JPH09146058A - Light switch - Google Patents
Light switchInfo
- Publication number
- JPH09146058A JPH09146058A JP7304199A JP30419995A JPH09146058A JP H09146058 A JPH09146058 A JP H09146058A JP 7304199 A JP7304199 A JP 7304199A JP 30419995 A JP30419995 A JP 30419995A JP H09146058 A JPH09146058 A JP H09146058A
- Authority
- JP
- Japan
- Prior art keywords
- light
- faraday rotator
- optical switch
- magnetic field
- polarizer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
(57)【要約】
【課題】紫外線からマイクロ波まで、幅広い領域の波長
の光(電磁波)でしかも光量の大きい光を、磁界または
信号光で制御でし、小型で高信頼の光スイッチを提供す
ること。
【解決手段】光源をHe−Neレーザ9とし、入力光I
O であるレーザ光を偏光子2に入射し、偏光子2から出
た光を長さLのファラデー回転子1を通過させ、通過し
た光を検光子3に入射し、検光子3から出た光を光電子
増倍管10で検出する。ファラデー回転子1には磁界を
発生させるコイル4が巻き付けられ、このコイル4に流
す電流iで磁界の強弱を制御する。また、偏光子2と検
光子3の偏光面は一致するようにする。
(57) 【Abstract】 PROBLEM TO BE SOLVED: To provide a compact and highly reliable optical switch by controlling light (electromagnetic wave) having a wide range of wavelengths from ultraviolet rays to microwaves and having a large light quantity by a magnetic field or signal light. To do. A He-Ne laser 9 is used as a light source, and an input light I
The laser light which is O is made incident on the polarizer 2, the light emitted from the polarizer 2 is passed through the Faraday rotator 1 having the length L, the passed light is made incident on the analyzer 3 and emitted from the analyzer 3. The light is detected by the photomultiplier tube 10. A coil 4 for generating a magnetic field is wound around the Faraday rotator 1, and the intensity of the magnetic field is controlled by the current i flowing through the coil 4. Further, the polarization planes of the polarizer 2 and the analyzer 3 are made to coincide with each other.
Description
【0001】[0001]
【発明の属する技術分野】この発明は、入射光に対する
透過光の割合を制御用の光または電磁気的な信号のオン
・オフで制御することができる光または電磁駆動型の光
スイッチに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical or electromagnetic drive type optical switch capable of controlling the ratio of transmitted light to incident light by turning on / off a control light or an electromagnetic signal.
【0002】[0002]
【従来の技術】従来の光スイッチとしては、孔の開いた
回転板に光を照射し、機械的に光をチョッピングするセ
クターと呼ばれるものが一般的である。図6はセクター
の概要で、同図(a)は概念図、同図(b)は光強度と
時間との関係図を示す。同図(a)において、光源13
と検出器14を結ぶ線上の間にセクター11と称する光
通過のためのピンホール12(微小孔)を有する回転体
を介在させ、光をチョッピングする。同図(b)におい
て、同図(a)の回転体に、対角線上に2個のピンホー
ル12を設け、回転体をA(rpm)の回転数で回転さ
せると検出器14には30/A(sec)の周期の出力
光Iが到達する。この出力光強度は入力光強度と同じで
ある(発散しない光の場合)。当然セクター11である
回転体の回転数を変えることでこの周期を変え、光の単
位時間当たりのオン・オフの回数、所謂、スイッチング
周波数を変えることができる。また、光の単なるオン・
オフ動作に限ってみればレーザ光に代表されるように光
源そのものを電気的にオン・オフ制御する方法もある。2. Description of the Related Art A conventional optical switch is generally called a sector which irradiates a rotating plate having a hole with light and mechanically chops the light. FIG. 6 is an outline of the sector. FIG. 6A shows a conceptual diagram, and FIG. 6B shows a relationship diagram between light intensity and time. In FIG. 3A, the light source 13
A chopping light is provided by interposing a rotating body having a pinhole 12 (micropore) called a sector 11 for passing light between the lines connecting the and the detector 14. In the same figure (b), two pinholes 12 are provided diagonally on the rotary body of the same figure (a), and when the rotary body is rotated at a rotation speed of A (rpm), 30 / The output light I having a cycle of A (sec) arrives. This output light intensity is the same as the input light intensity (for non-divergent light). Naturally, this cycle can be changed by changing the number of rotations of the rotating body which is the sector 11, and the number of times the light is turned on / off per unit time, that is, the so-called switching frequency can be changed. Also, simply turning on the light
There is also a method of electrically turning on / off the light source itself as represented by a laser beam when it is limited to the off operation.
