JPH09159596A - Viscosity measuring method and device - Google Patents
Viscosity measuring method and deviceInfo
- Publication number
- JPH09159596A JPH09159596A JP31676595A JP31676595A JPH09159596A JP H09159596 A JPH09159596 A JP H09159596A JP 31676595 A JP31676595 A JP 31676595A JP 31676595 A JP31676595 A JP 31676595A JP H09159596 A JPH09159596 A JP H09159596A
- Authority
- JP
- Japan
- Prior art keywords
- viscosity
- measuring
- spring
- plate
- shaped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
(57)【要約】
【課題】 加熱、加圧下において、光学的に不透明な流
体の粘度を化学反応に必要な攪拌力を確保しながら回転
粘度法で測定する方法を提供する。
【解決手段】 攪拌装置の回転軸の先端に板状巻きバネ
を設置し、流体の粘度の粘性抵抗に応じて変化する板状
巻きバネの直径を、測定容器外部から挿入した針状の検
出端と板状巻きバネの接触する位置から求める。
(57) Abstract: A method for measuring the viscosity of an optically opaque fluid under heating and pressurization by the rotational viscosity method while ensuring the stirring force necessary for a chemical reaction. A plate-shaped winding spring is installed at the tip of a rotary shaft of a stirring device, and the diameter of the plate-shaped winding spring that changes according to the viscous resistance of the viscosity of the fluid is inserted from the outside of the measurement container. It is calculated from the contact position of the plate-shaped spring.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、加熱、加圧下にお
いて、光学的に不透明な流体の粘度を回転粘度法で測定
する方法、およびその装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the viscosity of an optically opaque fluid by a rotational viscosity method under heating and pressure, and an apparatus therefor.
【0002】[0002]
【従来の技術】一般に、流体中で物体を移動させるとそ
の物体に流体の粘性に伴う抵抗(粘性抵抗)が作用す
る。この抵抗を測定することによって流体の粘度を知る
ことができる。この粘性抵抗を測定する方法として、流
体中で円筒形の回転子を回転させ、その際に回転子に掛
かる回転抵抗を回転軸に結合されたバネの捻れ角度を測
定して粘度を求める方法(回転粘度法)が広く用いられ
ている。この測定方法は測定装置の簡便さ、あるいは測
定結果の解析が容易であることなどから流体の粘度測定
方法として優れている。2. Description of the Related Art Generally, when an object is moved in a fluid, a resistance (viscous resistance) associated with the viscosity of the fluid acts on the object. By measuring this resistance, the viscosity of the fluid can be known. As a method of measuring this viscous resistance, a cylindrical rotor is rotated in a fluid, and the rotational resistance applied to the rotor at that time is measured by measuring the torsion angle of a spring connected to a rotating shaft to obtain the viscosity ( The rotational viscosity method) is widely used. This measuring method is excellent as a method for measuring the viscosity of a fluid because the measuring device is simple and the measurement results can be easily analyzed.
【0003】近年では計測技術やセンサー技術の発達に
より、特公昭59−15837号公報にあるように流体
中に振動子なるものを浸漬し、コイルバネを介装した振
動杆の他端に加振手段と変位センサーを設けて、加振時
の振動子の振幅から高温条件で低粘度の流体の粘度を高
精度に測定する方法がある。また、配管内を流れる流体
の粘度を測定する方法として、特公平1−26124号
公報にあるように、管内に設けた振動板を振動発信器で
振動させ、発信器の振動周波数と振動板の実際の振動数
の差から粘度を測定する方法などもある。In recent years, due to the development of measuring technology and sensor technology, as shown in Japanese Patent Publication No. 59-15837, a vibrator is immersed in a fluid and a vibrating means is attached to the other end of a vibrating rod having a coil spring interposed. And a displacement sensor are provided, and the viscosity of a low-viscosity fluid can be measured with high accuracy under high temperature conditions from the amplitude of the vibrator during vibration. Further, as a method of measuring the viscosity of a fluid flowing in a pipe, as disclosed in Japanese Patent Publication No. 1-26124, a vibrating plate provided in the pipe is vibrated by a vibration transmitter, and the vibration frequency of the oscillator and the vibration There is also a method of measuring the viscosity from the difference in the actual frequency.
【0004】石炭液化反応など、加圧、加熱下において
化学反応を進行させながら粘度を測定する場合には、反
応を円滑に進行させるために攪拌を加える必要がある。
このような場合には、図5に示すように、圧力反応容器
(粘度測定容器)14を用いた回転粘度測定法が適して
いる。すなわち、図5において、粘度測定流体8中に浸
漬された、攪拌翼7には磁力攪拌装置2によって回転す
る回転軸3が接続されている。磁力攪拌装置2はモータ
ー1と接続されており、回転数検出器5と回転数測定装
置12、およびモーター出力制御装置13によってモー
ター回転数の検出と制御、並びにモーター出力の検出と
制御を行う。When measuring viscosity while advancing a chemical reaction under pressure or heating such as coal liquefaction reaction, it is necessary to add stirring in order to make the reaction proceed smoothly.
In such a case, as shown in FIG. 5, a rotational viscosity measuring method using a pressure reaction container (viscosity measuring container) 14 is suitable. That is, in FIG. 5, the rotating shaft 3 rotated by the magnetic stirring device 2 is connected to the stirring blade 7 immersed in the viscosity measuring fluid 8. The magnetic stirring device 2 is connected to the motor 1, and the rotation speed detector 5, the rotation speed measuring device 12, and the motor output control device 13 detect and control the motor rotation speed and detect and control the motor output.
