面変動やパウダー巻き込みなどが発生
しやすく、鋳片品質の劣化をもたらす。Further, since the bad influence of one-sided flow due to nozzle clogging is large, fluctuations in the molten metal surface and powder entrainment are likely to occur, resulting in deterioration of the quality of the slab.
【0012】特に広幅薄鋳片への低流量給湯時に、通常
の浸漬ノズルからの溶鋼吐出流が鋳型短辺壁近傍まで回
らず、湯面の凝固が発生してパウダーの滓化不良やノズ
ルの切損などの問題が起こりやすくなる。[0012] Particularly, at the time of low flow rate hot water supply to wide and thin slabs, the flow of molten steel discharged from a normal dipping nozzle does not reach the vicinity of the short side wall of the mold, solidification of the molten metal surface occurs, and poor powder slag formation and nozzle Problems such as chipping are more likely to occur.
【0013】一方、広幅薄鋳片を製造する手段として鋳
込み方向に向かって鋳型断面を異形化(減少)し、浸漬
ノズルは従来方式の円筒形状のものを適用する方法で
は、鋳片表面に余計な摩擦力がかかり表面疵の原因にな
ると同時に、鋳型自身にも負荷がかかり鋳型内面に疵が
発生して鋳型寿命への影響が懸念される。特に、割れ感
受性の強い包晶鋼については、この異形断面鋳型を用い
る鋳造は非常に困難であると言われている。On the other hand, as a means for producing wide and thin slabs, in the method in which the mold cross section is deformed (reduced) toward the casting direction, and the immersion nozzle is of the conventional cylindrical shape, extra slag is applied to the surface of the slab. There is a concern that such frictional force may be applied to the surface of the mold, and at the same time, the mold itself may be loaded and a flaw may be generated on the inner surface of the mold to affect the life of the mold. In particular, it is said that it is very difficult to cast peritectic steel, which is highly susceptible to cracking, using this modified cross-section mold.
【0014】また、上記方法では、未凝固圧下により鋳
片短辺近傍に内部割れが発生しやすくなる。図6は、従
来の矩形水平断面鋳型(パラレル鋳型)による圧下前と
未凝固圧下後との鋳片形状を示す断面図である。図示す
るように、鋳片の短辺自身は圧延されるので、座屈によ
り鋳片の短辺が凸型形状変形を余儀なくされる。これら
の欠陥は、後工程の圧延時に内部品質の劣化や表面疵の
発生につながる。Further, in the above method, internal cracking easily occurs near the short side of the slab due to the unsolidified reduction. FIG. 6 is a cross-sectional view showing the shape of a slab before and after the reduction by a conventional rectangular horizontal section mold (parallel mold). As shown in the figure, since the short side of the slab is rolled, buckling causes the short side of the slab to deform in a convex shape. These defects lead to deterioration of internal quality and surface defects during rolling in the subsequent process.
【0015】本発明は上記の問題点を解決するためにな
されたものであり、本発明の目的は幅と厚み替えが可能
な8角形状水平断面鋳型を用いて鋳造し、未凝固状態で
鋳片を圧下することにより、矩形状の水平断面を有する
薄鋳片を製造する連続鋳造方法を提供することにある。The present invention has been made to solve the above problems, and an object of the present invention is to cast in an unsolidified state by casting using an octagonal horizontal cross-section mold whose width and thickness can be changed. It is an object of the present invention to provide a continuous casting method for producing a thin cast piece having a rectangular horizontal cross section by pressing the piece.
【0016】[0016]
【課題を解決するための手段】本発明の要旨は、次の
(1) および(2) の薄鋳片の連続鋳造方法にある。The gist of the present invention is as follows.
It is in the continuous casting method of thin cast pieces of (1) and (2).
【0017】(1)偏平8角形状の水平断面を有する鋳型
を用いる薄鋳片の連続鋳造方法であって、下記〜の
条件を備えた鋳型を用いて、偏平8角形状水平断面を有
する一定寸法の薄鋳片を鋳造し、未凝固状態において薄
鋳片を鋳型直下の案内ロールで圧下することにより、薄
鋳片の水平断面を矩形状に整形することを特徴とする薄
鋳片の連続鋳造方法(以下、本発明の第1方法とい
う)。(1) A method for continuously casting thin slabs using a mold having a flat octagonal horizontal cross section, wherein a mold having the following conditions (1) to (4) is used to obtain a flat octagonal horizontal cross section: Continuous casting of thin slab characterized by shaping thin horizontal slab into rectangular shape by rolling thin slab with dimensions and pressing the thin slab with a guide roll just below the mold in unsolidified state. Casting method (hereinafter referred to as the first method of the present invention).
【0018】偏平8角形状水平断面は、鋳型短辺壁側
の厚みが薄く、長辺壁側中央部の厚みが厚く、厚みの薄
い部分から厚い部分への過渡部分が直線的に変化したも
の。In the flat octagonal horizontal section, the thickness on the short side wall side of the mold is thin, the thickness on the long side wall side is thick, and the transitional portion from the thin portion to the thick portion changes linearly. .
【0019】鋳型短辺壁が幅方向に移動可能な台形状
水平断面の可動壁である。The short side wall of the mold is a movable wall having a trapezoidal horizontal cross section that is movable in the width direction.
【0020】鋳型長辺壁の一つが厚み方向に移動可能
な可動壁である。One of the long side walls of the mold is a movable wall that is movable in the thickness direction.
【0021】(2)鋳造開始時には上記(1) の本発明の第
1方法により、一定寸法の比較的広幅で厚い薄鋳片を鋳
造し、未凝固状態において薄鋳片を鋳型直下の案内ロー
ルで圧下して薄鋳片の水平断面を矩形状に整形しなが
ら、鋳造中に幅と厚みとの縮小(以下、幅替えという)
を行い、引き続き矩形状水平断面の狭幅薄鋳片を鋳造
し、未凝固状態において前記圧下を施すことにより、さ
らに薄鋳片の水平断面形状を矩形に整形することを特徴
とする薄鋳片の連続鋳造方法(以下、本発明の第2方法
という)。(2) At the start of casting, according to the first method of the present invention described in (1) above, a relatively wide and thick thin cast piece of a certain size is cast, and the thin cast piece in a non-solidified state is guided directly below the mold. While reducing the width and thickness during casting while shaping the horizontal section of the thin slab into a rectangular shape by pressing down.