【0003】[0003]
【発明が解決しようとする課題】しかし、セクターを用
いる方法は原理的に簡単であるが回転体のような可動部
とこれを駆動するための駆動装置も必要となり、装置が
大きくなる。さらに、回転体をMHz等の高速回転させ
たり、高精度で一定回転させたりすることが困難であ
り、また回転部分の摩耗等により装置の高信頼化が困難
である。一方、レーザ素子は光の波長が極めて限定され
ており、紫外線からマイクロ波までの幅広い波長領域で
の電磁波を得ることは不可能である。また光量にも制約
がある。However, although the method using the sector is simple in principle, a movable part such as a rotating body and a driving device for driving the moving part are required, and the device becomes large. Furthermore, it is difficult to rotate the rotating body at a high speed of MHz or the like, or to rotate the rotating body with high accuracy at a constant speed, and it is difficult to increase the reliability of the device due to wear of the rotating portion. On the other hand, the laser element has a very limited wavelength of light, and it is impossible to obtain an electromagnetic wave in a wide wavelength range from ultraviolet rays to microwaves. There is also a restriction on the amount of light.
【0004】この発明の目的は、前記の課題を解決し、
紫外線からマイクロ波まで、幅広い領域の波長の光(電
磁波)でしかも光量の大きい光を、磁界または信号光で
制御でし、小型で高信頼の光スイッチを提供することに
ある。The object of the present invention is to solve the above problems,
It is an object of the present invention to provide a compact and highly reliable optical switch by controlling light (electromagnetic waves) having a wide range of wavelengths from ultraviolet rays to microwaves and having a large amount of light with a magnetic field or signal light.
【0005】[0005]
【課題を解決するための手段】前記の目的を達成するた
めに、光源から放射される光の所定の電気ベクトル成分
を通過させる偏光子と、偏光子を通過した光の電磁ベク
トルを回転させるファラデー回転子と、ファラデー回転
子を通過した光の所定の電気ベクトル成分を通過させる
検光子とを具備し、該ファラデー回転子に磁界を与える
構造が付加される構成とする。この磁界を与える構造が
ファラデー回転子を取り巻くコイルであるとよい。ファ
ラデー回転子の母体となる結晶として、YIG、Gd
1.8 Bi1. 2 Fe5 O12、NiFe2 O4 、Fe、C
o、Ni、YFeO3 、FeBO3 、FeF3 、Eu
O、CdCr2 Se4 、Cd0.55Mn0.45Teのうちい
ずれかを用いると効果的である。In order to achieve the above object, a polarizer that allows a predetermined electric vector component of light emitted from a light source to pass through, and a Faraday that rotates an electromagnetic vector of the light passing through the polarizer. It is configured to include a rotor and an analyzer that allows a predetermined electric vector component of light that has passed through the Faraday rotator to pass therethrough, and a structure for adding a magnetic field to the Faraday rotator is added. The structure that applies this magnetic field is preferably a coil that surrounds the Faraday rotator. YIG, Gd as crystals that are the base of the Faraday rotator
1.8 Bi 1. 2 Fe 5 O 12 , NiFe 2 O 4, Fe, C
o, Ni, YFeO 3 , FeBO 3 , FeF 3 , Eu
It is effective to use any one of O, CdCr 2 Se 4 and Cd 0.55 Mn 0.45 Te.
【0006】また光源から放射される光の所定の電気ベ
クトル成分を通過させる偏光子と、偏光子を通過した光
の電磁ベクトルを回転させるファラデー回転子と、ファ
ラデー回転子を通過した光の所定の電気ベクトル成分を
通過させる検光子とを具備し、該ファラデー回転子に信
号光を与える信号用光源を付加する構成としてもよい。
このファラデー回転子が母体となる結晶に磁性を持った
原子またはイオンを少量溶かし込んだ結晶からなり、磁
性をもった原子またはイオンのd軌道が結晶の禁制帯幅
内にあって、結晶場によって2つのエネルギーに分裂し
た状態にあるようにする。この母体となる結晶がCdT
eに代表されるII-VI 族の化合物半導体で、磁性を持っ
た原子またはイオンがMnに代表される鉄族遷移金属元
素であるとよい。さらにこの鉄族遷移金属元素に磁気的
不純物としてHg元素も合わせて添加すると有効であ
る。前記の信号光が分裂した2つのd軌道のエネルギー
幅に相当するエネルギーを有するとよい。前記の磁性を
持った原子またはイオンで形成されるファラデー回転子
の内部磁界を制御するために、外部磁界として永久磁石
または磁界発生用コイルを具備する構成とするとよい。
光源から放射される光が紫外線、可視光、赤外光および
マイクロ波等の電磁波であるとよい。Further, a polarizer that allows a predetermined electric vector component of the light emitted from the light source to pass therethrough, a Faraday rotator that rotates the electromagnetic vector of the light that has passed through the polarizer, and a predetermined Faraday rotator that has passed through the Faraday rotator. The Faraday rotator may be provided with a signal light source for adding signal light to the Faraday rotator.
