JPH09150932A - Screw conveyor blade - Google Patents
Screw conveyor bladeInfo
- Publication number
- JPH09150932A JPH09150932A JP33808195A JP33808195A JPH09150932A JP H09150932 A JPH09150932 A JP H09150932A JP 33808195 A JP33808195 A JP 33808195A JP 33808195 A JP33808195 A JP 33808195A JP H09150932 A JPH09150932 A JP H09150932A
- Authority
- JP
- Japan
- Prior art keywords
- cemented carbide
- resistant material
- screw conveyor
- wear
- blade
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 claims abstract description 98
- 238000003466 welding Methods 0.000 claims abstract description 30
- 238000005304 joining Methods 0.000 claims abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 239000011230 binding agent Substances 0.000 claims description 9
- 239000000956 alloy Substances 0.000 abstract description 4
- 229910045601 alloy Inorganic materials 0.000 abstract description 3
- 238000005245 sintering Methods 0.000 abstract description 3
- 230000008878 coupling Effects 0.000 abstract 4
- 238000010168 coupling process Methods 0.000 abstract 4
- 238000005859 coupling reaction Methods 0.000 abstract 4
- 238000000034 method Methods 0.000 description 26
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 238000005299 abrasion Methods 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910001347 Stellite Inorganic materials 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- AHICWQREWHDHHF-UHFFFAOYSA-N chromium;cobalt;iron;manganese;methane;molybdenum;nickel;silicon;tungsten Chemical compound C.[Si].[Cr].[Mn].[Fe].[Co].[Ni].[Mo].[W] AHICWQREWHDHHF-UHFFFAOYSA-N 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Screw Conveyors (AREA)
- Centrifugal Separators (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、摩耗性の高い粉体
やスラリーの輸送に使用されるスクリューコンベア羽根
に関し、詳しくは、スクリューコンベア羽根の先端部に
固着する耐摩耗材及びその固着状態に関するものであ
る。また、本発明に係わるスクリューコンベア羽根は、
特にデカンタ型遠心分離機のスクリューコンベアとして
好適なものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a screw conveyor blade used for transporting highly abrasive powder or slurry, and more particularly, to a wear resistant material fixed to the tip of the screw conveyor blade and its fixed state. Is. Further, the screw conveyor blade according to the present invention,
It is particularly suitable as a screw conveyor for a decanter type centrifugal separator.
【0002】[0002]
【従来の技術】従来、この種のものにあっては、下記の
ようなものになっている。スクリューコンベア羽根(以
下、羽根とする)の回転により物質を移動させる物質移
動装置においては、羽根、特にその先端部では、摩耗性
の高い物質が高い相対速度をもって移動するため、キャ
ビテーションを伴う激しい摩耗が発生する。このため、
羽根先端部の耐摩耗性を向上させる目的から下記の2方
法で固着処理されている。 第1の方法〜羽根先端部にステンレス鋼や鋼材より耐摩
耗性の優れたコバルト系合金であるステライトや金属に
炭化タングステンを分散させた自溶性合金材などが溶射
や肉盛法により固着されている。第2の方法〜羽根先端
部の摩耗しやすい部分に、耐摩耗性の優れた、予め成
形、焼結された超硬合金やセラミック系耐摩耗材を直接
または間接に固着されている。 第2のA方法〜超硬合金中の金属結合相量を15%以上
まで増加すると、ステンレス鋼などへの直接溶接ができ
る。実公昭62−31139号公報には、このような超
硬合金系耐摩耗材を羽根先端に直接溶接して使用する方
法が記載されている。 第2のB方法〜耐摩耗材を羽根先端部へ間接的に固着す
る方法として、多くの試みがなされてきている。特公昭
51−41707号公報や特公平3−127643号公
報には、耐摩耗材を、まず取付部材としての裏当て金属
にろー付け法や接着剤による接着、あるいは、ネジ止め
法により固定し、次にこれを羽根先端部へ溶接する方法
が記述されている。また、特開平6−63447号公報
には、取付をより確実にするため、裏当て金属の耐摩耗
材に当接する面の下部に凹部を、そして、耐摩耗材側に
はその凹部に係合する凸部を設け、両者を係合し接着剤
を用いて固定し、これを羽根先端へ固着する方法が記述
されている。さらに、特公昭59−15032号公報に
は、裏当て金属の耐摩耗材の当接する面に、遠心力の働
く方法に対し、直角となるように蟻溝型の係合部を設
け、この蟻溝に耐摩耗材にも設けた係合部を挿入係合さ
せる方法が提案されている。2. Description of the Related Art Heretofore, this type is as follows. In a mass transfer device that moves a material by rotating a screw conveyor blade (hereinafter referred to as a blade), the blade, especially the tip of the blade, moves a highly abradable material at a high relative speed, which causes severe wear accompanied by cavitation. Occurs. For this reason,