And then cast a narrow thin slab with a rectangular horizontal cross section, and by subjecting it to reduction in the unsolidified state, the thin slab characterized by shaping the horizontal cross section of the thin slab into a rectangle. Continuous casting method (hereinafter, referred to as the second method of the present invention).
【0022】上記(1) において「直線的」とは「直線ま
たは幅替えや鋳片の引き抜きなどに支障が生じない程度
の実質的に直線」を、上記(2) において「比較的」とは
「幅替え後に比較して」を、それぞれ意味する。In the above item (1), the term "linear" means "a straight line or a substantially straight line that does not hinder the change of width or pulling out of a slab," and the above item (2) means "relatively". "Compare after width change" means respectively.
【0023】[0023]
【作用】図1に基づいて本発明方法で用いる鋳型の構成
例を説明する。図1はこの鋳型の水平断面図である。The structure of the mold used in the method of the present invention will be described with reference to FIG. FIG. 1 is a horizontal sectional view of this mold.
【0024】本発明方法で用いる鋳型3は、水冷構造の
長辺壁(銅板)1,1および短辺壁(銅板)2,2から
なり、各壁はそれぞれ独立している。鋳型3の水平断面
形状は図示するような偏平8角形状であり、鋳型短辺壁
2,2側の厚みT3 が薄く、長辺壁1,1側の中央部の
厚みT1 が厚く、厚みの薄い部分から厚い部分への過渡
部分が前記直線的に変化するものである。The mold 3 used in the method of the present invention is composed of long side walls (copper plates) 1 and 1 and short side walls (copper plates) 2 and 2 of a water cooling structure, and each wall is independent. The horizontal cross-sectional shape of the mold 3 is a flat octagonal shape as shown in the figure, and the thickness T3 of the mold short side walls 2 and 2 is thin, and the thickness T1 of the central portion of the long side walls 1 and 1 is large. The transitional portion from the thin portion to the thick portion changes linearly.
【0025】短辺壁2,2の水平断面形状は図示するよ
うな台形状である。短辺壁2,2は、鋳造中に幅縮小を
可能とする通常の幅縮小機構4,4を備えた可動壁とな
っている。このため、長辺壁1,1のどちらか片方に同
様の図示しない通常の厚み縮小機構を備えた可動壁と
し、幅縮小時に長辺壁1,1の一方も同時に移動させて
厚みを縮小し鋳型厚みも同時に変えることで、幅替えを
行う必要がある。短辺壁2,2の水平断面形状を台形状
に限定する理由は、上記のように幅替えに伴って厚みが
減少するが、この減少および更に減少した厚みの中での
幅変更を可能にするためである。図1においてW1 は鋳
型幅である。The horizontal cross-sectional shape of the short side walls 2 and 2 is a trapezoidal shape as shown in the figure. The short side walls 2 and 2 are movable walls provided with normal width reduction mechanisms 4 and 4 that enable width reduction during casting. Therefore, one of the long side walls 1 and 1 is a movable wall provided with a similar normal thickness reducing mechanism (not shown), and at the time of width reduction, one of the long side walls 1 and 1 is simultaneously moved to reduce the thickness. It is necessary to change the width by changing the mold thickness at the same time. The reason why the horizontal cross-sectional shape of the short side walls 2 and 2 is limited to the trapezoidal shape is that the thickness decreases as the width is changed as described above. However, it is possible to change the width within this decrease and the further decreased thickness. This is because In FIG. 1, W1 is the mold width.
【0026】本発明の第1方法における鋳造では、上記
の図1に示す鋳型3を用いて、偏平8角形の水平断面形
状を有する一定寸法の薄鋳片を鋳造する。鋳型3への溶
湯の供給には浸漬ノズル5を用いる。図1においてt1
は浸漬ノズル5と鋳型長辺壁1,1の中央部との離間距
離である。In the casting according to the first method of the present invention, the casting mold 3 shown in FIG. 1 is used to cast a thin slab of a certain size having a flat octagonal horizontal sectional shape. The immersion nozzle 5 is used to supply the molten metal to the mold 3. In FIG. 1, t1
Is the distance between the immersion nozzle 5 and the central portion of the long side walls 1 and 1 of the mold.
【0027】鋳型、浸漬ノズルおよび鋳造速度の好まし
い条件は次のとおりである。The preferable conditions of the mold, the dipping nozzle, and the casting speed are as follows.
【0028】 鋳型幅(W1):1000〜1800mm 鋳型中央部の厚み(T1):100〜150mm 直線的に変化する過渡部分の幅方向の長さ:200〜
400m(上記厚みT1 部の幅=鋳型中央部の幅:20
0〜1400mm) 浸漬ノズル:外径40〜60mmの円筒または正4角
筒形状、もしくは厚み40〜60mm、幅80〜150
mmの偏平筒形状 吐出孔は2孔(内径20〜30mm)、下向き20〜4
5° 浸漬ノズルと鋳型長辺壁中央部との離間距離(t1
):20〜55mm 鋳造速度:3.0〜7.0m/min 例えば、目標厚み70mm、幅1000〜1800mm
の鋼の薄鋳片を鋳造速度5.0m/minで鋳造する場
合には、鋳型形状は、鋳型中央部の幅が1000mmの
とき、鋳型中央部の厚み(T1)が100mm、両短辺の
厚み(T3)が目標鋳片厚み70mmの偏平8角形とす
る。浸漬ノズルの形状は、外径または厚みが60mm、
下向き45゜(内径30mm)の吐出角度を持つ2孔ノズ
ルを用い、このとき上記離間距離t1 は20mmとな
る。Mold width (W1): 1000 to 1800 mm Thickness of mold central part (T1): 100 to 150 mm Length in the width direction of the transitional portion which changes linearly: 200 to
400 m (width of the thickness T1 portion = width of the central portion of the mold: 20)
0 to 1400 mm) Immersion nozzle: cylinder with outer diameter of 40 to 60 mm or regular square tube shape, or thickness of 40 to 60 mm, width of 80 to 150
mm flat tube shape 2 discharge holes (inner diameter 20 to 30 mm), downward 20 to 4
Distance between the 5 ° immersion nozzle and the center of the long side wall of the mold (t1
): 20-55 mm Casting speed: 3.0-7.0 m / min For example, target thickness 70 mm, width 1000-1800 mm
When casting thin steel slabs of No. 2 at a casting speed of 5.0 m / min, the mold shape is such that when the width of the mold central portion is 1000 mm, the thickness of the central portion of the mold (T1) is 100 mm, and both short sides The thickness (T3) is a flat octagon with a target slab thickness of 70 mm. The shape of the immersion nozzle has an outer diameter or thickness of 60 mm,
A two-hole nozzle having a discharge angle of 45 ° downward (inner diameter 30 mm) is used, and at this time, the separation distance t1 is 20 mm.