This Faraday rotator consists of a crystal in which a small amount of magnetic atoms or ions are dissolved in the base crystal, and the d orbitals of magnetic atoms or ions are within the band gap of the crystal, and depending on the crystal field. Make it split into two energies. This base crystal is CdT
In the II-VI group compound semiconductor represented by e, the atom or ion having magnetism is preferably an iron group transition metal element represented by Mn. Further, it is effective to add Hg element as a magnetic impurity to the iron group transition metal element. It is preferable that the signal light has energy corresponding to the energy width of the two d orbits into which the signal light is split. In order to control the internal magnetic field of the Faraday rotator formed of the magnetic atoms or ions, a permanent magnet or a magnetic field generating coil may be provided as an external magnetic field.
The light emitted from the light source may be electromagnetic waves such as ultraviolet rays, visible light, infrared rays and microwaves.
【0007】つぎにこの発明の動作原理について説明す
る。この発明の基礎となるファラデー効果とは磁場中に
置かれた媒質を光が通過するとき、入射光の偏光面が回
転する現象が起こることをいう。常磁性体の場合、回転
角θは次式で与えられる。Next, the operating principle of the present invention will be described. The Faraday effect, which is the basis of the present invention, means that when light passes through a medium placed in a magnetic field, the plane of polarization of incident light rotates. In the case of a paramagnetic material, the rotation angle θ is given by the following equation.
【0008】[0008]
【数1】θ=VHL (1) (V:Verdet定数、H:印加磁界強度、L:ファ
ラデー回転子の長さ) Vはファラデー回転子の母材(請求項3の母材の場合)
で決定される定数であるが、請求項6で示される母材で
は、所定のエネルギーの光をファラデー回転子に与える
ことで、このVの値を変化させることができる。従っ
て、請求項1ではH(印加磁界強度)で回転角θを変
え、請求項4ではVを信号光(レーザ光)で変化させ、
回転角θを変えることで、出力光のオン・オフを行なっ
たり、入力光に対して減衰した出力光を出射させたりで
きる。Hをコイル電流で変える場合は、Hとコイル電流
の関係はH=kNi(k:定数、N:コイルの捲線回
数、i:コイルに流す電流)の式に従う。偏光子と検光
子の偏光面が一致している場合、ファラデー回転子を通
過する光の偏光面の回転角が90°回転するような磁界
を発生させる電流を断続してコイルに通電することで出
力光をオン・オフできる。またコイル電流の大きさを変
えることで印加磁界強度Hを変えて、回転角θを変え、
出力光の大きさ(入力光の大きさ×cosθ)を変える
ことができる。Vを信号光で変化させる場合には、ファ
ラデー回転子として母体となるCdTeなどのII-VI 族
の化合物半導体にMn(磁性をもった原子またはイオ
ン)などの鉄族遷移金属元素を添加し、希薄磁性合金と
する。この遷移金属原子は一般に結晶場(配位子場)の
影響を受けて、d軌道が2つに分裂(分裂エネルギー差
をΔとする)する。母体となる結晶の禁制帯幅をEg と
すると、Δ<<Eg かつ禁制帯幅内に遷移金属元素のd
軌道が2つに分裂している場合では、例えば強い配位子
場に置かれたMnイオンは通常不対電子数が少ない状態
にあり、Δのエネルギーの信号光が照射されると2つに
分裂したd軌道間で電子遷移が起こり、不対電子数が増
加し、Vの値が増加する。そのため、信号光の照射でフ
ァラデー回転子を通過する光の偏光面を90°に回転さ
せ、入力光をオン・オフできる。また信号光の強度を変
えることで出力光の大きさを変えることができる。## EQU1 ## θ = VHL (1) (V: Verdet constant, H: Applied magnetic field strength, L: Faraday rotator length) V is the Faraday rotator base material (in the case of the base material of claim 3)
In the base material described in claim 6, the value of V can be changed by applying light having a predetermined energy to the Faraday rotator. Therefore, in claim 1, the rotation angle θ is changed by H (applied magnetic field strength), and in claim 4, V is changed by the signal light (laser light),
By changing the rotation angle θ, output light can be turned on / off, or output light attenuated with respect to the input light can be emitted. When H is changed by the coil current, the relationship between H and the coil current follows the formula of H = kNi (k: constant, N: number of windings of coil, i: current flowing in coil). When the polarization planes of the polarizer and the analyzer are the same, by intermittently energizing the coil, a current is generated to generate a magnetic field that causes the rotation angle of the polarization plane of the light passing through the Faraday rotator to rotate by 90 °. Output light can be turned on and off. Moreover, the applied magnetic field strength H is changed by changing the magnitude of the coil current, and the rotation angle θ is changed.