For the purpose of improving the wear resistance of the tip of the blade, it is fixed by the following two methods. First method: Stellite, which is a cobalt-based alloy that has better wear resistance than stainless steel and steel materials, and self-fluxing alloy material in which tungsten carbide is dispersed in metal are fixed to the tip of the blade by thermal spraying or overlaying. There is. Second method-A preformed and sintered cemented carbide or ceramic-based wear resistant material having excellent wear resistance is directly or indirectly fixed to the wear-prone portion of the blade. Second method A-Increasing the amount of metallic binder phase in the cemented carbide to 15% or more enables direct welding to stainless steel or the like. Japanese Utility Model Publication No. 62-31139 describes a method in which such a cemented carbide-based wear-resistant material is directly welded to the blade tip for use. Second method B-Many attempts have been made as a method of indirectly fixing the wear resistant material to the blade tip portion. In Japanese Examined Patent Publication No. 51-41707 and Japanese Examined Patent Publication No. 3-127643, an abrasion resistant material is first fixed to a backing metal as a mounting member by a gluing method, an adhesive, or a screwing method. Next, a method of welding this to the tip of the blade is described. Further, in Japanese Patent Laid-Open No. 6-63447, in order to make the mounting more reliable, a concave portion is formed in the lower portion of the surface of the backing metal that abuts against the abrasion resistant material, and a convex portion that engages with the concave portion on the abrasion resistant material side. There is described a method of providing a portion, engaging both of them, fixing them with an adhesive, and fixing this to the tip of the blade. Further, in Japanese Patent Publication No. 59-15032, a dovetail-shaped engaging portion is provided on the surface of the backing metal against which the wear-resistant material abuts so as to be perpendicular to the method in which centrifugal force acts. There has been proposed a method of inserting and engaging an engaging portion also provided on the wear resistant material.
【0003】[0003]
【発明が解決しようとする課題】上述従来の技術につい
ては下記のような問題点を指摘することができる。第1
の方法〜被覆厚みが増すと残留応力が大きくなり、その
結果、被覆材に割れが発生したり、基材との接合強度が
著しく低下してしまうという問題があった。また、これ
ら金属系ではその耐食性にも問題があった。 第2のA方法〜この種の超硬合金では、溶接性を得るた
めに超硬合金としての本来の優れた耐摩耗性が著しく損
なわれており、また、高価な超硬合金を用いる本来の目
的が達成できないという問題があった。 第2のB方法〜接着剤を用いた固定方法では、接着剤自
体の耐熱性が劣るという問題のほか、接着力の経時劣
化、衝撃による剥げ落ちという問題があった。また、ネ
ジによる固定方法では、衝撃による耐摩耗材の緩みが起
き、動バランスを崩す原因になったり、耐摩耗材自体が
抜け落ちるという問題があった。また、この方法では加
工箇所が多く、コスト高になってしまう。一方、ろー付
けによる方法では、超硬合金系耐摩耗材と、裏当て金属
として主に利用されるステンレス鋼との熱膨張差が余り
に大きすぎるため、ろー付け後双方に大きな残留応力が
発生し、そのために超硬合金が割れたり、耐摩耗材が剥
れるという問題があった。また、ろー材の耐食性は劣る
ものであり、腐食環境では使用できないという問題があ
った。特に、デカンタ型遠心分離機のスクリューコンベ
アについては、スクリューが高速回転するため、その時
の動バランスが悪いと騒音発生のほか、各種構成部品の
欠損や寿命短縮を招く。従って、羽根先端部への耐摩耗
材取付け後の動バランス調整は、事実上、特に重要であ
る。しかし、上記のような従来の耐摩耗材の固着方法で
は、その固定をより確実なものとするために取付け部品
の点数は増加し、耐摩耗材や裏当て金属の形状は複雑に
なる傾向にある。このため、使用する個々の部品の形
状、重量の管理は厳しくなり、結果的に部品コストの上
昇を招きながら、動バランス調整にも多大な時間を要
し、耐摩耗材取付けのトータルコストを著しく押し上げ
ており、このコスト増加が超硬合金あるいはセラミック
系耐摩耗材の固着されたスクリューコンベア羽根の一層
の用途拡大を阻害していた。本発明は、以上のような事
情に鑑みなされたもので、ステンレス鋼や鋼製のスクリ
ューコンベア羽根の先端に直接溶接できる性質を兼ね備
えた耐摩耗性の優れた超硬合金系耐摩耗材を、その溶接
可能な部分を用いて直接に溶接することにより、超硬合
金のもつ優れた耐摩耗性を維持しながら、強度的にも信
頼性の高い、高品位のスクリューコンベア羽根を提供し
ようとするものである。The following problems can be pointed out regarding the above-mentioned conventional techniques. First