【0029】本発明の第1方法では、上記鋳造で得た偏
平8角形の水平断面形状を有する薄鋳片の長辺側中央
部、すなわち厚みが厚いT1 部分のみを、未凝固状態に
おいて鋳型直下に設けた3対3段〜5対5段の案内ロー
ルで圧下することにより、薄鋳片の短辺厚みT3 を維持
したままでその水平断面形状を矩形に整形する。この例
を図2および図3により説明する。In the first method of the present invention, only the central portion on the long side of the thin cast piece having the flat octagonal horizontal cross-sectional shape obtained by the above casting, that is, only the thick T1 portion is directly under the mold in the unsolidified state. By rolling down with the guide rolls of 3 to 3 stages to 5 to 5 stages provided in, the horizontal cross-sectional shape is shaped into a rectangle while maintaining the short side thickness T3 of the thin cast piece. This example will be described with reference to FIGS.
【0030】図2は、上記圧下方法の例を説明する概略
の縦断面図である。図示するように、鋳型3の直下に備
えた3対3段の案内ロール6により、薄鋳片7の長辺両
側部分から、その中央部厚みがT1 からT3 になるよう
に順次未凝固圧下を施す。厚みT3 が鋳型短辺壁側の厚
みT3 である。FIG. 2 is a schematic vertical sectional view for explaining an example of the rolling-down method. As shown in the figure, the three-to-three-tiered guide rolls 6 provided immediately below the mold 3 are used to sequentially reduce the unsolidified pressure from both sides of the long side of the thin slab 7 so that the thickness of the central portion becomes from T1 to T3. Give. The thickness T3 is the thickness T3 on the side of the short side wall of the mold.
【0031】例えば、T1 を100mmとして鋳造し、
厚み(T3)70mmの矩形状に整形された薄鋳片として
圧下鋳造を完了させる場合には、合計圧下量として30
mmの未凝固圧下を施し、30mmの圧下パターンは1
5mm→10mm→5mmのトップ強圧下パターンとす
るのが望ましい。これは、歪積算モデルによりトップ強
圧下の方が歪の蓄積が少ないため、薄鋳片の内部割れの
発生を抑制することができるからである。For example, casting with T1 set to 100 mm,
When the reduction casting is completed as a thin slab shaped into a rectangular shape with a thickness (T3) of 70 mm, the total reduction amount is 30
mm uncoagulated reduction, 30mm reduction pattern is 1
It is desirable to have a top strong reduction pattern of 5 mm → 10 mm → 5 mm. This is because, according to the strain integration model, strain is less accumulated in the top strong reduction, so that the occurrence of internal cracks in the thin cast piece can be suppressed.
【0032】図3は、上記圧下前後の鋳片形状の変化例
を示す水平断面図である。上記の圧下方法によれば鋳片
短辺部分の圧延がないため、短辺形状は図3に示すよう
に圧下後も矩形のまま保たれることになり、後工程の圧
延時に表面割れの発生がなく、良好なコイルの製造が可
能である。FIG. 3 is a horizontal sectional view showing an example of changes in the shape of the slab before and after the reduction. According to the above-mentioned reduction method, since there is no rolling of the short side of the slab, the shape of the short side remains rectangular even after reduction as shown in Fig. 3, and surface cracking occurs during rolling in the post process. Therefore, a good coil can be manufactured.
【0033】鋳型の水平断面形状を偏平な8角形とし、
これと同じ断面形状の鋳片を製造して図3のように未凝
固圧下する本発明の第1方法の場合には、未凝固圧下時
に凝固シェルの倒れ込みがあるのみで、短辺形状は図3
に示すように圧下後も矩形のまま保たれる。この結果、
図6に示すように、水平断面がもともと矩形状である鋳
型から鋳造した矩形断面鋳片からの未凝固圧下の際に短
辺の圧延の際の座屈による凸型変形時に発生する内部割
れが、抑制できるのである。The horizontal sectional shape of the mold is a flat octagon,
In the case of the first method of the present invention in which a slab having the same cross-sectional shape is manufactured and the unsolidified pressure is reduced as shown in FIG. 3, only the collapse of the solidified shell occurs during the unsolidified pressure, and the short side shape is Three
It remains rectangular after reduction as shown in. As a result,
As shown in FIG. 6, internal cracks that occur during convex deformation due to buckling during rolling of the short side during unsolidification reduction from a rectangular cross-section slab cast from a mold whose horizontal section is originally rectangular , Can be suppressed.
