[go: up one dir, main page]

JPH09154258A - Forcible oil cooled motor or cooling structure of motor - Google Patents

Forcible oil cooled motor or cooling structure of motor

Info

Publication number
JPH09154258A
JPH09154258A JP7333960A JP33396095A JPH09154258A JP H09154258 A JPH09154258 A JP H09154258A JP 7333960 A JP7333960 A JP 7333960A JP 33396095 A JP33396095 A JP 33396095A JP H09154258 A JPH09154258 A JP H09154258A
Authority
JP
Japan
Prior art keywords
cooling oil
small
oil
hole
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7333960A
Other languages
Japanese (ja)
Inventor
Shunei Yamamoto
俊英 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7333960A priority Critical patent/JPH09154258A/en
Publication of JPH09154258A publication Critical patent/JPH09154258A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize effective cooling by forming the inside of the rotating shaft of the rotor as the tapered hollow portion and setting the output side or the motor or drive side of the generator in the larger diameter side of the tapered hole. SOLUTION: Cooling oil 2 supplied with pressure from an external oil source 1 enters a cooling oil sending port 4 provided to a motor 3. The cooling oil 2 enters a tapered hollow portion (TP) 7 formed inside the rotating shaft 6 of rotor. The output axis 12 side of TP7 is set in the larger diameter hole side of tapered portion. A plurality of cooling oil spray small holes 9b, 9a are respectively formed in the same diameter at the large and small diameter sides in the diagonal direction to the axial center 8 of the rotor shaft from TP7. When the rotor shaft 6 is rotating, a centrifugal, force is applied to the cooling oil 2 at the internal circumference of TP7. This centrifugal force becomes larger in the small hole 9b of the larger diameter side than that of the small hole 9a in the small diameter side. Therefore, when the small hole 9b is far from the small hole 9a, the same amount of cooling oil flows out of the small holes 9b, 9a. Accordingly, the oil 10 collides with the stator coil 10 to absorb the heat.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電気式駆動車両等に
用いる強制油冷方式で高出力化を図った電動機又は発電
機のロ−タ回転軸の冷却油路構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling oil passage structure for a rotor rotating shaft of an electric motor or generator, which is used in an electrically driven vehicle or the like to achieve a high output by a forced oil cooling system.

【0002】[0002]

【従来の技術】従来の油冷却式発電機或いは電動機にお
いては図2に示す如く、ロ−タ回転軸012に中空穴0
7を加工し、このロ−タ回転軸側面に複数の小穴09
(09a、09b)を開けて、これら小穴に冷却油を流
す穴として用いている。この構造において、冷却油は中
空穴09に圧送された後、複数の小穴09からロ−タ回
転軸012の回転に伴う遠心力により小穴09から外部
に放射状に排出され、発電機或いは電動機内部のコイル
010に当たり、コイルで発生した熱を奪う構造となっ
ている。
2. Description of the Related Art In a conventional oil-cooled generator or electric motor, as shown in FIG.
7 is machined and a plurality of small holes 09 are formed on the side surface of the rotor rotation shaft.
(09a, 09b) are opened, and these small holes are used as holes for flowing cooling oil. In this structure, after the cooling oil is pressure-fed to the hollow hole 09, the cooling oil is radially discharged from the small holes 09 to the outside by the centrifugal force caused by the rotation of the rotor rotation shaft 012 from the plurality of small holes 09, and The structure is such that it strikes the coil 010 and takes away the heat generated in the coil.

【0003】[0003]

【発明が解決しようとする課題】ところが従来例では、
前記冷却油は、発電機或いは電動機の回転に伴う遠心力
により排出されるが、小穴09より排出される冷却油量
は均等にはならず、圧送口04から遠い位置にある小穴
09bから排出される油量の方が圧送口04から近い小
穴09aから排出される油量に比較して少なくなり、コ
イル010の冷却が不均等を生じていた。
However, in the conventional example,
The cooling oil is discharged by the centrifugal force caused by the rotation of the generator or the electric motor, but the amount of cooling oil discharged from the small holes 09 is not uniform and is discharged from the small holes 09b far from the pressure feed port 04. The amount of oil that is discharged is smaller than the amount of oil that is discharged from the small hole 09a near the pressure feed port 04, and the cooling of the coil 010 is uneven.