Method-When the coating thickness is increased, the residual stress becomes large, and as a result, there are problems that the coating material is cracked and the joint strength with the base material is significantly reduced. Further, these metal systems also have a problem in their corrosion resistance. Second method A-This type of cemented carbide has significantly impaired the original excellent wear resistance of the cemented carbide in order to obtain weldability, and the original cemented carbide using an expensive cemented carbide is used. There was a problem that the purpose could not be achieved. In the second method B to the fixing method using an adhesive, in addition to the problem that the heat resistance of the adhesive itself is inferior, there is a problem that the adhesive strength deteriorates with time and the adhesive peels off. Further, in the fixing method using screws, there is a problem in that the abrasion resistant material loosens due to impact, which may cause a loss of dynamic balance, or the abrasion resistant material itself may fall out. In addition, this method has many processing points, resulting in high cost. On the other hand, in the method by roasting, the difference in thermal expansion between the cemented carbide wear-resistant material and the stainless steel mainly used as the backing metal is too large, so large residual stress occurs after both roasting. However, there is a problem that the cemented carbide is cracked and the wear resistant material is peeled off. In addition, there is a problem that the filter material has poor corrosion resistance and cannot be used in a corrosive environment. Particularly, in the screw conveyor of the decanter type centrifugal separator, since the screw rotates at a high speed, if the dynamic balance at that time is not good, noise is generated, and various component parts are lost and the life is shortened. Therefore, the dynamic balance adjustment after the wear resistant material is attached to the blade tips is of practical importance. However, in the conventional method of fixing the wear resistant material as described above, the number of attachment parts is increased in order to secure the fixation more reliably, and the shapes of the wear resistant material and the backing metal tend to be complicated. As a result, the shape and weight of each individual part to be used are strictly controlled, resulting in an increase in part cost, and a great deal of time is required for dynamic balance adjustment, which significantly increases the total cost for mounting wear-resistant materials. However, this increase in cost hinders further expansion of the application of screw conveyor blades to which cemented carbide or ceramic-based wear resistant material is fixed. The present invention has been made in view of the above circumstances, a cemented carbide-based wear resistant material having excellent wear resistance, which has the property of being directly welded to the tip of a stainless steel or steel screw conveyor blade, By directly welding using a weldable part, it is intended to provide a high-quality screw conveyor blade that is highly reliable in strength while maintaining the excellent wear resistance of cemented carbide. Is.
【0004】[0004]
【課題を解決するための手段】本発明者の1人は、ステ
ンレス鋼や鋼へ直接溶接できる性質と優れた耐摩耗性を
兼ね備えた超硬合金系耐摩耗材とその製造方法を見出
し、特願平6−113696号の出願をなすに至った。
この方法によれば、金属結合相量15重量%以上、40
重量%未満によりなる超硬合金系溶接可能層を基材とし
て持ち、金属結合相量2重量%以上、10重量%以下よ
りなる耐摩耗層を持つ超硬合金系耐摩耗材であって、こ
れら2層が直接焼結結合、または、中間層を用いた間接
接合により、一体に焼結接合されている超硬合金系耐摩
耗材を得ることができる。本発明は、この発明をもとに
発明されたものである。すなわち、スクリューコンベア
羽根の先端部に耐摩耗材が固着されているスクリューコ
ンベア羽根において、該耐摩耗材が扁平状の超硬合金系
耐摩耗材であって、物質移動を司る側の作用面の少なく
とも一部が金属結合相量2〜10重量%の超硬合金系耐
摩耗層よりなり、その裏側の面の少なくとも一部が金属
結合相量15〜40重量%の溶接可能な超硬合金系溶接
可能層よりなり、該2層が直接焼結接合及び/または該
2層の間に中間層を介した間接接合により一体に接合さ
れた構造を持っており、該超硬合金系溶接可能層を用い
てスクリューコンベア羽根先端部へ螺旋状に一連に直接
溶接により固着されているスクリューコンベア羽根を提
供するものである。Means for Solving the Problems One of the inventors of the present invention found a cemented carbide-based wear-resistant material having a property of being directly welded to stainless steel or steel and excellent wear resistance, and a method for producing the same, and filed a patent application. He came to file an application for Hei 6-113696.
According to this method, the amount of the metallic binder phase is 15% by weight or more and 40% or more.