【0034】さらに、図6に示すような矩形断面鋳片か
らの未凝固圧下では、上記凸型変形を防止するために、
油圧シリンダーなどの適切な短辺部分専用の圧下装置も
必要となるが、本発明方法における圧下では短辺の圧延
がなく、特別な圧下装置は不要であり、ロールレイアウ
トの絞り込みで充分矩形に未凝固圧下整形できるという
利点もある。Further, in order to prevent the above-mentioned convex deformation under the unsolidified pressure from the rectangular slab as shown in FIG. 6,
Although an appropriate rolling device for the short side such as a hydraulic cylinder is also required, the rolling in the method of the present invention does not involve rolling of the short side, and no special rolling device is required. There is also an advantage that shaping under coagulation can be performed.
【0035】本発明の第2方法は、図1に示す鋳型を用
いて、鋳造開始時には本発明の第1の方法に従い、偏平
8角形の水平断面形状を有する一定寸法の、後の幅替え
後よりも広幅で厚い薄鋳片を鋳造し、この鋳片を図2お
よび図3に示す方法で未凝固状態において鋳型直下の案
内ロールで圧下する。そして、鋳造中に幅替えを行い、
引き続き水平断面が矩形状の狭幅薄鋳片を鋳造し、この
鋳片を同様に未凝固状態において鋳型直下の案内ロール
で圧下することにより、さらに鋳片の水平断面形状を矩
形に整形して薄鋳片を得るものである。この場合、鋳造
開始時から幅替えに至るまでの鋳造および圧下方法、本
発明の第1方法と同じである。その後、鋳造中に幅替え
を行う。図4により、この場合の鋳型形状を説明する。In the second method of the present invention, using the mold shown in FIG. 1, according to the first method of the present invention at the start of casting, a fixed dimension having a flat octagonal horizontal cross-sectional shape and after the subsequent width change. A thin slab that is wider and thicker than that is cast, and the slab is pressed by a guide roll immediately below the mold in the unsolidified state by the method shown in FIGS. 2 and 3. And change the width during casting,
Continuously cast a narrow thin slab with a rectangular horizontal cross section, and by similarly pressing this slab with a guide roll directly below the mold in the unsolidified state, the horizontal cross section of the slab is further shaped into a rectangle. A thin cast piece is obtained. In this case, it is the same as the casting and rolling method from the start of casting to the width change, and the first method of the present invention. After that, the width is changed during casting. The shape of the mold in this case will be described with reference to FIG.
【0036】図4は、本発明の第2方法を実施する場合
の鋳型の幅替え後を示す水平断面図である。幅替えで
は、鋳型3の厚みが直線的に変化する過渡部分がなくな
るまでまたはそれ以上に短辺壁2,2を移動させて鋳型
幅W1 をW2 に減少し、かつ長辺壁1,1のどちらか一
方を鋳型厚みがT1 からD2 に縮小するように移動さ
せ、鋳型3の水平断面形状を矩形とする。FIG. 4 is a horizontal sectional view showing the mold after changing the width in the case of carrying out the second method of the present invention. In the width change, the short side walls 2 and 2 are moved until there is no transitional portion where the thickness of the mold 3 changes linearly or more, and the mold width W1 is reduced to W2, and the long side walls 1 and 1 are changed. Either one is moved so that the mold thickness is reduced from T1 to D2, and the horizontal cross-sectional shape of the mold 3 is made rectangular.
【0037】厚みが変わると同時に鋳型3の厚みセンタ
ーに浸漬ノズル5を設置する必要があるため、幅替えと
同時に浸漬ノズル5の位置、すなわちタンディッシュ
(図示せず)の位置の変更を実施する。Since it is necessary to install the immersion nozzle 5 at the thickness center of the mold 3 at the same time as the thickness changes, the position of the immersion nozzle 5, that is, the position of the tundish (not shown) is changed at the same time as the width is changed. .
【0038】鋳片の幅縮小は、圧延工程の物流の関係か
ら広幅から狭幅への変更が一般的である。本発明の第2
方法でも前述のように、厚みの変更は厚い方から薄い方
への変更になる。In order to reduce the width of the slab, it is common to change the width from a wide width to a narrow width because of the physical distribution in the rolling process. Second of the present invention
Also in the method, as described above, the thickness is changed from the thick one to the thin one.
【0039】上記幅替え後の鋳型、浸漬ノズルおよび鋳
造速度の好ましい条件は次のとおりである。The preferable conditions of the mold after the width change, the dipping nozzle and the casting speed are as follows.
【0040】鋳型幅(W2):200〜1400mm 鋳型中央部の厚み(D2):90〜100mm 浸漬ノズルと鋳型長辺壁中央部との離間距離(t2
):15〜25mm 鋳造速度:3.0〜7.0m/min この場合においても、浸漬ノズル5と鋳型長辺壁1,1
の中央部との離間距離t2 は最小でも15mmが確保で
き、鋳型3と浸漬ノズル5との間の溶鋼の凝固(皮張
り)によるノズル切損などの問題は発生せず、鋳造が可
能である。Mold width (W2): 200 to 1400 mm Thickness of mold center (D2): 90 to 100 mm Distance between immersion nozzle and center of long side wall of mold (t2
): 15 to 25 mm Casting speed: 3.0 to 7.0 m / min Even in this case, the immersion nozzle 5 and the mold long side wall 1, 1
The distance t2 from the center of the mold can be at least 15 mm, and casting is possible without causing problems such as nozzle breakage due to solidification (skinning) of molten steel between the mold 3 and the immersion nozzle 5. .
【0041】厚みが90〜120mm程度の鋼の薄鋳片
の鋳造時の問題点の一つに鋳造開始時の湯面の凝固によ
る浸漬ノズルの折損などがある。しかし、本発明の第2
方法を適用すれば、この問題についての解決も可能とな
る。つまり、鋳造開始時の鋳片厚みは鋳型中央部で10
0mmまたはこれを少し超える程度が望ましく、本発明
の第2方法により鋳造を継続するにつれて鋳片幅は狭
く、鋳片厚は薄くなることになり、鋳造初期の湯面凝固
問題は鋳型厚み50〜70mmのパラレル(水平断面が
矩形状)鋳型を用いる場合よりは緩和される。One of the problems in casting a thin slab of steel having a thickness of about 90 to 120 mm is breakage of the immersion nozzle due to solidification of the molten metal surface at the start of casting. However, the second aspect of the present invention
By applying the method, it is possible to solve this problem. That is, the thickness of the slab at the start of casting is 10 at the center of the mold.