【0004】これは中空穴07が回転軸芯08に対して
平行に加工されているために、圧送口04から流入した
冷却油02が圧送口04に近い小穴09aに集中して排
出され、遠い小穴09bからは残った冷却油が少量しか
排出されないためであった。
Since the hollow hole 07 is machined parallel to the rotary shaft core 08, the cooling oil 02 flowing from the pressure feed port 04 is concentrated and discharged to the small holes 09a near the pressure feed port 04, and is distant. This is because a small amount of the remaining cooling oil is discharged from the small hole 09b.

【0005】従って、圧送口04から遠い位置にある小
穴09bにも十分な油量を供給するには、例えば外部油
圧源01の供給油量自体を増やす方法も考えられるが、
この方法では供給油量を増やすための別の方策を更に必
要とし、油量も増加するため、発電機或いは電動機内部
での油攪拌抵抗ロスをも増加させることとなり、得策で
はない。しかし従来は往々にしてこの方法を用いてい
た。
Therefore, in order to supply a sufficient amount of oil to the small hole 09b located far from the pressure feed port 04, for example, a method of increasing the amount of oil supplied from the external hydraulic power source 01 is conceivable.
This method further requires another measure for increasing the amount of supplied oil, and since the amount of oil also increases, it also increases the oil agitation resistance loss inside the generator or the electric motor, which is not a good measure. However, in the past, this method was often used.

【0006】前記目的を達成するための他の手段として
は、小穴09bの穴径を小穴09aの穴径より大きくす
るか、又は09b側の小穴数を09a側の小穴数より多
くすることで冷却油量の適正配分を図る方法もあるが、
動力を伝えるロ−タ回転軸に大径の横穴をあけたり、数
多くの穴をあけることは、ロ−タ回転軸の強度を低下さ
せることになり、 好ましくない (但し往々にしてこの
方法も従来しばしば用いられていた)。
As another means for achieving the above object, the hole diameter of the small hole 09b is made larger than the hole diameter of the small hole 09a, or the number of small holes on the 09b side is made larger than the number of small holes on the 09a side. There is also a method to properly distribute the amount of oil,
It is not preferable to make a large-diameter horizontal hole or to make a large number of holes in the rotor shaft that transmits power, because it reduces the strength of the rotor shaft (however, this method is often used in the past. Was often used).

【0007】本発明の目的は電動機或いは発電機内部の
コイルで発生した熱を負荷軸から反負荷側に至るコイル
全面にわたって効率よく且つ均等にコイル熱を奪い去る
ことである。
An object of the present invention is to efficiently and evenly remove the heat generated in the coil inside the electric motor or generator over the entire surface of the coil from the load shaft to the anti-load side.

【0008】[0008]

【課題を解決するための手段】本発明の発電機或いは電
動機の冷却構造は、ロ−タ回転軸内部を中空とし、ここ
に外部から冷却油を圧送して強制油圧冷却するものにお
いて、ロ−タ回転軸内部を中空でテ−パ形状とするとと
もに、電動機の出力側又は発電機の駆動側をそれぞれ前
記テ−パ穴の大径側としたことを特徴としている。
In the cooling structure for a generator or an electric motor according to the present invention, the inside of the rotor rotating shaft is hollow, and cooling oil is pressure-fed from the outside to the forcible hydraulic cooling. The inside of the rotor shaft is hollow and has a tapered shape, and the output side of the electric motor or the driving side of the generator is the large diameter side of the taper hole.