A cemented carbide-based wear-resistant material having a cemented carbide-based weldable layer of less than 1% by weight as a base material and a wear-resistant layer of 2 to 10% by weight of a metal binder phase. It is possible to obtain a cemented carbide-based wear-resistant material in which the layers are integrally sintered and joined by direct sinter bonding or indirect joining using an intermediate layer. The present invention was invented based on this invention. That is, in the screw conveyor blade in which the wear-resistant material is fixed to the tip of the screw conveyor blade, the wear-resistant material is a flat cemented carbide-based wear-resistant material, at least a part of the working surface on the side that controls mass transfer Is a cemented carbide-based wear-resistant layer having a metal binder phase content of 2 to 10% by weight, and at least a part of its back surface is a weldable cemented carbide-based weldable layer having a metal binder phase content of 15 to 40% by weight. And has a structure in which the two layers are integrally bonded by direct sintering bonding and / or indirect bonding between the two layers with an intermediate layer interposed therebetween. The present invention provides a screw conveyor blade which is spirally and directly fixed to a tip portion of the screw conveyor blade by welding.
【0005】[0005]
【実施例】実施例について図面を参照して説明する。図
1,図2を参照して、扁平状の超硬合金系耐摩耗材1
は、耐摩耗層1aと溶接可能層1bの直接焼結接合で構
成されている。図3は中間層1cを介してそれら耐摩耗
層1aと溶接可能層1bの2層が焼結接合された超硬合
金系耐摩耗材1を示している。超硬合金系耐摩耗材1
を、耐摩耗層1aと溶接可能層1bの直接接合による
か、あるいは中間層1cを用いた間接接合で構成するか
は、基本的には、耐摩耗層1aと溶接可能層1bを構成
する超硬合金中の金属結合相の量、及びその量の差によ
りいずれかの構成にすることができる。この場合の一応
の目安として、両相の金属結合相量の差が15%未満の
組合わせに対しては直接接合により、また、これ以上の
差の場合には中間層1cを用いることにより、割れや変
形のない超硬合金系耐摩耗材1を得ることができる。し
かし、本発明に係る超硬合金系耐摩耗材1では、その焼
結後さらに機械加工や溶接といった局所的な機械的、熱
的履歴が加わり、かつ、実際の使用中にも衝撃負荷がか
かるため、上記両相での金属結合相量の差が8%以上で
は中間層1cを介する焼結接合が望ましい。また、ここ
での中間層1cの厚みは、超硬合金系耐摩耗材1の軽量
化を考慮すると薄い方が好ましいが、応力緩和の目的か
らは最低0.5mm、好ましくは1mm以上必要であっ
た。図4,図5を参照して、超硬合金系耐摩耗材1は、
その溶接可能層の部分を用いてスクリューコンベア本体
2の羽根先端部3へ直接溶接されている。図4は羽根先
端部を、物質を移動させる作用面5側から見た正面図で
あり、図5はその裏面から見たものである。超硬合金系
耐摩耗材1は、その溶接可能層1bを用いて、超硬合金
系耐摩耗材の根元部分での根元部溶接4a、羽根先端円
弧部分での円弧部溶接4bの2カ所からなる溶接部4を
もって溶接固着されている。この取付け方法では、例え
ば、図6,図7,図8のような縦断面形状をもつ超硬合
金系耐摩耗材1を用いることもできる。図6は溶接可能
層1bが裏面(作用面の反対側の面)に一様厚みで焼結
されている超硬合金系耐摩耗材1の例であり、図7は耐
摩耗層1aの一部が裏面まで達した場合であり、図8は
耐摩耗層1aが裏面の一部まで達し、かつ、溶接可能層
1bの一部が作用面まで達している例を示す。図6のよ
うな断面構造を持つ超硬合金系耐摩耗材は作用面全体に
わたって表面から摩耗が進行する用途に適し、図7にあ
る超硬合金系耐摩耗材は、作用面及びその先端面から摩
耗が進行するときに用いることができる。図8の超硬合
金系耐摩耗材は作用面表面より、むしろその先端部の摩
耗が著しい場合に適する。また、スクリューコンベア羽
根先端部3への超硬合金系耐摩耗材1の取付け方法とし
て図9のようにもすることができる。図10〜図12は
この方法を用いることのできる超硬合金系耐摩耗材1を
示したものである。この方法では超硬合金系耐摩耗材の
扇状の根元部6に一段と細くなった部分7を設け、この
細くなった部分の溶接可能層1b部分を用いて、側面部
溶接4cにより、羽根先端部3へ直接溶接する。ここで
も羽根先端部の摩耗進行を考慮して、図10〜図12の
断面形状を持つ超硬合金系耐摩耗材を適宜選択でき、ま
た、溶接に用いる超硬合金系耐摩耗材1の根元部6の細
くなった部分7の形状として、図13,図14のような
正面略上向きコ字状、あるいは略V字状の形状を採用
し、溶接部を広く取ることもできる。超硬合金系耐摩耗
材1の厚みとその形状は、当該超硬合金系耐摩耗材1の
作用面5にかかる力の大きさと分布、羽根先端部3から
の突き出し長さ、さらに、製造上の制約などの種々の因
子を考慮して最適条件のものを用いる。溶接可能層1b
は、基本的には溶接に必要な厚みと面積が確保できれ
ば、薄いもの、狭いものでも用いることができる。ま
た、耐摩耗層1a、あるいは中間層1cとの境界は連
続,不連続を問わず平面状や曲面状のものを用いること
ができる。さらに、羽根先端部3からの超硬合金系耐摩
耗材1の突き出し長さは、その厚み、移送面にかかる力
の大きさと分布、加えて一定補修期間内での摩耗進行量
などを考慮して、できるだけ短くする方が羽根先端部3
が補強材となり、強度的に安定し望ましい。さらに、図
15に示すような超硬合金系耐摩耗材1の羽根先端部3
からの出っ張りをなくし、超硬合金系耐摩耗材の先端8
を羽根先端部3の円弧に合わせて、その断面が溶接可能
層1bを用いて、側面部溶接4cにより、または、側面
部溶接4cと根元部溶接4aにより、羽根先端部3に固
着することもできる。これは超硬合金系耐摩耗材1の作
用面側から摩耗が進行する場合に利用できる。この場
合、羽根先端部3は超硬合金系耐摩耗材1の補強裏当て
材としても機能し、好ましい。この取付け方法では溶接
が作用面側からのみでよく、取付けは容易であり、手間
も省けて経済的である。ここでは、必要に応じて、側面
部溶接4cと円弧部溶接4b、側面部溶接4cと根元部
溶接4aのような組み合わせにより超硬合金系耐摩耗材
1を羽根先端部3に溶接固着することもできる。超硬合
金系耐摩耗材1のステンレス鋼などへの直接溶接には、
ステンレス系,ニッケル系,ニッケル合金系などの溶接
棒を用いたアーク溶接が利用でき、溶接強度的にはニッ
ケル系やインコネル系の溶接棒を用いたTIGやMIG
溶接が好ましい。図16を参照して、超硬合金系耐摩耗
材1の、羽根先端部への取付けを容易にするため、超硬