0 mm or a little more than this is desirable, and as the casting is continued by the second method of the present invention, the cast piece width becomes narrow and the cast piece thickness becomes thin. It is more relaxed than when using a 70 mm parallel (rectangular horizontal section) mold.
【0042】上記方法で外径が40mmの浸漬ノズルを
用いれば厚み70mmの薄鋳片の製造が可能となるが、
従来のパラレル鋳型を用いれば浸漬ノズルと鋳型長辺壁
中央部との離間距離(t2 )は5mm以下となり、皮張
りが発生して鋳造継続が困難である。従って、浸漬ノズ
ルの外径を30mm以下とせねばならず、タンディッシ
ュからの給湯が実質上困難である。If a dipping nozzle having an outer diameter of 40 mm is used in the above method, a thin cast piece having a thickness of 70 mm can be manufactured.
If a conventional parallel mold is used, the distance (t2) between the immersion nozzle and the center of the long side wall of the mold is 5 mm or less, and skinning occurs and it is difficult to continue casting. Therefore, the outer diameter of the immersion nozzle must be 30 mm or less, and it is substantially difficult to supply hot water from the tundish.
【0043】上記の幅替えの後、得られた水平断面が矩
形状の狭幅薄鋳片を前述と同じ未凝固圧下法を用いて、
さらに矩形状に整形した狭幅薄鋳片とする。After the width change described above, the obtained thin thin strip having a rectangular horizontal cross section was subjected to the same unsolidification reduction method as described above,
Further, it is a narrow thin slab shaped into a rectangular shape.
【0044】鋳型幅が減少するに伴って鋳片厚みも減少
し、鋳型直下の案内ロールは一定の厚み間隔になるよう
に設定されているだけで圧下装置を備えていないので、
鋳片の厚み減少に追随しない。このため、サポートがな
くなり鋳片がバルジングすることになるが、鋳片は3対
3段〜5対5段の案内ロールの間に絞り込まれて目標薄
鋳片厚みに未凝固圧下されることになり、特に大きな問
題とはならない。As the mold width decreases, the slab thickness also decreases, and the guide rolls directly below the mold are set so as to have a constant thickness interval, and no reduction device is provided.
Does not follow the decrease in the thickness of the slab. For this reason, the slab bulges due to lack of support, but the slab is squeezed between the guide rolls of 3 to 3 stages to 5 to 5 stages and unsolidified to the target thin slab thickness. It doesn't become a big problem.
【0045】またこの場合には、幅替え後の未凝固鋳片
圧下は水平断面が矩形状から同じく矩形状となるが、従
来のパラレル鋳型を用いる場合に比べてもともとの短片
厚み(D2)が小さいので、図6に示すような短辺側が凸
状になることが軽減される。Further, in this case, the horizontal cross section of the unsolidified slab after the width change is changed from a rectangular shape to a rectangular shape, but the original short piece thickness (D2) is smaller than that when the conventional parallel mold is used. Since it is small, it is possible to reduce the convex side as shown in FIG.
【0046】本発明方法は、水平式連続鋳造機を除いて
機種や鋼種を問わず、さらに比較的融点の低い銅やアル
ミニウムなどの非鉄金属にも適用することができる。The method of the present invention can be applied to non-ferrous metals such as copper and aluminum having a relatively low melting point regardless of the type and steel type except for the horizontal continuous casting machine.
【0047】[0047]
(試験1)2ストランド湾曲型スラブ連続鋳造機を用い
て、表1に示す組成の低炭素アルミキルド鋼を下記条件
で鋳造した。(Test 1) A low carbon aluminum killed steel having the composition shown in Table 1 was cast under the following conditions using a 2-strand curved slab continuous casting machine.
【0048】[0048]
【表1】 [Table 1]
【0049】本発明例1:1ストランドに図1の鋳型を
使用(W1 =1800m、T1 =100mm、T3 =7
0mm、t1 =25mm) 浸漬ノズル外径は40mm 鋳片長辺中央部の未凝固圧下は図2の方法(T1 =10
0mm、T3 =70mm、圧下パターンは15mm→1
0mm→5mmのトップ強圧下) 比較例1 :2ストランドに従来方式のパラレル鋳型を
使用(厚み70mm、幅1800mm、t1 =20m
m) 浸漬ノズル外径は30mm 鋳片長辺中央部の未凝固圧下なし 鋳造速度 :両ストランドともに5.0m/min この結果、本発明の第1方法を適用した1ストランド側
では、100トン取鍋で最高7連々鋳が可能であった。
一方、従来鋳型の2ストランド側では、浸漬ノズルの外
径が30mmまでしか許容されず、溶鋼100トンの鋳
造終了時期に早くもノズル詰まりが発生し、鋳造継続が
不可能になった。Inventive Example 1 The mold of FIG. 1 was used for one strand (W1 = 1800 m, T1 = 100 mm, T3 = 7).
0 mm, t1 = 25 mm) The outer diameter of the dipping nozzle is 40 mm. The unsolidified pressure at the center of the long side of the slab is as shown in FIG.
0mm, T3 = 70mm, rolling pattern is 15mm → 1
(Comparative example 1: using a conventional parallel mold for 2 strands (thickness 70 mm, width 1800 mm, t1 = 20 m)
m) Immersion nozzle outer diameter is 30 mm No unsolidified rolling at the center of the long side of the cast piece Casting speed: 5.0 m / min for both strands As a result, 100 ton ladle on the one strand side to which the first method of the present invention is applied It was possible to cast a maximum of 7 consecutively.
On the other hand, on the two-strand side of the conventional mold, the outer diameter of the dipping nozzle was only allowed up to 30 mm, and the nozzle was clogged as early as the completion of casting of 100 tons of molten steel, making it impossible to continue casting.