【0009】従来例ではロ−タ回転軸内部の冷却用中空
穴は回転軸芯に対して平行に加工していたが、本発明で
は、図1に示すように冷却油圧送口4側を小径とし、負
荷軸側を大径としたテ−パ状中空穴7としたので、冷却
油に作用する遠心力の作用により、小穴9a、9bのい
づれの位置にある小穴からも均等な冷却油がコイルへ飛
散されることとなり、効率よく均等にコイルの冷却を行
うことが可能となる。
In the conventional example, the cooling hollow hole inside the rotor rotary shaft was machined parallel to the rotary shaft core, but in the present invention, as shown in FIG. 1, the cooling hydraulic pressure feed port 4 side has a small diameter. Since the taper-shaped hollow hole 7 having a large diameter on the load shaft side is provided, uniform cooling oil can be obtained from the small holes at either position of the small holes 9a and 9b by the action of the centrifugal force acting on the cooling oil. It will be scattered to the coil, and the coil can be efficiently and uniformly cooled.

【0010】[0010]

【発明の実施の形態】以下図1を参照し本発明の実施の
形態について説明する。本発明の強制油冷式電動機冷却
油圧送口4側を小径とし、負荷軸側を大径のテ−パ状中
空穴としたので、冷却油に作用する遠心力の影響でいづ
れの位置にある小穴9a、9bからも均等な冷却油がコ
イルへ飛散され、効率のよいコイル冷却が可能となるよ
うにしたものである。
DETAILED DESCRIPTION OF THE INVENTION An embodiment of the present invention will be described below with reference to FIG. Since the forced oil cooling type motor cooling hydraulic pressure supply port 4 side of the present invention has a small diameter and the load shaft side has a large diameter taper-shaped hollow hole, it is in any position due to the influence of the centrifugal force acting on the cooling oil. Even cooling oil is scattered from the small holes 9a and 9b to the coil, so that the coil can be efficiently cooled.

【0011】図1は前述のとおり本発明に係る第1実施
例の永久磁石式ブラシレス電動機に適用した実施例を示
す。以下の説明においては、電動機が回転作動している
状態を想定することにする。外部油圧源1から圧送され
た冷却油2は電動機3に設けられた冷却油圧送口4に流
入する。圧送口4付近にはオイルシ−ル5が配設され、
冷却油が電動機内部に漏れることを防止している。外部
から流入した冷却油2はロ−タ回転軸6内部に加工され
たテ−パ状中空穴7に流入する。前記テ−パ状中空穴7
は出力軸12側がテ−パの大径穴側となっている。
FIG. 1 shows an embodiment applied to the permanent magnet type brushless motor of the first embodiment according to the present invention as described above. In the following description, it is assumed that the electric motor is rotating. The cooling oil 2 pressure-fed from the external hydraulic power source 1 flows into the cooling hydraulic pressure feed port 4 provided in the electric motor 3. An oil seal 5 is arranged near the pressure feed port 4,
Cooling oil is prevented from leaking inside the motor. The cooling oil 2 that has flowed in from the outside flows into the taper-shaped hollow hole 7 formed inside the rotor rotation shaft 6. The taper-shaped hollow hole 7
The output shaft 12 side is the large diameter hole side of the taper.

【0012】中空穴7よりロ−タ回転軸の軸芯8に対し
て直角方向に複数の冷却油噴霧用小穴9b、9aが大径
及び小径側にそれぞれ同径として加工されている。ロ−
タ回転軸6が回転作動している状態では、テ−パ状中空
穴7内周の冷却油2には遠心力が作用する。この遠心力
は大径側の小穴9bでは小径側の小穴9aより大きくな
るため、小穴9bの位置が小穴9aより遠距離であって
も小穴9b、9aから等量の冷却油が流出する。
A plurality of cooling oil spraying small holes 9b, 9a are formed in the large diameter and small diameter sides in the direction perpendicular to the axis 8 of the rotor rotation shaft from the hollow hole 7 so as to have the same diameter. B
When the rotary shaft 6 is rotating, a centrifugal force acts on the cooling oil 2 on the inner circumference of the tapered hollow hole 7. Since this centrifugal force is larger in the small hole 9b on the large diameter side than in the small hole 9a on the small diameter side, an equal amount of cooling oil flows out from the small holes 9b, 9a even if the position of the small hole 9b is farther than the small hole 9a.