The size of the output light (the size of the input light × cos θ) can be changed. In the case of changing V by signal light, an iron group transition metal element such as Mn (magnetic atom or ion) is added to a II-VI group compound semiconductor such as CdTe, which is a matrix as a Faraday rotator, It is a dilute magnetic alloy. This transition metal atom is generally affected by the crystal field (ligand field), and the d orbital is split into two (the splitting energy difference is Δ). Letting Eg be the forbidden band width of the host crystal, Δ << Eg and d of the transition metal element is within the forbidden band width.
When the orbital is split into two, for example, the Mn ion placed in a strong ligand field usually has a small number of unpaired electrons, and when irradiated with a signal light of Δ energy, it becomes two. Electronic transition occurs between the split d orbitals, the number of unpaired electrons increases, and the value of V increases. Therefore, the plane of polarization of the light passing through the Faraday rotator is rotated by 90 ° by the irradiation of the signal light, and the input light can be turned on / off. Further, the intensity of the output light can be changed by changing the intensity of the signal light.
【0009】[0009]
【発明の実施の形態】図1はこの発明の第1実施例の要
部構成図を示す。光源をHe−Neレーザ9(ヘリウム
・ネオンレーザ:10mW、λ=1.15μm)とし、
入力光IO であるレーザ光を偏光子2に入射し、偏光子
2から出た光を長さLのファラデー回転子1を通過さ
せ、通過した光を検光子3に入射し、検光子3から出た
光を光電子増倍管10で検出する。ファラデー回転子1
には磁界を発生させるコイル4が巻き付けられ、このコ
イル4に流す電流iで磁界の強弱を制御する。また、偏
光子2と検光子3の偏光面は一致するようにする。ファ
ラデー回転子1としては、半径4mm、長さ20mmの
円柱のYIG (Yttrium-Ion-Garnet,3Y2O35Fe2O3)を用
いる。コイルは直径0.5mmの銅線を20ターン巻い
て形成する。尚、YIGの代わりに、Gd1.8 Bi1.2
Fe5 O12、NiFe2 O4 、Fe、Co、Ni、YF
eO3 、FeBO3 、FeF3 、EuO、CdCr2 S
e4 およびCd0.55Mn0.45Teなどを用いても同様の
効果が得られる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing the essential parts of a first embodiment of the present invention. The light source is a He-Ne laser 9 (helium / neon laser: 10 mW, λ = 1.15 μm),
The laser light which is the input light IO is incident on the polarizer 2, the light emitted from the polarizer 2 is passed through the Faraday rotator 1 having the length L, and the passed light is incident on the analyzer 3 and the analyzer 3 The light emitted from the photomultiplier tube 10 is detected. Faraday rotator 1
A coil 4 for generating a magnetic field is wound around, and the strength of the magnetic field is controlled by a current i flowing through the coil 4. Further, the polarization planes of the polarizer 2 and the analyzer 3 are made to coincide with each other. As the Faraday rotator 1, a cylindrical YIG (Yttrium-Ion-Garnet, 3Y 2 O 3 5Fe 2 O 3 ) having a radius of 4 mm and a length of 20 mm is used. The coil is formed by winding 20 turns of a copper wire having a diameter of 0.5 mm. Instead of YIG, Gd 1.8 Bi 1.2
Fe 5 O 12 , NiFe 2 O 4 , Fe, Co, Ni, YF
eO 3 , FeBO 3 , FeF 3 , EuO, CdCr 2 S
The same effect can be obtained by using e 4 and Cd 0.55 Mn 0.45 Te.