【0050】(試験2)試験1の連続鋳造機を用いて、
表1に示す組成の低炭素アルミキルド鋼を下記条件で鋳
造した。(Test 2) Using the continuous casting machine of Test 1,
A low carbon aluminum killed steel having the composition shown in Table 1 was cast under the following conditions.
【0051】本発明例2:1ストランドに本発明例1と
同条件 比較例2 :2ストランドに鋳型および浸漬ノズルは上
記本発明例2と同条件 鋳片長辺中央部の未凝固圧下は図2の方法(T1 =10
0mm、T3 =70mm、圧下パターンは5mm→10
mm→15mmのボトム強圧下) 比較例3 :2ストランドに従来方式のパラレル鋳型を
使用(厚み100mm、幅1800mm、t1 =25m
m) 鋳片長辺中央部の未凝固圧下は上記本発明例2と同じト
ップ強圧下 鋳造速度 :いずれも5.0m/min 本発明例2と比較例3で得られた未凝固圧下後の薄鋳片
の断面形状を比較したところ、本発明例2では図3に示
すような矩形に近い形状を呈しているのに対して、比較
例3では短辺が図6に示すような凸型形状を呈した。こ
れらの鋳片を後工程の圧延に供して比較した結果、比較
例3の場合には圧延材の短辺近傍に表面疵が多発した
が、本発明2の場合には表面疵は発生していないことを
確認した。Example 2 of the present invention: 1 strand with the same conditions as Example 1 of the present invention Comparative Example 2: 2 strands with the same conditions as the above-mentioned Example 2 of the present invention with respect to the mold and immersion nozzle. Method (T1 = 10
0 mm, T3 = 70 mm, rolling pattern is 5 mm → 10
mm → 15 mm bottom pressure reduction) Comparative Example 3: Using a conventional parallel mold for 2 strands (thickness 100 mm, width 1800 mm, t1 = 25 m)
m) The unsolidified reduction in the central part of the long side of the slab is the same top strong reduction as in the above-mentioned Inventive Example 2 Casting speed: 5.0 m / min in both cases, thin after the unsolidified reduction obtained in Inventive Example 2 and Comparative Example 3 When the cross-sectional shapes of the slabs are compared, in the present invention example 2, the shape is close to a rectangle as shown in FIG. 3, whereas in the comparative example 3, the short side is a convex shape as shown in FIG. Was presented. As a result of subjecting these slabs to rolling in a post-process for comparison, in the case of Comparative Example 3, surface defects frequently occurred in the vicinity of the short side of the rolled material, but in the case of the present invention 2, surface defects occurred. I confirmed that there is no.
【0052】比較例2のボトム強圧下を施した場合に
は、短片コーナー部のみならず長片中央部にも内部割れ
が発生した。When the bottom strong reduction of Comparative Example 2 was applied, internal cracking occurred not only in the corners of the short pieces but also in the center of the long pieces.
【0053】図5は上記の本発明例2と比較例2、3と
における内部割れ発生状況の差を示す図である。図示す
るように、本発明例2では内部割れの発生は皆無である
のに対して、比較例3ではコーナー部近傍で内部割れの
発生が認められた。特にボトム強圧下を施した比較例2
では、その傾向が著しかった。FIG. 5 is a diagram showing the difference in the internal crack occurrence state between the present invention example 2 and the comparative examples 2 and 3. As shown in the figure, in the present invention example 2, no internal cracks were generated, whereas in the comparative example 3, internal cracks were found near the corners. Comparative example 2 in which a strong bottom reduction was applied
Then, the tendency was remarkable.
【0054】(試験3)試験1の連続鋳造機を用いて、
表1に示す組成の低炭素アルミキルド鋼を下記条件で鋳
造した。(Test 3) Using the continuous casting machine of Test 1,
A low carbon aluminum killed steel having the composition shown in Table 1 was cast under the following conditions.
【0055】本発明例3:1ストランドにおいて、鋳造
初期は本発明例1、2と同条件で鋳造し、鋳造中に下記
のように幅替えを行い、その後の圧下条件は同じくは1
5mm→10mm→5mmのトップ強圧下パターンとし
て、最小幅1000mm、厚み70mmの薄鋳片を製造
した。Inventive Example 3 A 1: 1 strand was cast under the same conditions as in Inventive Examples 1 and 2 in the initial stage of casting, the width was changed during casting as follows, and the rolling condition thereafter was 1
A thin cast piece having a minimum width of 1000 mm and a thickness of 70 mm was manufactured as a top strong reduction pattern of 5 mm → 10 mm → 5 mm.
【0056】W1 =1800mm→W2 =1000mm (ただし、200mmずつ5段階) T1 =100mm→D2 =70mm 比較例4 :2ストランドにおいて幅替えが可能なパラ
レル鋳型を使用し、鋳造初期は比較例3と同条件で鋳造
し、鋳造中に下記のように幅替えを行い、その後本発明
例3と同様のトップ強圧下パターンで、幅1000m
m、厚み40mmの薄鋳片を製造した。W1 = 1800 mm → W2 = 1000 mm (5 steps for each 200 mm) T1 = 100 mm → D2 = 70 mm Comparative Example 4: A parallel mold capable of changing the width of two strands was used, and Comparative Example 3 was used at the initial casting stage. Casting was performed under the same conditions, the width was changed during casting as described below, and then, with the same top strong reduction pattern as in Inventive Example 3, the width was 1000 m.
m, a thin slab having a thickness of 40 mm was produced.
【0057】幅=1800mm→1000mm 厚み=100mm→70mm 比較例5 :2ストランドにおいて幅替えが可能なパラ
レル鋳型を使用し、鋳造初期は厚み=70mm、幅=1
800mm、t1 =10mmとし、その他は比較例3と
同条件で鋳造し、鋳造中に下記のように幅のみの替えを
行い、その後は未凝固圧下を行わず、幅1000mm、
厚み70mmの薄鋳片を製造した。Width = 1800 mm → 1000 mm Thickness = 100 mm → 70 mm Comparative Example 5: A parallel mold whose width can be changed in two strands is used, and in the initial stage of casting, thickness = 70 mm, width = 1.