【0005】図5に示す装置において、化学反応を均一
に行うために流体に攪拌力を与えると共に、流体の粘度
を測定することができる。この粘度測定の精度を高める
ためには、回転軸3が回転する際にぶれが生じないよう
に、また、上下方向に大きな変位がないように回転軸ガ
イドを設置する必要がある。この回転軸ガイド(下部)
4、および回転軸ガイド(上部)11は回転軸3と直接
接触するために、回転に伴って両者間に発生する摩擦抵
抗を極力小さく、且つ、その摩擦抵抗を常に一定に保つ
ことが望ましい。このためには、例えば回転軸3の材質
として金属を用いる場合には、金属との摩擦係数の小さ
いグラファイトやテフロンを用いる。In the apparatus shown in FIG. 5, it is possible to apply a stirring force to a fluid in order to uniformly carry out a chemical reaction and to measure the viscosity of the fluid. In order to improve the accuracy of this viscosity measurement, it is necessary to install a rotating shaft guide so that the rotating shaft 3 does not shake when rotating and that there is no large vertical displacement. This rotating shaft guide (bottom)
4 and the rotary shaft guide (upper part) 11 are in direct contact with the rotary shaft 3, it is desirable to minimize the frictional resistance generated between them with rotation and keep the frictional resistance constant at all times. For this purpose, for example, when a metal is used as the material of the rotating shaft 3, graphite or Teflon having a small friction coefficient with the metal is used.
【0006】[0006]
【発明が解決すべき課題】しかしながら、流体の粘度を
加圧、加熱下で測定する場合には、粘度を測定しようと
する流体が気化し、その蒸気が回転軸ガイド(下部)
4、および回転軸ガイド(上部)11に接触することに
よって回転軸3とこれら回転軸ガイド間の摩擦抵抗を変
化させる。特に、加熱によって粘度測定流体8に反応が
起こり、その流体から発生する蒸気の成分が温度ととも
に、あるいは時間とともに変化する場合には、回転軸3
と回転軸ガイド(下部)4、および回転軸ガイド(上
部)11間に入り込む成分が刻々と変化する。これによ
り、両者間の摩擦抵抗が不規則に変化して、測定値がば
らつくなどの精度上の限界が生じる。However, when the viscosity of a fluid is measured under pressure and heating, the fluid whose viscosity is to be measured is vaporized and the vapor is rotated into the rotary shaft guide (lower part).
4, and the friction resistance between the rotary shaft 3 and these rotary shaft guides is changed by coming into contact with the rotary shaft guide (upper part) 11. In particular, when a reaction occurs in the viscosity measuring fluid 8 due to heating and the vapor component generated from the fluid changes with temperature or with time, the rotary shaft 3
The components that enter between the rotary shaft guide (lower part) 4 and the rotary shaft guide (upper part) 11 change every moment. As a result, the frictional resistance between the two changes irregularly, causing a limit in accuracy such as variations in measured values.
【0007】本発明の目的は、加圧、加熱下において、
反応を伴う流体の粘度を回転粘度測定法によって、従来
よりもはるかに精度の高い測定方法を提供することにあ
る。An object of the present invention is to apply pressure and heat to
An object of the present invention is to provide a method of measuring the viscosity of a fluid accompanied by a reaction, which is much more accurate than the conventional method, by the rotational viscosity measuring method.
【0008】[0008]
【課題を解決するための手段】本発明者らは、上記の問
題点を解決するために種々検討した結果、回転軸に金属
製の板を螺旋状に巻いたもの(以下、「板状巻きバネ」
という。)を回転子として取り付け、これを粘度を測定
する流体中で回転させると、流体の温度及び回転子の回
転数と、その温度での流体の粘度と板状巻きバネの直径
との間に相関があるこのとに着目した。そして、流体の
粘性抵抗を回転軸に取り付けた板状巻きバネの直径の変
化で検出することにより、回転軸を支えるガイド部分の
摩擦抵抗の変化による駆動装置の負荷の変化に左右され
ずに、安定した測定値が得られることを見い出した。こ
の知見に基づき本発明を完成するに至ったものである。As a result of various investigations to solve the above problems, the present inventors have found that a metal plate is spirally wound around a rotating shaft (hereinafter referred to as "plate-shaped winding"). Spring"
That. ) As a rotor and rotating it in a fluid whose viscosity is to be measured, there is a correlation between the temperature of the fluid and the number of rotations of the rotor, and the viscosity of the fluid at that temperature and the diameter of the leaf spring. I focused on this. Then, by detecting the viscous resistance of the fluid by the change in the diameter of the plate-shaped winding spring attached to the rotary shaft, regardless of the change in the load of the drive device due to the change in the frictional resistance of the guide portion supporting the rotary shaft, It has been found that stable measurements can be obtained. The present invention has been completed based on this finding.