【0010】図2は第1実施例のコイルに矩形波電流を
通電した場合の入力光と出力光の関係を示す。上側はコ
イル電流i、下側は出力光Iを示す。コイル電流iに比
例する入力光I0 を偏光子2を介してファラデー回転子
1に照射し、ファラデー回転子1に磁界を与えるコイル
4に約1.13Aの電流iを1sec間隔でオン・オフ
して流し、ファラデー回転子1から出た光を検光子3を
介して光電子増倍管10に照射し、出力光Iの強度を検
出する。ファラデー回転子1にコイル4により外部磁界
を与えることで光の偏光面が回転し入力光I0 の偏光面
に対して90°回転すると、光は検光子3を通過できず
光は遮断される。また電流iを零にし外部磁界を無くし
た場合は入力光I0 は偏光子2、ファラデー回転子1お
よび検光子3を通過する。外部磁界のオン・オフで出力
光をオン・オフできる光スイッチが得られる。FIG. 2 shows the relationship between the input light and the output light when a rectangular wave current is passed through the coil of the first embodiment. The upper side shows the coil current i, and the lower side shows the output light I. The input light I 0 proportional to the coil current i is applied to the Faraday rotator 1 through the polarizer 2, and a current i of about 1.13 A is turned on / off at 1 sec intervals to the coil 4 which gives a magnetic field to the Faraday rotator 1. Then, the light emitted from the Faraday rotator 1 is applied to the photomultiplier tube 10 through the analyzer 3 and the intensity of the output light I is detected. When the external magnetic field is applied to the Faraday rotator 1 by the coil 4, the polarization plane of the light rotates and rotates 90 ° with respect to the polarization plane of the input light I 0 , the light cannot pass through the analyzer 3, and the light is blocked. . When the current i is set to zero and the external magnetic field is eliminated, the input light I 0 passes through the polarizer 2, the Faraday rotator 1 and the analyzer 3. An optical switch capable of turning on / off output light by turning on / off an external magnetic field is obtained.
【0011】図3は第1実施例のコイルに正弦波電流を
通電した場合のコイル電流と出力光の関係を示す。電流
iが零の時点で出力光I0 は最大になり、電流iが最大
の時点で出力光I0 は零になる。この場合も図2と同様
に光スイッチとなる。図4は第2実施例の要部構成図を
示す。光源をHe−Neレーザ9( ヘリウム・ネオン
レーザ:10mW、λ=1.15μm)とし、入力光I
0 としてのレーザ光を偏光子2に入射し、偏光子2から
出た光をファラデー回転子5を通過させ、通過した光を
検光子3に入射し、検光子3からでた光を光電子増倍管
10で検出する。ファラデー回転子1はCdTeの化合
物半導体にMnをドープし、閃亜鉛鉱型のMnドープの
CdTe結晶体5(Cd0.55Mn0.45Te)とし、断面積が約
10mm×10mmで長さが10mmである。ファラデ
ー回転子1に印加磁界強度Hの外部磁界を与える永久磁
石6はOP磁石(Co0.75Fe2.25O4)で保持力HCが15
00エルステッド(0e)である。勿論、永久磁石6の
代わりに、コイルで磁界を発生させてもよい。偏光子2
の偏光面と検光子3の偏光面は一致させる。偏光子2、
ファラデー回転子1、検光子3および永久磁石6は同一
パッケージ8内に収納され、入力光口、出力光口、信号
光口(直径5mm程度)をパッケージ8に設け、信号光
IS として半導体レーザ7(GaAlAs:5W Pulse、 λ=1.15
μm) からの出射光を用い、出力光Iの検出器として光
電子増倍管10を用いる。FIG. 3 shows the relationship between the coil current and the output light when a sinusoidal current is passed through the coil of the first embodiment. The output light I 0 becomes maximum when the current i is zero, and the output light I 0 becomes zero when the current i is maximum. Also in this case, the optical switch is used as in FIG. FIG. 4 shows a block diagram of the essential parts of the second embodiment. The light source is a He-Ne laser 9 (helium / neon laser: 10 mW, λ = 1.15 μm), and the input light I
The laser light as 0 is incident on the polarizer 2, the light emitted from the polarizer 2 is passed through the Faraday rotator 5, the passed light is incident on the analyzer 3, and the light emitted from the analyzer 3 is photoelectron-enhanced. Detect with double tube 10. The Faraday rotator 1 is a zinc-blende-type Mn-doped CdTe crystal body 5 (Cd 0.55 Mn 0.45 Te) obtained by doping a CdTe compound semiconductor with Mn, and has a cross-sectional area of about 10 mm × 10 mm and a length of 10 mm. . The permanent magnet 6 that gives the Faraday rotator 1 an external magnetic field of applied magnetic field strength H is an OP magnet (Co 0.75 Fe 2.25 O 4 ) and has a holding force H C of 15
It is 00 Oersted (0e). Of course, instead of the permanent magnet 6, a coil may generate a magnetic field. Polarizer 2
And the plane of polarization of the analyzer 3 are matched. Polarizer 2,
The Faraday rotator 1, the analyzer 3, and the permanent magnet 6 are housed in the same package 8, and an input light port, an output light port, and a signal light port (diameter of about 5 mm) are provided in the package 8, and a semiconductor laser is used as the signal light I S. 7 (GaAlAs: 5W Pulse, λ = 1.15
The photomultiplier tube 10 is used as a detector of the output light I by using the emitted light from (.