合金系耐摩耗材の溶接可能層1b部分に羽根先端形状に
あった段差9を設け、固定することもできる。この方法
においても、スクリューコンベアの用途に応じて図17
〜図19にあるような断面形状を持つ超硬合金系耐摩耗
材を直接溶接して用いることができる。図20を参照し
て、超硬合金系耐摩耗材の軽量化のためには、全体を薄
くすると共に、先端部を薄くした超硬合金系耐摩耗材1
を用いることもできる。上記のように、本発明によれ
ば、羽根先端部への耐摩耗材の固着に必要な部品は、一
体に焼結された扁平な超硬合金系耐摩耗材一品のみであ
り、取付け後の動バランスを考慮した部品の管理は最小
限でよく、その取付けも極めて容易である。このため、
事実上特に重要な動バランスも最短時間で調整を完了で
きる。An embodiment will be described with reference to the drawings. Referring to FIGS. 1 and 2, a flat cemented carbide wear-resistant material 1
Is constituted by direct sinter joining of the wear resistant layer 1a and the weldable layer 1b. FIG. 3 shows a cemented carbide-based wear resistant material 1 in which two layers of the wear resistant layer 1a and the weldable layer 1b are sinter-bonded via the intermediate layer 1c. Cemented Carbide Wear Resistant Material 1
Is basically determined by directly joining the wear resistant layer 1a and the weldable layer 1b or by indirectly joining the intermediate layer 1c. Either structure can be adopted depending on the amount of the metallic binder phase in the hard alloy and the difference in the amount. In this case, a tentative guideline is to use direct bonding for a combination in which the difference in the amount of metallic bonding phase between the two phases is less than 15%, and to use the intermediate layer 1c for a difference of more than 15%. It is possible to obtain the cemented carbide-based wear resistant material 1 without cracking or deformation. However, in the cemented carbide-based wear resistant material 1 according to the present invention, local mechanical and thermal history such as machining and welding is added after the sintering, and an impact load is applied during actual use. When the difference in the amount of the metallic binder phase between the above two phases is 8% or more, the sinter bonding via the intermediate layer 1c is desirable. Further, the thickness of the intermediate layer 1c is preferably thin in consideration of the weight reduction of the cemented carbide-based wear resistant material 1, but it is required to be at least 0.5 mm, preferably 1 mm or more for the purpose of stress relaxation. . Referring to FIGS. 4 and 5, the cemented carbide-based wear resistant material 1 is
The portion of the weldable layer is directly welded to the blade tip portion 3 of the screw conveyor main body 2. FIG. 4 is a front view of the tip portion of the blade viewed from the side of the action surface 5 for moving the substance, and FIG. 5 is a view viewed from the back surface thereof. The cemented carbide-based wear-resistant material 1 is welded at two locations, using the weldable layer 1b, root welding 4a at the root of the cemented carbide-based wear-resistant material and arc-shaped welding 4b at the blade tip arc portion. The portion 4 is welded and fixed. In this mounting method, for example, the cemented carbide-based wear-resistant material 1 having a vertical cross-sectional shape as shown in FIGS. 6, 7, and 8 can also be used. FIG. 6 shows an example of a cemented carbide-based wear resistant material 1 in which the weldable layer 1b is sintered on the back surface (surface opposite to the working surface) with a uniform thickness, and FIG. 7 shows a part of the wear resistant layer 1a. FIG. 8 shows an example in which the wear resistant layer 1a reaches a part of the back surface and the weldable layer 1b reaches a working surface. A cemented carbide-based wear resistant material having a cross-sectional structure as shown in FIG. 6 is suitable for applications in which wear progresses from the surface over the entire working surface, and a cemented carbide-based wear resistant material in FIG. 7 wears from the working surface and its tip surface. Can be used