【0009】本発明は、下記の事項の通りのものであ
る。 1)粘度測定容器内の液体中で螺旋状の巻きバネからな
る回転子を一定の回転数で回転させ、液体の温度及び前
記板状巻きバネの直径を測定して、液体の温度及び回転
子の回転数に対する前記板状巻きバネの直径と粘度の関
係より、前記液体の粘度を求めることを特徴とする粘度
の測定方法。 2)粘度測定容器の外から巻きバネ方向に検出端を挿入
し、該巻きバネと検出端とが接触する位置までの検出端
の挿入長さから巻きバネの直径を測定することを特徴と
する粘度の測定方法。 3)巻きバネと検出端の接触時に発生する振動を検出し
て巻きバネと検出端との接触位置を特定することを特徴
とする粘度の測定方法。 4)液体中で回転子を回転させ、回転子が受ける粘性抵
抗より粘度を測定する回転粘度測定装置において、回転
軸の先端部に螺旋状の板状巻きバネからなる回転子を配
し、該板状巻きバネ方向に挿入可能な針状の検出端を粘
度測定装置下部に配し、前記検出端が挿入長さの測定機
構および振動検出器を有することを特徴とする粘度測定
装置。The present invention is as follows. 1) Rotating a rotor composed of a spiral winding spring in a liquid in a viscosity measuring container at a constant number of rotations, measuring the temperature of the liquid and the diameter of the plate-shaped winding spring, and measuring the temperature of the liquid and the rotor. The viscosity measuring method is characterized in that the viscosity of the liquid is obtained from the relationship between the diameter and the viscosity of the plate-shaped spiral spring with respect to the number of rotations. 2) The detection end is inserted from the outside of the viscosity measuring container in the winding spring direction, and the diameter of the winding spring is measured from the insertion length of the detection end up to the position where the winding spring and the detection end come into contact with each other. How to measure viscosity. 3) A method of measuring viscosity, characterized in that the contact position between the coil spring and the detection end is specified by detecting the vibration generated when the coil spring and the detection end contact. 4) In a rotational viscosity measuring device in which the rotor is rotated in a liquid and the viscosity is measured from the viscous resistance received by the rotor, a rotor composed of a spiral plate-shaped spring is arranged at the tip of the rotary shaft, A viscosity measuring device characterized in that a needle-shaped detection end that can be inserted in the direction of the plate-shaped winding spring is arranged below the viscosity measuring device, and the detection end has a mechanism for measuring the insertion length and a vibration detector.
【0010】[0010]
【発明の実施の形態】以下に、本発明を詳細に説明す
る。まず、板状巻きバネの直径と流体の粘度の関係につ
いて述べる。図1に本発明に係る板状巻きバネの一形態
を示す。板状巻きバネ21を回転軸3に取り付けて流体
中で左方向(反時計回り)に回転させると、流体の抵抗
によって板状巻きバネ21の直径が変化する。板状巻き
バネの材質としては、特に限定するものではないが、粘
度を測定する流体に対して不活性であること、および反
応のためにガスを使用する場合には該ガスに対して不活
性であることが望ましく、金属や高分子材料などが使用
可能である。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. First, the relationship between the diameter of the leaf spring and the viscosity of the fluid will be described. FIG. 1 shows an embodiment of a plate-shaped spiral spring according to the present invention. When the plate-shaped spiral spring 21 is attached to the rotating shaft 3 and rotated in the fluid in the left direction (counterclockwise), the diameter of the plate-shaped spiral spring 21 changes due to the resistance of the fluid. The material of the plate-shaped spiral spring is not particularly limited, but is inert to the fluid whose viscosity is to be measured, and inert to the gas when the gas is used for the reaction. Is preferable, and a metal, a polymer material or the like can be used.
【0011】板状巻きバネの剛性については、剛性が高
過ぎる場合は、流体の粘性抵抗に対する感度が鈍くて変
化量が小さ過ぎ、測定精度上好ましいとは言えない。逆
に剛性の低過ぎる場合は、流体の粘度に対する感度が高
過ぎて変化量が大きくなるために巻き径が小さくなり、
攪拌力を確保する点で問題が生じる恐れがあるので好ま
しいとは言えない。Regarding the rigidity of the leaf spring, if the rigidity is too high, the sensitivity to the viscous resistance of the fluid is low and the amount of change is too small, which is not preferable in terms of measurement accuracy. On the other hand, if the rigidity is too low, the sensitivity to fluid viscosity is too high and the amount of change increases, resulting in a smaller winding diameter.
It is not preferable because it may cause a problem in securing the stirring power.
【0012】板状巻きバネのために使用する板の厚みや
巻き数については、使用する材料の剛性や板の幅、およ
び粘度を測定する流体の粘度レベルを考慮して定める。
また、巻きバネとして板状のものを使用するのは粘度を
測定しようとする流体に均一混合のための攪拌を加える
必要があるからである。The thickness and the number of turns of the plate used for the plate-shaped spiral spring are determined in consideration of the rigidity of the material used, the width of the plate, and the viscosity level of the fluid whose viscosity is to be measured.
Further, the reason why a plate-shaped spring is used as the spiral spring is that the fluid whose viscosity is to be measured needs to be stirred for uniform mixing.
【0013】粘度を測定するための容器の一部に透明ガ
ラスなどによる窓が設けられていて、外部から内部の様
子を観察できる場合などは、該測定容器の外から直接板
状巻きバネの直径を測定することも可能である。しかし
ながら、粘度を測定する流体が不透明な場合や、加熱に
よって気化して蒸気を発生する場合には、外部からの観
察で板状巻きバネの直径を精度良く見極めることは難し
い。If a window made of transparent glass or the like is provided in a part of the container for measuring the viscosity and the inside can be observed from the outside, the diameter of the plate-shaped coil spring can be directly measured from the outside of the measuring container. It is also possible to measure However, when the fluid whose viscosity is to be measured is opaque or when vaporized by heating to generate steam, it is difficult to accurately determine the diameter of the plate-shaped spiral spring by external observation.