【0013】以上のようにして小穴9a、9bから等量
の冷却油が流出しステ−タコイル10に飛散衝突して熱
を持ち去り、ステ−タコイル10を均等に冷却すること
ができるようになる。次いでステ−タコイル10を冷却
した冷却油2は重力の作用により電動機の下方にあるケ
−スドレン口11に集まり油配管を経由し、外部油圧源
1に再び戻り循環する。
As described above, an equal amount of cooling oil flows out from the small holes 9a and 9b, scatters and collides with the starter coil 10 to carry away heat, and the starter coil 10 can be cooled uniformly. . Then, the cooling oil 2 that has cooled the stator coil 10 gathers by the action of gravity at the case drain port 11 below the electric motor, passes through the oil pipe, and returns to the external hydraulic power source 1 for circulation.

【0014】ロ−タ回転軸6にテ−パ状中空穴7を加工
する際のテ−パの向きは、上述したように、冷却油圧送
口4側即ち電動機の反出力側を小径側とし、電動機の出
力軸12側を大径側としている。テ−パ加工を行う場合
は、大径側からはじめ小径側に至るため、出力軸12と
ロ−タ回転軸6を別部品とする必要を生じる。従ってロ
−タ回転軸6内部にテ−パ加工を施した後、出力軸12
とロ−タ回転軸6を例えば電子ビ−ム溶接で一体結合す
ればよい。
As described above, the direction of the taper when the taper-shaped hollow hole 7 is formed in the rotor shaft 6 is such that the cooling hydraulic pressure supply port 4 side, that is, the opposite output side of the electric motor is the smaller diameter side. The output shaft 12 side of the electric motor is the large diameter side. In the case of taper processing, the output shaft 12 and the rotor rotation shaft 6 need to be separate parts because the diameter starts from the large diameter side and starts from the small diameter side. Therefore, after the taper processing is applied to the inside of the rotor rotation shaft 6, the output shaft 12
The rotor rotating shaft 6 and the rotor rotating shaft 6 may be integrally connected by, for example, electron beam welding.

【0015】以上は電動機に対して本発明の適用例であ
るが、発電機に適用する場合にもロ−タ回転軸の中空テ
−パ穴において駆動側を大径とすれば、同様の冷却手段
が採用可能である。
The above is an example of application of the present invention to an electric motor. However, when the present invention is applied to a generator, the same cooling can be performed if the hollow taper hole of the rotor rotating shaft has a large diameter on the driving side. Means can be adopted.

【0016】[0016]

【発明の効果】本発明においてはロ−タ回転軸にテ−パ
状中空穴を加工し、ここに冷却油を流し込む構造を採用
することにより、電動機或いは発電機内部のコイルで発
生した熱を、ステ−タのコイル全面にわたって効率よく
且つ均等に奪い去ることができる。
According to the present invention, a taper-shaped hollow hole is formed in the rotor rotating shaft and cooling oil is poured into the hole, whereby heat generated in the coil inside the electric motor or generator is removed. , It is possible to take away efficiently and evenly over the entire surface of the stator coil.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例に係わる永久磁石式ブラシ
レス電動機に適用した冷却構造図。
FIG. 1 is a cooling structure diagram applied to a permanent magnet type brushless electric motor according to a first embodiment of the present invention.

【図2】従来例の図1応当図である。FIG. 2 is a diagram corresponding to FIG. 1 of a conventional example.

【符号の説明】[Explanation of symbols]