when The cemented carbide-based wear-resistant material of FIG. 8 is suitable when the wear of the tip portion of the working surface is rather remarkable, rather than the surface of the working surface. Further, as a method of attaching the cemented carbide-based wear resistant material 1 to the tip portion 3 of the screw conveyor blade, the method as shown in FIG. 9 can be used. 10 to 12 show a cemented carbide-based wear resistant material 1 which can use this method. In this method, a further narrowed portion 7 is provided on the fan-shaped root portion 6 of the cemented carbide-based wear resistant material, and the blade tip portion 3 is formed by the side surface welding 4c using the weldable layer 1b portion of this thinned portion. Weld directly to. Here also, considering the progress of wear of the blade tip, a cemented carbide-based wear-resistant material having the cross-sectional shape shown in FIGS. 10 to 12 can be appropriately selected, and the root portion 6 of the cemented carbide-based wear-resistant material 1 used for welding can be selected. As the shape of the narrowed portion 7, a substantially upward U-shaped front shape or a substantially V-shaped shape as shown in FIGS. 13 and 14 can be adopted to widen the welded portion. The thickness and shape of the cemented carbide-based wear-resistant material 1 are such that the magnitude and distribution of the force applied to the working surface 5 of the cemented carbide-based wear-resistant material 1, the length of protrusion from the blade tip portion 3, and manufacturing constraints. The optimum condition is used in consideration of various factors such as. Weldable layer 1b
Basically, as long as the thickness and area required for welding can be secured, thin or narrow one can be used. The boundary with the wear resistant layer 1a or the intermediate layer 1c may be flat or curved regardless of whether it is continuous or discontinuous. Further, the protruding length of the cemented carbide-based wear resistant material 1 from the blade tip portion 3 should be considered in consideration of its thickness, the magnitude and distribution of the force applied to the transfer surface, and the amount of progress of wear within a fixed repair period. , The blade tip 3 should be as short as possible
Is a reinforcing material, which is desirable because it is stable in strength. Further, the blade tip portion 3 of the cemented carbide-based wear resistant material 1 as shown in FIG.
Tip of cemented carbide-based wear-resistant material 8
Can be fixed to the blade tip 3 by using the weldable layer 1b, the side surface welding 4c, or the side surface welding 4c and the root portion welding 4a according to the arc of the blade tip 3. it can. This can be utilized when wear progresses from the working surface side of the cemented carbide-based wear resistant material 1. In this case, the blade tip portion 3 also functions as a reinforcing backing material for the cemented carbide-based wear-resistant material 1, which is preferable. With this mounting method, welding is required only from the working surface side, the mounting is easy, labor is saved, and it is economical. Here, if necessary, the cemented carbide-based wear-resistant material 1 may be welded and fixed to the blade tip portion 3 by a combination such as side surface welding 4c and arc portion welding 4b, side surface welding 4c and root portion welding 4a. it can. For direct welding of cemented carbide wear resistant material 1 to stainless steel,
It is possible to use arc welding using welding rods such as stainless steel type, nickel type and nickel alloy type, and for welding strength, TIG and MIG using nickel type and Inconel type welding rods.