800 mm, t1 = 10 mm, other conditions were cast under the same conditions as in Comparative Example 3, only the width was changed during casting as described below, and thereafter the unsolidified rolling was not performed, and the width was 1000 mm,
A thin cast piece having a thickness of 70 mm was manufactured.
【0058】幅=1800mm→1000mm 鋳造速度 :いずれも5.0m/min 本発明例3の幅替え前では、内部割れ発生のない厚み7
0mm、幅1800mmの薄鋳片が得られた。幅替え後
では短片が凸型形状となったが、その張り出し量は5m
mと小さく、かつ内部割れ発生のない厚み70mm、幅
1000mmの薄鋳片が得られた。Width = 1800 mm → 1000 mm Casting speed: 5.0 m / min in all cases Before changing the width of Inventive Example 3, a thickness of 7 without internal cracking.
A thin slab having a width of 0 mm and a width of 1800 mm was obtained. After changing the width, the short piece became a convex shape, but the protruding amount was 5 m
As a result, a thin cast piece having a thickness of 70 mm and a width of 1000 mm, which was as small as m and had no internal cracks, was obtained.
【0059】比較例4の幅替え前では、厚み70mm、
幅1800mmの薄鋳片が得られたが、未凝固圧下によ
り短片の張り出し量が15mmと大きい凸型形状となっ
た。Before the width change of Comparative Example 4, the thickness is 70 mm,
Although a thin cast piece having a width of 1800 mm was obtained, it became a convex shape with a large protruding amount of the short piece of 15 mm due to the unsolidified pressure.
【0060】さらに、内部割れが鋳片コーナー部近傍に
発生した。幅替え後では未凝固圧下により厚み70m
m、幅1000mmの薄鋳片が得られたが、鋳片の短片
形状および内部割れは、上記幅替え前と全く同等によく
なかった。Furthermore, internal cracking occurred near the corners of the cast slab. After changing the width, the thickness is 70m due to unsolidified reduction.
Although a thin slab with m and a width of 1000 mm was obtained, the short slab shape and internal cracking of the slab were not as good as those before the width change.
【0061】比較例5では、鋳造開始直後は溶鋼過熱度
(ΔT)が低く、かつ鋳造速度が遅いので、鋳型内溶鋼
の流動が小さい。このため、浸漬ノズルと鋳型長辺壁中
央部との離間距離(t1)が10mmと小さいこの例で
は、鋳造開始直後に鋳型内壁と浸漬ノズルとの間に皮張
り(凝固)が発生し、鋳造継続が困難となった。In Comparative Example 5, the superheated degree of molten steel (ΔT) is low immediately after the start of casting and the casting speed is slow, so that the flow of molten steel in the mold is small. Therefore, in this example, the separation distance (t1) between the immersion nozzle and the center of the long side wall of the mold is as small as 10 mm. In this example, skinning (solidification) occurs between the inner wall of the mold and the immersion nozzle immediately after the start of casting, It became difficult to continue.
【0062】[0062]
【発明の効果】本発明の偏平8角形異形断面鋳型を用い
る未凝固圧下連続鋳造方法によれば、内部割れのない矩
形断面の薄鋳片を安定して製造することができる。EFFECTS OF THE INVENTION According to the unsolidified continuous casting method using a flat octagonal irregular cross-section mold of the present invention, it is possible to stably produce a thin cast piece having a rectangular cross section without internal cracks.
【図1】本発明方法で用いる鋳型の水平断面図である。FIG. 1 is a horizontal sectional view of a mold used in the method of the present invention.
【図2】本発明方法で用いる、鋳型直下での未凝固鋳片
圧下方法の例を説明する概略の縦断面図である。FIG. 2 is a schematic vertical cross-sectional view for explaining an example of a method for rolling down unsolidified slab just below a mold used in the method of the present invention.
【図3】本発明方法による未凝固圧下前後の鋳片形状を
示す断面図である。FIG. 3 is a cross-sectional view showing a shape of a slab before and after unsolidified reduction by the method of the present invention.
【図4】本発明方法で用いる鋳型の幅替え後の水平断面
図である。FIG. 4 is a horizontal cross-sectional view after changing the width of the mold used in the method of the present invention.
【図5】薄鋳片の内部割れ発生状況の差を示す図であ
る。FIG. 5 is a diagram showing a difference in the state of occurrence of internal cracks in a thin cast piece.
【図6】従来の矩形水平断面鋳型の場合の、未凝固圧下
前後の鋳片形状を示す断面図である。FIG. 6 is a cross-sectional view showing a shape of a slab before and after unsolidified pressure in the case of a conventional rectangular horizontal cross-section mold.
1:長辺壁、 2:短辺壁、 3:鋳型、 4:
幅縮小機構、5:浸漬ノズル、6:案内ロール、7:薄
鋳片1: long side wall, 2: short side wall, 3: mold, 4:
Width reduction mechanism, 5: dipping nozzle, 6: guide roll, 7: thin slab
Claims (2)
いる薄鋳片の連続鋳造方法であって、偏平8角形状水平
断面は鋳型短辺壁側の厚みが薄く、長辺壁側中央部の厚
みが厚く、厚みの薄い部分から厚い部分への過渡部分が
直線的に変化し、鋳型短辺壁として幅方向に移動可能な
台形状水平断面の可動壁を、鋳型長辺壁の一つが厚み方
向に移動可能な可動壁をそれぞれ備えた鋳型を用いて、
偏平8角形状水平断面を有する一定寸法の薄鋳片を鋳造
し、未凝固状態において薄鋳片を鋳型直下の案内ロール
で圧下することにより、薄鋳片の水平断面を矩形状に整
形することを特徴とする薄鋳片の連続鋳造方法。1. A method for continuously casting thin slabs using a mold having a flat octagonal horizontal cross section, wherein the flat octagonal horizontal cross section has a small thickness on the short side wall side of the mold and a center on the long side wall side. The thickness of the part is thick, and the transitional part from the thin part to the thick part changes linearly, and the trapezoidal horizontal movable wall that is movable in the width direction as the mold short side wall is Using a mold with two movable walls, each of which is movable in the thickness direction,
Forming a thin slab of a certain size having a flat octagonal horizontal cross section, and shaping the thin slab into a rectangular horizontal cross section by pressing the thin slab with a guide roll directly below the mold in the unsolidified state. A method for continuously casting thin slabs.