【0012】図5は第2実施例の信号光をパルス光とし
た場合の入力光と出力光の関係を示す。永久磁石6で磁
界Hを与えた状態で信号光IS (レーザ光)を1μs間
隔でオン・オフさせる。ファラデー回転子1に信号光I
S であるレーザ光を照射した時は入力光I0 の偏光面が
90°回転し、検光子3から出力光Iは出射されず、入
力光IS は遮断される。また信号光IS がない場合には
入力光I0 は偏光子2、ファラデー回転子1および検光
子3を通過する。FIG. 5 shows the relationship between input light and output light when the signal light of the second embodiment is pulsed light. With the magnetic field H applied by the permanent magnet 6, the signal light I S (laser light) is turned on and off at intervals of 1 μs. Signal light I on the Faraday rotator 1
When the laser light of S is irradiated, the polarization plane of the input light I 0 is rotated by 90 °, the output light I is not emitted from the analyzer 3, and the input light I S is blocked. When there is no signal light I S , the input light I 0 passes through the polarizer 2, the Faraday rotator 1 and the analyzer 3.
【0013】尚、実施例1および2において、光源と光
電子増倍管を除いた装置の大きさは数十μmまで小さく
することは可能であり、この光源と光電子増倍管を除い
た光スイッチ部は光通信のガラスファイバーの途中に挿
入して、ファイバーを通過する光のオン・オフをさせる
ことも可能である。またコイルの電流iの大きさや信号
光IS の強度を変えることで、前記の回転角θを変化さ
せ、出力光Iの強度=(入力光IS の強度)×cosθ
に従って出力光Iの強度を変化させることができる。そ
のため、光をオン・オフさせながらさらに光の強度も可
変できる光スイッチとすることができる。In the first and second embodiments, the size of the apparatus excluding the light source and the photomultiplier tube can be reduced to several tens of μm, and the optical switch excluding the light source and the photomultiplier tube is used. The section can be inserted in the middle of a glass fiber for optical communication to turn on / off the light passing through the fiber. The rotation angle θ is changed by changing the magnitude of the coil current i and the intensity of the signal light I S , and the intensity of the output light I = (intensity of the input light I S ) × cos θ.
Accordingly, the intensity of the output light I can be changed. Therefore, it is possible to provide an optical switch in which the light intensity can be changed while turning the light on and off.
【0014】[0014]
【発明の効果】この発明によれば、偏光子−ファラデー
回転子−検光子からなる系で、偏光子に入射した光(入
力光)をファラデー回転子で偏光子を通過した光の偏光
面を90°回転させ、検光子から出射される光(出力
光)を遮断することができる。偏光面の回転はファラデ
ー回転子に磁界を印加するか、信号光を照射することで
行なわれる。また偏光面を90°以外の回転角に回転さ
せることで、入力光に対して任意の強度に減衰させた出
力光を得ることができる。機械的機構で光をオン・オフ
させず、磁気的または光学的に入力光をオン・オフでき
るため、構造が極めて小型にでき、また精度も高く、し
かも入力光として紫外線からマイクロ波まで幅広い電磁
波をオン・オフできる。また、機械的機構部がないた
め、装置の小型化と高信頼化を図ることができる。According to the present invention, in a system composed of a polarizer-Faraday rotator-analyzer, the light incident on the polarizer (input light) is polarized by the Faraday rotator. The light emitted from the analyzer (output light) can be blocked by rotating 90 °. The polarization plane is rotated by applying a magnetic field to the Faraday rotator or irradiating it with signal light. Further, by rotating the polarization plane at a rotation angle other than 90 °, it is possible to obtain output light that is attenuated to an arbitrary intensity with respect to the input light. Since the input light can be turned on and off magnetically or optically without turning the light on and off by a mechanical mechanism, the structure can be made extremely small and the accuracy is high, and a wide range of electromagnetic waves from ultraviolet rays to microwaves can be used as the input light. Can be turned on and off. Further, since there is no mechanical mechanism, it is possible to reduce the size and increase the reliability of the device.
【図1】この発明の第1実施例の要部構成図FIG. 1 is a configuration diagram of a main part of a first embodiment of the present invention.
【図2】第1実施例のコイルに矩形波電流を通電した場
合の入力光と出力光の関係図FIG. 2 is a relationship diagram of input light and output light when a rectangular wave current is applied to the coil of the first embodiment.
【図3】第1実施例のコイルに正弦波電流を通電した場
合の入力光と出力光の関係図FIG. 3 is a relational diagram of input light and output light when a sinusoidal current is applied to the coil of the first embodiment.