【0014】そこで本発明者らは、図2に示すごとく、
粘度測定容器14の側壁面から針状の検出端20を挿入
し、この検出端20を該粘度測定用器14内に出し入れ
することによって板状巻きバネ21の直径を測定する方
法を発明した。すなわち、検出端20は検出端駆動装置
19によって測定容器内部へ挿入すると、ある位置で検
出端20の先端部と板状巻きバネ21の最外周部が接触
する。この際に、両者の接触によって検出端20に振動
が発生する。この振動の発生は検出端20の一端に取り
付けた振動検出器18により検出され、検出信号は信号
ケーブル22によって直ちに信号処理装置16に伝達さ
れ、検出端駆動制御装置17が検出端駆動装置19を停
止させる。Therefore, the present inventors, as shown in FIG.
The method of measuring the diameter of the plate-shaped coiled spring 21 by inserting the needle-shaped detection end 20 from the side wall surface of the viscosity measuring container 14 and inserting and removing the detection end 20 into and from the viscosity measuring device 14 has been invented. That is, when the detection end 20 is inserted into the measurement container by the detection end drive device 19, the tip end of the detection end 20 and the outermost peripheral portion of the plate-shaped winding spring 21 come into contact with each other at a certain position. At this time, the detection end 20 vibrates due to the contact between the two. The occurrence of this vibration is detected by the vibration detector 18 attached to one end of the detection end 20, and the detection signal is immediately transmitted to the signal processing device 16 by the signal cable 22, and the detection end drive control device 17 causes the detection end drive device 19 to operate. Stop.
【0015】この時の検出端20の粘度測定容器14内
への挿入長さは、例えば検出端駆動装置19としてステ
ッピングモーターを使用すれば、予め該モーターの回転
量と検出端20の移動距離の関係を把握しておけば容易
に測定することができる。また、検出端20の形状につ
いては、粘度を測定しようとする流体の抵抗にならない
ことが必要であり、針状で断面が円形のものが好まし
い。At this time, the insertion length of the detection end 20 into the viscosity measuring container 14 can be determined by, for example, a rotation amount of the motor and a movement distance of the detection end 20 if a stepping motor is used as the detection end drive device 19. If you know the relationship, you can easily measure. Further, the shape of the detection end 20 is required not to be the resistance of the fluid whose viscosity is to be measured, and it is preferable that it has a needle shape and a circular cross section.
【0016】以上説明した方法を粘度が既知の粘度標準
液(市販品)の粘度測定に適用した結果について、図3
に基づいて説明する。図3は室温(23.6℃)におい
て粘度標準液の粘度を所定の回転数において測定した場
合の、粘度標準液の粘度と板状巻きバネ21の直径の変
化の関係を示したものである。図3において、横軸は粘
度測定を行った時に温度計28で測定された粘度標準液
の温度における粘度値(標準液に添付の校正表から求め
る)を示している。また、縦軸は粘度測定容器14内に
粘度標準液を入れない場合に測定された板状巻きバネ2
1の直径と、粘度標準液を入れて測定した場合の板状巻
きバネ21の直径の比を相対直径として表したものであ
る。FIG. 3 shows the results of applying the method described above to the viscosity measurement of a viscosity standard solution (commercial product) of known viscosity.
It will be described based on. FIG. 3 shows the relationship between the viscosity of the viscosity standard solution and the change in the diameter of the leaf coil spring 21 when the viscosity of the viscosity standard solution is measured at a predetermined rotation speed at room temperature (23.6 ° C.). . In FIG. 3, the horizontal axis represents the viscosity value at the temperature of the viscosity standard solution measured by the thermometer 28 when the viscosity is measured (obtained from the calibration table attached to the standard solution). The vertical axis indicates the plate-shaped spring 2 measured when the viscosity standard solution is not put in the viscosity measuring container 14.
The ratio of the diameter of No. 1 and the diameter of the plate-shaped spiral spring 21 when the viscosity standard liquid is added and measured is expressed as a relative diameter.
【0017】図3から、粘度と相対直径の間には直線関
係が成立することがわかる。このことは、粘度標準液を
用いて、図4に示したような関係をいくつかの回転数に
おいて求めておけば、この関係を利用して、実測される
板状巻きバネ21の相対直径と測定時の回転軸3の回転
数を基に流体の粘度を測定できることを示している。From FIG. 3, it can be seen that a linear relationship is established between viscosity and relative diameter. This means that if the relationship shown in FIG. 4 is obtained at several rotational speeds using the viscosity standard solution, this relationship is used to measure the relative diameter of the plate-shaped spiral spring 21. It shows that the viscosity of the fluid can be measured based on the rotation speed of the rotating shaft 3 at the time of measurement.
【0018】次に、本発明方法によって石炭と溶剤から
なるスラリーの粘度を水素ガス加圧条件の下で加熱、昇
温した場合の粘度の測定結果について説明する。測定に
用いたスラリーの調製には、C:75.3%、H:6.