1…外部油圧源、2…冷却油、3…電動機、4…冷却油
圧送口、5…オイルシ−ル、6…ロ−タ回転軸、7…テ
−パ状中空穴、8…ロ−タ回転軸芯、9a、9b…小
穴、10…ステ−タコイル、11…ケ−スドレン口、1
2…出力軸、01…外部油圧源、02…冷却油、04…
圧送口、07…中空穴、08…回転軸芯、09a、09
b…小穴、010…コイル、012…ロ−タ回転軸。
DESCRIPTION OF SYMBOLS 1 ... External hydraulic power source, 2 ... Cooling oil, 3 ... Electric motor, 4 ... Cooling hydraulic pressure supply port, 5 ... Oil seal, 6 ... Rotor rotating shaft, 7 ... Tapered hollow hole, 8 ... Rotor Rotating shaft core, 9a, 9b ... Small hole, 10 ... Steer coil, 11 ... Case drain port, 1
2 ... Output shaft, 01 ... External hydraulic power source, 02 ... Cooling oil, 04 ...
Pressure feed port, 07 ... Hollow hole, 08 ... Rotating shaft core, 09a, 09
b ... small hole, 010 ... coil, 012 ... rotor rotation axis.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ロ−タ回転軸内部を中空とし、ここに外
部から冷却油を圧送して遠心力で該冷却油を飛散させ強
制油圧冷却するものにおいて、ロ−タ回転軸内部を中空
でテ−パ形状とするとともに、電動機の出力側又は発電
機の駆動側をそれぞれ前記テ−パ穴の大径側としたこと
を特徴とする強制油冷式電動機又は発電機の冷却構造。
1. A rotor rotating shaft is hollow, and cooling oil is pressure-fed from the outside to centrifugally disperse the cooling oil to forcibly hydraulically cool the rotor rotating shaft. A cooling structure for a forced oil-cooled electric motor or generator, characterized in that it has a taper shape and the output side of the electric motor or the drive side of the electric generator is the large diameter side of the taper hole.
JP7333960A 1995-11-29 1995-11-29 Forcible oil cooled motor or cooling structure of motor Withdrawn JPH09154258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7333960A JPH09154258A (en) 1995-11-29 1995-11-29 Forcible oil cooled motor or cooling structure of motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7333960A JPH09154258A (en) 1995-11-29 1995-11-29 Forcible oil cooled motor or cooling structure of motor

Publications (1)

Publication Number Publication Date
JPH09154258A true JPH09154258A (en) 1997-06-10

Family

ID=18271917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7333960A Withdrawn JPH09154258A (en) 1995-11-29 1995-11-29 Forcible oil cooled motor or cooling structure of motor

Country Status (1)

Country Link
JP (1) JPH09154258A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7228928B2 (en) 2003-08-22 2007-06-12 Toyota Jidosha Kabushiki Kaisha In-wheel motor capable of efficiently cooling motor
JP2007159325A (en) * 2005-12-07 2007-06-21 Shinko Electric Co Ltd Cooling mechanism of coil
WO2009147798A1 (en) 2008-06-02 2009-12-10 Ntn株式会社 Cooling structure of motor
JP2010041887A (en) * 2008-08-07 2010-02-18 Toyota Motor Corp Lubricating oil feeder for dynamo-electric machine
WO2010026726A1 (en) 2008-09-03 2010-03-11 Ntn株式会社 Vehicle drive motor
JP2010142090A (en) * 2008-12-15 2010-06-24 Toyota Motor Corp Lubricant feeder of rotating electrical machine
US7828095B2 (en) 2006-08-11 2010-11-09 Toyota Jidosha Kabushiki Kaisha In-wheel motor and wheel assembly with this in-wheel motor
WO2010128632A1 (en) * 2009-05-07 2010-11-11 Ntn株式会社 Cooling structure for motors
US7948125B2 (en) 2008-08-08 2011-05-24 GM Global Technology Operations LLC System and method for cooling an electric motor
CN101728903B (en) 2008-10-31 2011-11-16 比亚迪股份有限公司 Motor and transmission mechanism thereof
JP2012105487A (en) * 2010-11-11 2012-05-31 Komatsu Ltd Cooling device for electric motor
WO2015056088A1 (en) 2013-10-18 2015-04-23 Toyota Jidosha Kabushiki Kaisha Electric motor
JP2015154519A (en) * 2014-02-12 2015-08-24 本田技研工業株式会社 Cooling structure of drive device
JP2015192528A (en) * 2014-03-28 2015-11-02 三菱電機株式会社 Rotating electric machine
CN107925314A (en) * 2015-07-28 2018-04-17 日产自动车株式会社 Electric rotating machine cooling construction
CN108667180A (en) * 2017-03-28 2018-10-16 法雷奥电机设备公司 Electric rotating machine with optimization refrigerating function
KR20190041854A (en) * 2017-10-13 2019-04-23 현대자동차주식회사 Wound Rotor Motor of vehicle
DE102017128551A1 (en) 2017-12-01 2019-06-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Rotor with cooling
JP2019126158A (en) * 2018-01-16 2019-07-25 ジヤトコ株式会社 Cooling structure of motor
JP2020114151A (en) * 2019-01-16 2020-07-27 本田技研工業株式会社 Method for manufacturing rotor and shaft
JP2020162198A (en) * 2019-03-25 2020-10-01 アイシン・エィ・ダブリュ株式会社 Manufacturing method of rotor and rotor for rotary electric machine
CN111864996A (en) * 2020-08-06 2020-10-30 智新科技股份有限公司 An oil-cooled motor
WO2021018344A1 (en) * 2019-08-01 2021-02-04 Schaeffler Technologies AG & Co. KG Electric drive unit, hybrid module, and drive assembly for a motor vehicle
WO2022101094A1 (en) * 2020-11-11 2022-05-19 Zf Friedrichshafen Ag Drive device for a propeller of a multicopter
WO2022176225A1 (en) * 2021-02-18 2022-08-25 日本電産株式会社 Rotary electric machine and drive device
EP4160877A1 (en) * 2021-10-04 2023-04-05 Scania CV AB Electric rotating machine and method and vehicle comprising electric machine
WO2024138769A1 (en) * 2022-12-30 2024-07-04 浙江凌昇动力科技有限公司 Motor shaft for oil-cooled motor, oil-cooled motor, and motor vehicle