【図4】この発明の第2実施例の要部構成図FIG. 4 is a configuration diagram of a main part of a second embodiment of the present invention.
【図5】第2実施例の信号光をパルス光とした場合の入
力光と出力光の関係図FIG. 5 is a relationship diagram of input light and output light when the signal light of the second embodiment is pulsed light.
【図6】セクターの概要で、(a)は概念図、(b)は
光強度と時間との関係図FIG. 6 is an outline of a sector, where (a) is a conceptual diagram and (b) is a relationship diagram between light intensity and time.
1 ファラデー回転子 2 偏光子 3 検光子 4 コイル 5 MnドープのCdTe結晶体 6 永久磁石 7 GaAlAs半導体レーザ 8 パッケージ 9 He−Neレーザ 10 光電子増倍管 11 セクター 12 ピンホール 13 光源 14 検出器 1 Faraday rotator 2 Polarizer 3 Analyzer 4 Coil 5 Mn-doped CdTe crystal 6 Permanent magnet 7 GaAlAs semiconductor laser 8 Package 9 He-Ne laser 10 Photomultiplier tube 11 Sector 12 Pinhole 13 Light source 14 Detector
Claims (10)
ル成分を通過させる偏光子と、偏光子を通過した光の電
磁ベクトルを回転させるファラデー回転子と、ファラデ
ー回転子を通過した光の所定の電気ベクトル成分を通過
させる検光子とを具備し、該ファラデー回転子に磁界を
与える構造が付加されることを特徴とする光スイッチ。1. A polarizer for passing a predetermined electric vector component of light emitted from a light source, a Faraday rotator for rotating an electromagnetic vector of light passing through the polarizer, and a predetermined for light passing through the Faraday rotator. And an analyzer for passing the electric vector component of the above, and a structure for applying a magnetic field to the Faraday rotator is added.
り巻くコイルであることを特徴とする請求項1記載の光
スイッチ。2. The optical switch according to claim 1, wherein the structure for applying a magnetic field is a coil surrounding a Faraday rotator.
Gd1.8 Bi1.2 Fe5 O12、NiFe2 O4 、Fe、
Co、Ni、YFeO3 、FeBO3 、FeF3 、Eu
O、CdCr2 Se4 、Cd0.55Mn0.45Teのうちい
ずれかであることを特徴とする請求項1記載の光スイッ
チ。3. The material of the Faraday rotator is YIG,
Gd 1.8 Bi 1.2 Fe 5 O 12 , NiFe 2 O 4 , Fe,
Co, Ni, YFeO 3 , FeBO 3 , FeF 3 , Eu
The optical switch according to claim 1, wherein the optical switch is any one of O, CdCr 2 Se 4 , and Cd 0.55 Mn 0.45 Te.
ル成分を通過させる偏光子と、偏光子を通過した光の電
磁ベクトルを回転させるファラデー回転子と、ファラデ
ー回転子を通過した光の所定の電気ベクトル成分を通過
させる検光子とを具備し、該ファラデー回転子に信号光
を与える信号用光源が付加されることを特徴とする光ス
イッチ。4. A polarizer for passing a predetermined electric vector component of light emitted from a light source, a Faraday rotator for rotating an electromagnetic vector of light passing through the polarizer, and a predetermined for light passing through the Faraday rotator. And an analyzer for passing the electric vector component of 1., and a signal light source for giving signal light to the Faraday rotator is added.
を持った原子またはイオンを少量溶かし込んだ結晶から
なり、磁性をもった原子またはイオンのd軌道が結晶の
禁制帯幅内にあって、結晶場によって2つのエネルギー
に分裂した状態にあることを特徴とする請求項4記載の
光スイッチ。5. A Faraday rotator is a crystal in which a small amount of magnetic atoms or ions are dissolved in a host crystal, and the d orbitals of the magnetic atoms or ions are within the band gap of the crystal. The optical switch according to claim 4, wherein the optical switch is split into two energies by a crystal field.
-VI 族の化合物半導体で、磁性を持った原子またはイオ
ンがMnに代表される鉄族遷移金属元素であることを特
徴とする請求項5記載の光スイッチ。6. The host crystal is represented by CdTe II.
6. The optical switch according to claim 5, wherein in the compound semiconductor of group VI, the atom or ion having magnetism is an iron group transition metal element represented by Mn.
加することを特徴とする請求項6記載の光スイッチ。7. The optical switch according to claim 6, wherein an Hg element is also added as a magnetic impurity.