2%、N:1.5%、S:0.4%、O:16.6%
(いずれも無水無灰基準)からなり、揮発分:44.1
%、灰分:6.8%(いずれも無水基準)である石炭を
200メッシュ以下が85重量%となるように粉砕して
使用した。溶剤にはテトラリン(市販品)を用いた。両
者の混合比は重量で、石炭4対溶剤6とした。反応を促
進するために触媒として、硫化鉄(市販品)を石炭の乾
き重量に対して3%添加した。Next, the measurement results of the viscosity of the slurry consisting of coal and solvent heated and heated under the hydrogen gas pressurizing condition by the method of the present invention will be described. For the preparation of the slurry used for the measurement, C: 75.3%, H: 6.
2%, N: 1.5%, S: 0.4%, O: 16.6%
(Both are based on anhydrous ashless), volatile matter: 44.1
%, Ash content: 6.8% (all are on a dry basis), and the coal was pulverized and used so that 200 mesh or less was 85% by weight. Tetralin (commercial item) was used as the solvent. The mixing ratio of both was 4 by weight and 6 by solvent. To accelerate the reaction, iron sulfide (commercially available) was added as a catalyst in an amount of 3% based on the dry weight of coal.
【0019】石炭と溶剤からなるスラリーの120gを
粘度測定容器14に入れて密閉し、反応ガス15として
水素を室温で8MPa充填した後、回転軸ガイド(下
部)4で保持した回転軸3を300rpmの速度で回転
させながら、粘度測定流体の温度を1分間に10℃の速
度で昇温した。120 g of a slurry consisting of coal and a solvent was placed in a viscosity measuring container 14 and sealed, and hydrogen as a reaction gas 15 was charged at 8 MPa at room temperature, and then the rotating shaft 3 held by a rotating shaft guide (lower part) 4 was rotated at 300 rpm. The temperature of the viscosity measuring fluid was increased at a rate of 10 ° C. for 1 minute while rotating at a rate of.
【0020】比較のため、同様の条件で、図5に示した
装置を用いて従来の方法でも測定した。従来の方法によ
る粘度の測定は、図5において回転検出器12で検出さ
れる回転軸3の回転数が、測定開始時に設定した値をモ
ーター出力制御装置13の制御によって維持するのに必
要なモーター出力値を測定し、この出力値を、別途粘度
の標準液を用いて求めておいたモーター出力と粘度の関
係(図示せず)から粘度を求めた。回転軸3の回転数
は、本発明の方法と同じく、300rpmとした。ま
た、攪拌翼は2枚翼を用いた。For comparison, the measurement was performed by the conventional method using the device shown in FIG. 5 under the same conditions. The viscosity measurement by the conventional method is performed by the motor required for the rotation speed of the rotation shaft 3 detected by the rotation detector 12 in FIG. 5 to maintain the value set at the start of the measurement by the control of the motor output control device 13. The output value was measured, and the output value was determined from the relationship between the motor output and the viscosity (not shown) which was separately determined using a viscosity standard solution. The rotation speed of the rotary shaft 3 was set to 300 rpm as in the method of the present invention. Two blades were used as the stirring blade.
【0021】上述の方法に従って得られた粘度の測定結
果を、図4に示す。図4において、横軸は反応槽内の温
度であり、縦軸は粘度の測定値である。どちらの測定方
法においても、温度が高くなると粘度は低くなるが、測
定データの安定性については、本発明による測定方法の
方が従来法に比べばらつきが小さく遥かに優れている。
測定終了後に装置を解体して、回転軸ガイド4への付着
状況を観察したところ、どちらの測定方法においても、
加熱による溶剤の蒸発、あるいは反応で生成したと思わ
れる液状物質が、回転軸ガイド4と回転軸3の間に入り
込んでいるのが認められた。The viscosity measurement results obtained according to the above method are shown in FIG. In FIG. 4, the horizontal axis is the temperature in the reaction tank, and the vertical axis is the measured value of viscosity. In both measuring methods, the viscosity decreases as the temperature rises, but the stability of the measured data is much better in the measuring method according to the present invention than in the conventional method, with less variation.
After the measurement was completed, the device was disassembled and the state of adhesion to the rotary shaft guide 4 was observed.
It was confirmed that a liquid substance that was considered to have been produced by evaporation of the solvent by heating or a reaction entered between the rotary shaft guide 4 and the rotary shaft 3.
【0022】このような場合、図5に示した測定装置を
用いた従来の方法による測定では、回転軸ガイド4と回
転軸3の間に入り込んだ液状物質によって両者間の摩擦
抵抗が不規則に変化するため、回転軸3の回転数を一定
に制御するためのモーター出力もこれに応じて不規則に
変化する。これに対して、本発明の方法では、回転軸ガ
イド4と回転軸3の間の摩擦抵抗がどのように変化して
も、回転数が一定であれば、板状巻きバネ21の直径
は、純粋に流体の粘性抵抗によってのみ変化する。した
がって、従来の測定方法と比較してばらつきが小さく、
精度の高い測定データが得られる。In such a case, in the measurement by the conventional method using the measuring device shown in FIG. 5, the frictional resistance between the rotary shaft guide 4 and the rotary shaft 3 becomes irregular due to the liquid substance entering between them. Since it changes, the motor output for controlling the rotation speed of the rotary shaft 3 to be constant also changes irregularly accordingly. On the other hand, in the method of the present invention, no matter how the frictional resistance between the rotary shaft guide 4 and the rotary shaft 3 changes, if the rotation speed is constant, the diameter of the plate-shaped winding spring 21 is It changes only purely by viscous drag of the fluid. Therefore, the variation is small compared to the conventional measurement method,
Highly accurate measurement data can be obtained.