Welding is preferred. Referring to FIG. 16, in order to facilitate the attachment of the cemented carbide-based wear resistant material 1 to the blade tip portion, a step 9 having a blade tip shape is formed in the weldable layer 1b of the cemented carbide based wear resistant material. It can be provided and fixed. Also in this method, depending on the use of the screw conveyor, as shown in FIG.
~ A cemented carbide-based wear-resistant material having a cross-sectional shape as shown in Fig. 19 can be directly welded and used. Referring to FIG. 20, in order to reduce the weight of the cemented carbide-based wear-resistant material, the cemented carbide-based wear-resistant material 1 is thinned as a whole and the tip portion is thinned.
Can also be used. As described above, according to the present invention, the component necessary for fixing the wear-resistant material to the blade tip is only one flat cemented carbide-based wear-resistant material that is integrally sintered, and has a dynamic balance after mounting. The management of the parts considering the above is minimal, and the mounting thereof is extremely easy. For this reason,
In fact, particularly important dynamic balances can be adjusted in the shortest time.
【0006】[0006]
【発明の効果】以上のように本発明によれば、溶接性を
兼ね備えた超硬合金系耐摩耗材をスクリューコンベア先
端部に直接溶接することにより、超硬合金本来の優れた
耐摩耗性を維持しながら、羽根先端部への固着強度の向
上を達成し、耐摩耗材取付けのトータルコストの削減に
も大きく寄与することができる。また、本発明によれ
ば、焼結結合による一体の超硬合金系耐摩耗材が羽根先
端部へ直接溶接固定されており、耐熱性、耐衝撃性、耐
食性に優れ、トータルコストの低減と合わせ超硬合金系
耐摩耗材を取付けたスクリューコンベアの用途拡大に大
きく寄与するものと期待できる。As described above, according to the present invention, by directly welding a cemented carbide-based wear-resistant material having weldability to the tip of the screw conveyor, the excellent wear resistance of cemented carbide is maintained. However, it is possible to improve the adhesion strength to the tip of the blade and greatly contribute to the reduction of the total cost of attaching the wear resistant material. Further, according to the present invention, an integral cemented carbide-based wear-resistant material by sinter bonding is directly welded and fixed to the tip of the blade, which is excellent in heat resistance, impact resistance, and corrosion resistance, combined with a reduction in total cost. It can be expected to greatly contribute to the expansion of applications of screw conveyors equipped with hard alloy wear resistant materials.
【図面の簡単な説明】[Brief description of the drawings]
【図1】扁平状の超硬合金系耐摩耗材の正面図である。FIG. 1 is a front view of a flat cemented carbide-based wear-resistant material.
【図2】A−A線拡大断面図である。FIG. 2 is an enlarged sectional view taken along line AA.
【図3】耐摩耗層と溶接可能層とが中間層を介した焼結
接合でできている超硬合金系耐摩耗材の縦断面図であ
る。FIG. 3 is a vertical cross-sectional view of a cemented carbide-based wear-resistant material in which a wear-resistant layer and a weldable layer are sintered and joined via an intermediate layer.
【図4】スクリューコンベア羽根先端部への超硬合金系
耐摩耗材の取付け状態を示す要部拡大正面図である。FIG. 4 is an enlarged front view of essential parts showing a state in which a cemented carbide-based wear-resistant material is attached to the tip of the screw conveyor blade.
【図5】同上の背面図である。FIG. 5 is a rear view of the same.
【図6】B−B線拡大断面図である。FIG. 6 is an enlarged sectional view taken along line BB.
【図7】スクリューコンベア羽根先端部への超硬合金系
耐摩耗材の取付け状態における他の実施例を示す縦断面
図である。FIG. 7 is a vertical cross-sectional view showing another embodiment in which the cemented carbide-based wear resistant material is attached to the tip of the screw conveyor blade.
【図8】スクリューコンベア羽根先端部への超硬合金系
耐摩耗材の取付け状態における他の実施例を示す縦断面
図である。FIG. 8 is a vertical cross-sectional view showing another embodiment in which the cemented carbide-based wear resistant material is attached to the tip of the screw conveyor blade.
【図9】スクリューコンベア羽根先端部への超硬合金系
耐摩耗材の取付け状態における他の実施例を示す要部拡
大正面図である。FIG. 9 is an enlarged front view of essential parts showing another embodiment in which a cemented carbide-based wear resistant material is attached to the tip of the screw conveyor blade.
【図10】C−C線拡大断面図である。FIG. 10 is an enlarged sectional view taken along line CC.
【図11】スクリューコンベア羽根先端部への超硬合金
系耐摩耗材の取付け状態における他の実施例を示す縦断
面図である。FIG. 11 is a vertical cross-sectional view showing another embodiment in which the cemented carbide-based wear resistant material is attached to the tip of the screw conveyor blade.