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7819214B2 (en) 2003-08-22 2010-10-26 Toyota Jidosha Kabushiki Kaisha In-wheel motor capable of efficiently cooling motor
US7228928B2 (en) 2003-08-22 2007-06-12 Toyota Jidosha Kabushiki Kaisha In-wheel motor capable of efficiently cooling motor
JP2007159325A (en) * 2005-12-07 2007-06-21 Shinko Electric Co Ltd Cooling mechanism of coil
US7828095B2 (en) 2006-08-11 2010-11-09 Toyota Jidosha Kabushiki Kaisha In-wheel motor and wheel assembly with this in-wheel motor
WO2009147798A1 (en) 2008-06-02 2009-12-10 Ntn株式会社 Cooling structure of motor
JP2010041887A (en) * 2008-08-07 2010-02-18 Toyota Motor Corp Lubricating oil feeder for dynamo-electric machine
US7948125B2 (en) 2008-08-08 2011-05-24 GM Global Technology Operations LLC System and method for cooling an electric motor
WO2010026726A1 (en) 2008-09-03 2010-03-11 Ntn株式会社 Vehicle drive motor
US8648504B2 (en) 2008-09-03 2014-02-11 Ntn Corporation Vehicle drive motor
CN101728903B (en) 2008-10-31 2011-11-16 比亚迪股份有限公司 Motor and transmission mechanism thereof
JP2010142090A (en) * 2008-12-15 2010-06-24 Toyota Motor Corp Lubricant feeder of rotating electrical machine
WO2010128632A1 (en) * 2009-05-07 2010-11-11 Ntn株式会社 Cooling structure for motors
JP2010263696A (en) * 2009-05-07 2010-11-18 Ntn Corp Motor cooling structure
JP2012105487A (en) * 2010-11-11 2012-05-31 Komatsu Ltd Cooling device for electric motor
WO2015056088A1 (en) 2013-10-18 2015-04-23 Toyota Jidosha Kabushiki Kaisha Electric motor
US10084359B2 (en) 2013-10-18 2018-09-25 Toyota Jidosha Kabushiki Kaisha Electric motor
JP2015154519A (en) * 2014-02-12 2015-08-24 本田技研工業株式会社 Cooling structure of drive device
JP2015192528A (en) * 2014-03-28 2015-11-02 三菱電機株式会社 Rotating electric machine
CN107925314B (en) * 2015-07-28 2020-10-27 日产自动车株式会社 Rotary Electric Machine Cooling Structure
CN107925314A (en) * 2015-07-28 2018-04-17 日产自动车株式会社 Electric rotating machine cooling construction
CN108667180A (en) * 2017-03-28 2018-10-16 法雷奥电机设备公司 Electric rotating machine with optimization refrigerating function
KR20190041854A (en) * 2017-10-13 2019-04-23 현대자동차주식회사 Wound Rotor Motor of vehicle
DE102017128551A1 (en) 2017-12-01 2019-06-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Rotor with cooling
JP2019126158A (en) * 2018-01-16 2019-07-25 ジヤトコ株式会社 Cooling structure of motor
JP2020114151A (en) * 2019-01-16 2020-07-27 本田技研工業株式会社 Method for manufacturing rotor and shaft
JP2020162198A (en) * 2019-03-25 2020-10-01 アイシン・エィ・ダブリュ株式会社 Manufacturing method of rotor and rotor for rotary electric machine
WO2021018344A1 (en) * 2019-08-01 2021-02-04 Schaeffler Technologies AG & Co. KG Electric drive unit, hybrid module, and drive assembly for a motor vehicle
CN111864996A (en) * 2020-08-06 2020-10-30 智新科技股份有限公司 An oil-cooled motor
WO2022101094A1 (en) * 2020-11-11 2022-05-19 Zf Friedrichshafen Ag Drive device for a propeller of a multicopter
WO2022176225A1 (en) * 2021-02-18 2022-08-25 日本電産株式会社 Rotary electric machine and drive device
EP4160877A1 (en) * 2021-10-04 2023-04-05 Scania CV AB Electric rotating machine and method and vehicle comprising electric machine
WO2023059247A1 (en) * 2021-10-04 2023-04-13 Scania Cv Ab Electric rotating machine and method and vehicle comprising electric machine
WO2024138769A1 (en) * 2022-12-30 2024-07-04 浙江凌昇动力科技有限公司 Motor shaft for oil-cooled motor, oil-cooled motor, and motor vehicle