【0023】[0023]
【発明の効果】本発明の粘度測定方法、および測定装置
によれば、加圧、加熱下において反応が伴う場合の流体
の粘度を、反応に必要な攪拌力を維持しながら回転粘度
法で精度良く測定することが可能であり、流体の粘度測
定方法としての技術的効果が高い。EFFECT OF THE INVENTION According to the viscosity measuring method and measuring apparatus of the present invention, the viscosity of the fluid when the reaction is accompanied by pressurization and heating can be performed by the rotational viscosity method while maintaining the stirring force necessary for the reaction. It can be measured well and has a high technical effect as a method for measuring the viscosity of a fluid.
【図1】本発明の実施例で用いた板状巻きバネの一実施
形態を示す図である。FIG. 1 is a diagram showing an embodiment of a plate-shaped spiral spring used in an example of the present invention.
【図2】本発明の方法における粘度測定装置の概略を示
す図である。FIG. 2 is a diagram showing an outline of a viscosity measuring device in the method of the present invention.
【図3】本発明の方法で粘度標準液の粘度を測定した場
合の板状巻きバネの相対直径と粘度の関係を示す図であ
る。FIG. 3 is a diagram showing the relationship between the relative diameter of a leaf spring and the viscosity when the viscosity of a viscosity standard solution is measured by the method of the present invention.
【図4】本発明の方法で石炭−溶剤スラリーの粘度を加
熱、加圧下で測定した場合の温度と粘度の関係を従来の
方法で測定した結果と比較した図である。FIG. 4 is a diagram comparing the relationship between temperature and viscosity when the viscosity of a coal-solvent slurry is measured under heating and pressurization by the method of the present invention, in comparison with the result measured by a conventional method.
【図5】従来の方法における粘度測定装置の概略を示す
図である。FIG. 5 is a diagram showing an outline of a viscosity measuring device in a conventional method.
1 モーター 2 磁力攪拌装置 3 回転軸 4 回転軸ガイド 5 回転数検出器 6 加熱用ヒーター 7 攪拌翼 8 粘度測定流体 9 容器蓋 10 水冷用配管 11 回転軸ガイド(上部) 12 回転数測定装置 13 モーター出力制御装置 14 圧力反応容器(粘度測定容器) 15 反応ガス 16 信号処理装置 17 検出端駆動制御装置 18 振動検出器 19 検出端駆動装置 20 検出端 21 板状巻きバネ 22,23〜27 信号ケーブル 28 温度計 1 Motor 2 Magnetic Stirrer 3 Rotating Shaft 4 Rotating Shaft Guide 5 Rotation Speed Detector 6 Heating Heater 7 Stirring Blade 8 Viscosity Measuring Fluid 9 Container Lid 10 Water Cooling Pipe 11 Rotating Shaft Guide (Upper) 12 Rotation Speed Measuring Device 13 Motor Output control device 14 Pressure reaction container (viscosity measuring container) 15 Reaction gas 16 Signal processing device 17 Detection end drive control device 18 Vibration detector 19 Detection end drive device 20 Detection end 21 Plate winding spring 22, 23 to 27 Signal cable 28 thermometer
Claims (4)
きバネからなる回転子を一定の回転数で回転させ、液体
の温度及び前記板状巻きバネの直径を測定して、液体の
温度及び回転子の回転数に対する前記板状巻きバネの直
径と粘度の関係から、前記液体の粘度を求めることを特
徴とする粘度の測定方法。1. A liquid in a viscosity measuring container, wherein a rotor composed of a spiral plate-shaped spring is rotated at a constant number of revolutions, and the temperature of the liquid and the diameter of the plate-shaped spring are measured to obtain the liquid. The viscosity measuring method is characterized in that the viscosity of the liquid is obtained from the relationship between the diameter and the viscosity of the plate-shaped spiral spring with respect to the temperature and the rotation speed of the rotor.
端を挿入し、巻きバネと検出端とが接触する位置までの
検出端の挿入長さから前記巻きバネの直径を測定するこ
とを特徴とする請求項1記載の粘度の測定方法。2. A measuring end is inserted from the outside of the viscosity measuring container in the direction of the spiral spring, and the diameter of the spiral spring is measured from the insertion length of the detecting end up to the position where the spiral spring and the detecting end come into contact with each other. The method for measuring viscosity according to claim 1, which is characterized in that.
を検出して、巻きバネと検出端との接触位置を特定する
ことを特徴とする請求項2記載の粘度の測定方法。3. The viscosity measuring method according to claim 2, wherein the vibration generated when the coil spring and the detection end contact each other is detected to identify the contact position between the coil spring and the detection end.
る粘性抵抗から粘度を測定する回転粘度測定装置におい
て、回転軸の先端部に螺旋状の板状巻きバネからなる回
転子を配し、該板状巻きバネ方向に挿入可能な針状の検
出端を粘度測定装置下部に配し、前記検出端が挿入長さ
の測定機構および振動検出器を有することを特徴とする
粘度測定装置。4. A rotary viscosity measuring device for rotating a rotor in a liquid and measuring the viscosity from the viscous resistance received by the rotor, wherein a rotor composed of a spiral plate spring is arranged at the tip of a rotary shaft. And a needle-shaped detection end that can be inserted in the direction of the plate-shaped winding spring is arranged below the viscosity measuring device, and the detection end has a mechanism for measuring the insertion length and a vibration detector. .