ー幅に相当するエネルギーを有することを特徴とする請
求項4記載の光スイッチ。8. The optical switch according to claim 4, wherein the signal light has energy corresponding to the energy width of two d orbits in which the signal light is split.
るファラデー回転子の内部磁界を制御するために、外部
磁界として永久磁石または磁界発生用コイルを具備する
ことを特徴とする請求項4記載の光スイッチ。9. A permanent magnet or a magnetic field generating coil is provided as an external magnetic field in order to control the internal magnetic field of the Faraday rotator formed of magnetic atoms or ions. Light switch.
クロ波のうちいずれかを含む電磁波であることを特徴と
する請求項1または4記載の光スイッチ。10. The optical switch according to claim 1, wherein the light is an electromagnetic wave containing any one of ultraviolet light, visible light, infrared light and microwave.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7304199A JPH09146058A (en) | 1995-11-22 | 1995-11-22 | Light switch |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7304199A JPH09146058A (en) | 1995-11-22 | 1995-11-22 | Light switch |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH09146058A true JPH09146058A (en) | 1997-06-06 |
Family
ID=17930218
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP7304199A Pending JPH09146058A (en) | 1995-11-22 | 1995-11-22 | Light switch |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH09146058A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002091069A1 (en) * | 2001-05-07 | 2002-11-14 | Fujitsu Limited | Faraday rotator |
| WO2004049039A1 (en) * | 2002-11-25 | 2004-06-10 | Murata Manufacturing Co., Ltd. | Faraday rotator and magneto-optical device using same |
| WO2022124205A1 (en) * | 2020-12-08 | 2022-06-16 | 国立大学法人東北大学 | Optical switch element, optical switch device, optical communication system, and optical computer |
-
1995
- 1995-11-22 JP JP7304199A patent/JPH09146058A/en active Pending
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002091069A1 (en) * | 2001-05-07 | 2002-11-14 | Fujitsu Limited | Faraday rotator |
| WO2004049039A1 (en) * | 2002-11-25 | 2004-06-10 | Murata Manufacturing Co., Ltd. | Faraday rotator and magneto-optical device using same |
| WO2022124205A1 (en) * | 2020-12-08 | 2022-06-16 | 国立大学法人東北大学 | Optical switch element, optical switch device, optical communication system, and optical computer |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Scott et al. | Magnetooptic properties and applications of bismuth substituted iron garnets | |
| Fiebig et al. | Second harmonic generation and magnetic-dipole-electric-dipole interference in antiferromagnetic Cr 2 O 3 | |
| Buhrer | Faraday rotation and dichroism of bismuth calcium vanadium iron garnet | |
| Sangster et al. | Aharonov-Casher phase in an atomic system | |
| Gaj | Magnetooptical properties of large-gap diluted magnetic semiconductors | |
| Keller et al. | The polarized neutron small-angle scattering instrument at BENSC Berlin | |
| US5535046A (en) | Faraday rotator | |
| JPH09146058A (en) | Light switch | |
| Tanksalvala et al. | Element-specific high-bandwidth ferromagnetic resonance spectroscopy with a coherent extreme-ultraviolet source | |
| JP2004109086A (en) | Optical magnetic field sensor | |
| GB1040236A (en) | Improvements in or relating to polarization rotation devices | |
| EP0104675B1 (en) | Magneto-optical element on the basis of pt-mn-sb | |
| US3517193A (en) | Magnetically pulsed time-of-flight neutron spectrometer | |
| Winter | Capture of polarized electrons into excited terms of fast atoms during grazing surface collisions | |
| Nosenzo et al. | Effect of magnetic ordering on the optical properties of transition-metal halides: Ni Cl 2, Ni Br 2, Cr Cl 3, and Cr Br 3 | |
| Badurek et al. | A new type of spin-flip chopper for polarized neutron beams | |
| Yamaga et al. | Polarization spectroscopy of Cr3+ ions in laser host crystals: I. R lines and sidebands | |
| Boscaino et al. | Double-quantum nutations in a two-level spin system | |
| Jones et al. | Non-adiabatic spin flippers for thermal neutrons | |
| Dubbers et al. | Bistable neutron spin flippers | |
| RU2130691C1 (en) | Magnetic pulse generator | |
| RU2646551C1 (en) | Faraday isolator with variable direction of magnetic system field | |
| Kido et al. | High field magneto-optics at Tohoku University | |
| US3516747A (en) | Field modulation method for observing ultra - high - speed ferromagnetic domain dynamics | |
| Agamalyan et al. | Monochromatization of polarized neutrons by the method of spatial spin resonance |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040701 |
|
| A072 | Dismissal of procedure |
Free format text: JAPANESE INTERMEDIATE CODE: A072 Effective date: 20040910 |