Similar Documents

Publication Publication Date Title
JPH09154258A (en) Forcible oil cooled motor or cooling structure of motor
US11355999B2 (en) Method for cooling an electrical machine, and an electrical machine applying the method
US11303174B2 (en) Rotor for an electric machine
JPS61121728A (en) Liquid cooled motor
US4959570A (en) Motor cooling system
JP5502421B2 (en) Rotating electric machine
WO2022001268A1 (en) Motor, motor cooling system, and electric vehicle
CN207939353U (en) A kind of motor and vehicle
US9847682B2 (en) Rotor and rotating electric machine including the rotor
DE102005044327B4 (en) Electric machine with permanent magnets
US20040080218A1 (en) Rotating machine with cooled hollow rotor bars
KR20130081695A (en) Electric machine cooling system and method
CN102598485A (en) Cooling of an asynchronous rotor
JPS58201559A (en) Heat insulating device for spindle stock
DE102005059244A1 (en) Self-rotating electrical machine for use in motor vehicle, includes heat dissipation device with cooling bodies, where switching devices are distributed and attached on cooling bodies
US11973407B2 (en) Thermal management techniques for electric motors
JP5652638B2 (en) Rotor for rotating electrical machines
JP2024522929A (en) Oil-cooled hollow shaft structure and oil-cooled rotor structure
JP5920108B2 (en) Rotating electrical machine equipment
CN107240985B (en) Rotating electric machine
US4647804A (en) High speed generator rotor oil path air vent
US6400060B1 (en) Electrical machine with stator and claw pole rotor system
AU2020333693A1 (en) Electric machine with integrated dam assembly
US11025135B2 (en) Electrical machine with liquid cooling
US20060103256A1 (en) Laminated core of a stator and/or of a rotor of a splash-cooled electrical machine as well as a splash-cooled electrical machine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204