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP31676595A JPH09159596A (en) | 1995-12-05 | 1995-12-05 | Viscosity measuring method and device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP31676595A JPH09159596A (en) | 1995-12-05 | 1995-12-05 | Viscosity measuring method and device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH09159596A true JPH09159596A (en) | 1997-06-20 |
Family
ID=18080683
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP31676595A Withdrawn JPH09159596A (en) | 1995-12-05 | 1995-12-05 | Viscosity measuring method and device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH09159596A (en) |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003057249A (en) * | 2001-08-21 | 2003-02-26 | Hitachi Ltd | Stirrer and automatic analyzer using the same |
| CN102830041A (en) * | 2012-09-04 | 2012-12-19 | 济南美医林电子仪器有限公司 | Stepping scanning torque measuring device in magnetic-levitation bearing support structure |
| JP2015045642A (en) * | 2008-12-23 | 2015-03-12 | ツェー アー カズィゾ アーゲーCa Casyso Ag | Cartridge device for measuring system for measuring viscoelastic characteristics of sample liquid, corresponding measuring system, and corresponding method |
| US9739789B2 (en) | 2008-12-23 | 2017-08-22 | C A Casyso Ag | Cartridge device for a measuring system for measuring viscoelastic characteristics of a sample liquid, a corresponding measuring system, and a corresponding method |
| US9897618B2 (en) | 2014-09-29 | 2018-02-20 | C A Casyso Gmbh | Blood testing system |
| US10175225B2 (en) | 2014-09-29 | 2019-01-08 | C A Casyso Ag | Blood testing system and method |
| US10288630B2 (en) | 2014-09-29 | 2019-05-14 | C A Casyso Gmbh | Blood testing system and method |
| US10295554B2 (en) | 2015-06-29 | 2019-05-21 | C A Casyso Gmbh | Blood testing system and method |
| US10473674B2 (en) | 2016-08-31 | 2019-11-12 | C A Casyso Gmbh | Controlled blood delivery to mixing chamber of a blood testing cartridge |
| US10539579B2 (en) | 2014-09-29 | 2020-01-21 | C A Casyso Gmbh | Blood testing system and method |
| US10816559B2 (en) | 2014-09-29 | 2020-10-27 | Ca Casyso Ag | Blood testing system and method |
| US10843185B2 (en) | 2017-07-12 | 2020-11-24 | Ca Casyso Gmbh | Autoplatelet cartridge device |
| CN119124932A (en) * | 2024-10-09 | 2024-12-13 | 中国石油大学(华东) | Rotational viscometer suitable for different gas solubility and temperature and pressure and its use method |
-
1995
- 1995-12-05 JP JP31676595A patent/JPH09159596A/en not_active Withdrawn
Cited By (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003057249A (en) * | 2001-08-21 | 2003-02-26 | Hitachi Ltd | Stirrer and automatic analyzer using the same |
| US11892459B2 (en) | 2008-12-23 | 2024-02-06 | C A Casyso Gmbh | Cartridge device for a measuring system for measuring viscoelastic characteristics of a sample liquid, a corresponding measuring system, and a corresponding method |
| US11360106B2 (en) | 2008-12-23 | 2022-06-14 | C A Casyso Gmbh | Cartridge device for a measuring system for measuring viscoelastic characteristics of a sample liquid, a corresponding measuring system, and a corresponding method |
| JP2016218072A (en) * | 2008-12-23 | 2016-12-22 | ツェー アー カズィゾ アーゲーC A Casyso Ag | Cartridge apparatus for measuring system for measuring viscoelastic properties of sample liquid, corresponding measuring system, and corresponding method |
| US9739789B2 (en) | 2008-12-23 | 2017-08-22 | C A Casyso Ag | Cartridge device for a measuring system for measuring viscoelastic characteristics of a sample liquid, a corresponding measuring system, and a corresponding method |
| US12105103B2 (en) | 2008-12-23 | 2024-10-01 | C A Casyso Gmbh | Cartridge device for a measuring system for measuring viscoelastic characteristics of a sample liquid, a corresponding measuring system, and a corresponding method |
| US9915671B2 (en) | 2008-12-23 | 2018-03-13 | C A Casyso Ag | Cartridge device for a measuring system for measuring viscoelastic characteristics of a sample liquid, a corresponding measuring system, and a corresponding method |
| JP2015045642A (en) * | 2008-12-23 | 2015-03-12 | ツェー アー カズィゾ アーゲーCa Casyso Ag | Cartridge device for measuring system for measuring viscoelastic characteristics of sample liquid, corresponding measuring system, and corresponding method |
| US11879899B2 (en) | 2008-12-23 | 2024-01-23 | C A Casyso Gmbh | Cartridge device for a measuring system for measuring viscoelastic characteristics of a sample liquid, a corresponding measuring system, and a corresponding method |
| US12111326B2 (en) | 2008-12-23 | 2024-10-08 | C A Casyso Gmbh | Cartridge device for a measuring system for measuring viscoelastic characteristics of a sample liquid, a corresponding measuring system, and a corresponding method |
| US11768211B2 (en) | 2008-12-23 | 2023-09-26 | C A Casyso Gmbh | Cartridge device for a measuring system for measuring viscoelastic characteristics of a sample liquid, a corresponding measuring system, and a corresponding method |