いる薄鋳片の連続鋳造方法であって、偏平8角形状水平
断面は鋳型短辺壁側の厚みが薄く、長辺壁側中央部の厚
みが厚く、厚みの薄い部分から厚い部分への過渡部分が
直線的に変化し、鋳型短辺壁として幅方向に移動可能な
台形状水平断面の可動壁を、鋳型長辺壁の一つが厚み方
向に移動可能な可動壁をそれぞれ備えた鋳型を用いて、
鋳造開始時には偏平8角形状水平断面形状を有する一定
寸法の比較的広幅で厚い薄鋳片を鋳造し、未凝固状態に
おいて薄鋳片を鋳型直下の案内ロールで圧下して薄鋳片
の水平断面を矩形状に整形しながら、鋳造中に幅と厚み
との縮小を行い、引き続き矩形状水平断面の狭幅薄鋳片
を鋳造し、未凝固状態において前記圧下を施すことによ
り、さらに薄鋳片の水平断面形状を矩形に整形すること
を特徴とする薄鋳片の連続鋳造方法。2. A method for continuously casting thin slabs using a mold having a flat octagonal horizontal cross section, wherein the flat octagonal horizontal cross section is thin on the short side wall side of the mold and is centered on the long side wall side. The thickness of the part is thick, and the transitional part from the thin part to the thick part changes linearly, and the trapezoidal horizontal movable wall that is movable in the width direction as the mold short side wall is Using a mold with two movable walls, each of which is movable in the thickness direction,
At the start of casting, a comparatively wide and thick thin slab with a flat octagonal horizontal cross section is cast, and in a non-solidified state, the thin slab is pressed down by a guide roll just below the mold to obtain a horizontal cross section of the thin slab. While shaping into a rectangular shape, the width and the thickness are reduced during casting, and then a narrow thin slab with a rectangular horizontal cross section is cast, and further reduction is performed in the unsolidified state by further reducing the slab. The method for continuously casting thin slabs, which comprises shaping the horizontal cross-sectional shape of the above into a rectangle.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP15480495A JPH091292A (en) | 1995-06-21 | 1995-06-21 | Continuous casting of thin slabs |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP15480495A JPH091292A (en) | 1995-06-21 | 1995-06-21 | Continuous casting of thin slabs |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH091292A true JPH091292A (en) | 1997-01-07 |
Family
ID=15592258
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP15480495A Pending JPH091292A (en) | 1995-06-21 | 1995-06-21 | Continuous casting of thin slabs |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH091292A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4945852A (en) * | 1987-09-04 | 1990-08-07 | Yamaha Hatsudoki Kabushiki Kaisha | Compact planning type boat |
| JP2008055512A (en) * | 2007-10-10 | 2008-03-13 | Sumitomo Metal Ind Ltd | Continuously cast slab and method for producing steel plate using the same |
| JP2009519134A (en) * | 2005-12-14 | 2009-05-14 | エス・エム・エス・デマーク・アクチエンゲゼルシャフト | Method and apparatus for continuous casting of thin strips |
-
1995
- 1995-06-21 JP JP15480495A patent/JPH091292A/en active Pending
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4945852A (en) * | 1987-09-04 | 1990-08-07 | Yamaha Hatsudoki Kabushiki Kaisha | Compact planning type boat |
| JP2009519134A (en) * | 2005-12-14 | 2009-05-14 | エス・エム・エス・デマーク・アクチエンゲゼルシャフト | Method and apparatus for continuous casting of thin strips |
| JP2008055512A (en) * | 2007-10-10 | 2008-03-13 | Sumitomo Metal Ind Ltd | Continuously cast slab and method for producing steel plate using the same |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPH091292A (en) | Continuous casting of thin slabs | |
| JP3275823B2 (en) | Method of controlling flow of wide thin and medium thick slabs in mold | |
| JP2973834B2 (en) | Mold for continuous casting of thin slabs | |
| JP3228212B2 (en) | Method and apparatus for producing round billet slabs by continuous casting | |
| JPS609553A (en) | Stopping down type continuous casting machine | |
| JP2888071B2 (en) | Thin slab continuous casting method | |
| JPH0215858A (en) | Continuous casting method and device for thin slabs | |
| JPH11320060A (en) | Method and apparatus for continuous casting of billet under light pressure | |
| KR101565517B1 (en) | Casting apparatus | |
| JPH0390263A (en) | Continuous casting method | |
| JP3042324B2 (en) | Dummy bar head for continuous casting of wide thin slab | |
| JP3395387B2 (en) | Continuous casting of wide thin slabs | |
| JPH0890182A (en) | Continuous casting method for wide and thin slabs | |
| JP3394730B2 (en) | Continuous casting method of steel slab | |
| JP4344834B2 (en) | Beam blank and casting method thereof | |
| RU2136436C1 (en) | Plant for production of continuously cast deformed castings | |
| JP3063533B2 (en) | Continuous casting of wide thin cast slabs | |
| JP3314036B2 (en) | Continuous casting method and continuous casting device | |
| JPH11267804A (en) | Manufacturing method of round billet slab by continuous casting | |
| JP3402250B2 (en) | Manufacturing method of round billet slab by continuous casting | |
| JPH0847759A (en) | Continuous casting method for wide and thin slabs | |
| JPH01258801A (en) | Method for forging round shaped continuous cast billet | |
| JP2004090088A (en) | Method for producing round billet for steel pipe production and round billet for steel pipe production | |
| JPH0847760A (en) | Continuous casting method for wide and thin slabs | |
| JPH05154612A (en) | Method for preventing eccentricity of core material in continuous casting of composite slab |