| US11061038B2 (en) | 2008-12-23 | 2021-07-13 | C A Casyso Gmbh | Cartridge device for a measuring system for measuring viscoelastic characteristics of a sample liquid, a corresponding measuring system, and a corresponding method |
| US10746750B2 (en) | 2008-12-23 | 2020-08-18 | C A Casyso Gmbh | Cartridge device for a measuring system for measuring viscoelastic characteristics of a sample liquid, a corresponding measuring system, and a corresponding method |
| US11131680B2 (en) | 2008-12-23 | 2021-09-28 | C A Casyso Gmbh | Cartridge device for a measuring system for measuring viscoelastic characteristics of a sample liquid, a corresponding measuring system, and a corresponding method |
| US10996230B2 (en) | 2008-12-23 | 2021-05-04 | C A Casyso Gmbh | Cartridge device for a measuring system for measuring viscoelastic characteristics of a sample liquid, a corresponding measuring system, and a corresponding method |
| CN102830041A (en) * | 2012-09-04 | 2012-12-19 | 济南美医林电子仪器有限公司 | Stepping scanning torque measuring device in magnetic-levitation bearing support structure |
| US10175225B2 (en) | 2014-09-29 | 2019-01-08 | C A Casyso Ag | Blood testing system and method |
| US10816559B2 (en) | 2014-09-29 | 2020-10-27 | Ca Casyso Ag | Blood testing system and method |
| US11327069B2 (en) | 2014-09-29 | 2022-05-10 | Ca Casyso Gmbh | Blood testing system and method |
| US10539579B2 (en) | 2014-09-29 | 2020-01-21 | C A Casyso Gmbh | Blood testing system and method |
| US11719688B2 (en) | 2014-09-29 | 2023-08-08 | C A Casyso Gmbh | Blood testing system and method |
| US10288630B2 (en) | 2014-09-29 | 2019-05-14 | C A Casyso Gmbh | Blood testing system and method |
| US12031993B2 (en) | 2014-09-29 | 2024-07-09 | C A Casyso Gmbh | Blood testing system and method |
| US9897618B2 (en) | 2014-09-29 | 2018-02-20 | C A Casyso Gmbh | Blood testing system |
| US11085938B2 (en) | 2015-06-29 | 2021-08-10 | C A Casyso Gmbh | Thromboelastometry blood testing system and accuracy control methods |
| US10295554B2 (en) | 2015-06-29 | 2019-05-21 | C A Casyso Gmbh | Blood testing system and method |
| US12399187B2 (en) | 2016-08-31 | 2025-08-26 | Ca Casyso Gmbh | Controlled blood delivery to mixing chamber of a blood testing cartridge |
| US10473674B2 (en) | 2016-08-31 | 2019-11-12 | C A Casyso Gmbh | Controlled blood delivery to mixing chamber of a blood testing cartridge |
| US10843185B2 (en) | 2017-07-12 | 2020-11-24 | Ca Casyso Gmbh | Autoplatelet cartridge device |
| US11691142B2 (en) | 2017-07-12 | 2023-07-04 | Ca Casyso Gmbh | Autoplatelet cartridge device |
| CN119124932A (en) * | 2024-10-09 | 2024-12-13 | 中国石油大学(华东) | Rotational viscometer suitable for different gas solubility and temperature and pressure and its use method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPH09159596A (en) | Viscosity measuring method and device | |
| US4941346A (en) | Vibration-type rheometer apparatus | |
| US4484468A (en) | Automatic viscometer | |
| US5317908A (en) | High viscosity transducer for vibratory viscometer | |
| US5357783A (en) | Dynamic shear rheometer and method | |
| US9274038B2 (en) | Apparatus and method for constant shear rate and oscillatory rheology measurements | |
| CN102713561B (en) | Rotary viscosimeter | |
| EP1448973B1 (en) | Rheometer with axial resistive force measurement | |
| WO1984004388A1 (en) | Monitoring physical properties of a fluid | |
| US7207210B2 (en) | Multi-decade viscometric or rheologic measurements of a material undergoing state change | |
| US4862735A (en) | Microviscometer | |
| JP2010271234A (en) | Method for measuring surface tension of material using floating droplet | |
| US4596470A (en) | Thermocentrifugometric analysis | |
| RU2155953C2 (en) | Viscosity measurement procedure and viscosimeter | |
| CN103528926B (en) | Fluid viscosity measuring device and method | |
| US3107520A (en) | Method and apparatus for measuring viscosity | |
| Wang et al. | New method of forced-resonance measurement for the concentrated and large-viscous liquid in the low frequency range by torsion resonator | |
| WO2004070359A1 (en) | Yield test method and apparatus | |
| US4537064A (en) | Method and apparatus for measuring shear modulus and viscosity of a monomolecular film | |
| Kulichikhin et al. | Measurement of Viscoelastic Characteristics of Interfacial Layers on Liquid Surfaces Using New Experimental Equipment | |
| Yano | Apparatus for torsional braid analysis by a digital data analyzer | |
| JPH06148055A (en) | Method and instrument for measuring property of fluid in container | |
| Dau et al. | Two probes for the measurement of the complete velocity vector in subsonic flow | |
| JPS61132840A (en) | Viscosity measuring device | |
| JPH03274442A (en) | Measuring apparatus of stress of viscoelastic body |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20030304 |