【図12】スクリューコンベア羽根先端部への超硬合金
系耐摩耗材の取付け状態における他の実施例を示す縦断
面図である。FIG. 12 is a vertical cross-sectional view showing another embodiment in which the cemented carbide-based wear resistant material is attached to the tip of the screw conveyor blade.
【図13】超硬合金系耐摩耗材における根元部の他の実
施例を示す正面図である。FIG. 13 is a front view showing another embodiment of the root portion of the cemented carbide-based wear resistant material.
【図14】超硬合金系耐摩耗材における根元部の他の実
施例を示す正面図である。FIG. 14 is a front view showing another embodiment of the root portion of the cemented carbide-based wear resistant material.
【図15】スクリューコンベア羽根先端部への超硬合金
系耐摩耗材の取付け状態における他の実施例を示す縦断
面図である。FIG. 15 is a vertical cross-sectional view showing another embodiment in which the cemented carbide-based wear resistant material is attached to the tip of the screw conveyor blade.
【図16】スクリューコンベア羽根先端部への位置決め
用段差を持つ超硬合金系耐摩耗材の取付け状態を示す縦
断面図である。FIG. 16 is a vertical cross-sectional view showing a mounting state of a cemented carbide-based wear-resistant material having a positioning step on the tip of the screw conveyor blade.
【図17】スクリューコンベア羽根先端部への位置決め
用段差を持つ超硬合金系耐摩耗材の取付け状態における
他の実施例を示す縦断面図である。FIG. 17 is a vertical cross-sectional view showing another embodiment in a state where a cemented carbide-based wear-resistant material having a positioning step on the tip of the screw conveyor blade is attached.
【図18】スクリューコンベア羽根先端部への位置決め
用段差を持つ超硬合金系耐摩耗材の取付け状態における
他の実施例を示す縦断面図である。FIG. 18 is a vertical cross-sectional view showing another embodiment in a state in which a cemented carbide-based wear resistant material having a positioning step on the tip of the screw conveyor blade is attached.
【図19】スクリューコンベア羽根先端部への位置決め
用段差を持つ超硬合金系耐摩耗材の取付け状態における
他の実施例を示す縦断面図である。FIG. 19 is a vertical cross-sectional view showing another embodiment in which a cemented carbide-based wear-resistant material having a step for positioning to the tip of the screw conveyor blade is attached.
【図20】超硬合金系耐摩耗材の他の実施例の縦断面図
である。FIG. 20 is a vertical cross-sectional view of another embodiment of a cemented carbide-based wear resistant material.
1 超硬合金系耐摩耗材 1a 耐摩耗層 1b 溶接可能層 1c 中間層 2 スクリューコンベア本体 3 羽根先端部 4 溶接部 4a 根元部溶接 4b 円弧部溶接 4c 側面部溶接 5 作用面 6 超硬合金系耐摩耗材の根元部 7 根元部の細くなった部分 8 超硬合金系耐摩耗材の先端 9 段差 1 Cemented Carbide Wear-Resistant Material 1a Wear-Resistant Layer 1b Weldable Layer 1c Intermediate Layer 2 Screw Conveyor Main Body 3 Blade Tip 4 Welding 4a Root Welding 4b Arc Welding 4c Side Welding 5 Working Surface 6 Cemented Carbide Wearing Root of wear material 7 Thin part of root 8 Tip of cemented carbide wear resistant material 9 Step
───────────────────────────────────────────────────── フロントページの続き (72)発明者 安藤 秀夫 北海道赤平市字赤平594番地の1 住友石 炭鉱業株式会社北海道技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideo Ando 1 594 Akahira, Akabira, Hokkaido Sumitomoishi Coal Mining Co., Ltd.
Claims (1)
耗材の固着されているスクリューコンベア羽根におい
て、該耐摩耗材が、扁平状の超硬合金系耐摩耗材であっ
て、物質移動を司る側の作用面の少なくとも一部が金属
結合相量2〜10重量%の超硬合金系耐摩耗層よりな
り、その裏側の面の少なくとも一部が金属結合相量15
〜40重量%の溶接可能な超硬合金系溶接可能層よりな
り、該2層が直接焼結接合及び/または該2層の間に中
間層を介した間接接合により一体に接合された構造を持
っており、該超硬合金系溶接可能層を用いてスクリュー
コンベア羽根先端部へ螺旋状に一連に直接溶接により固
着されていることを特徴とするスクリューコンベア羽
根。1. A screw conveyor blade in which a wear-resistant material is fixed to the tip of the screw conveyor blade, wherein the wear-resistant material is a flat cemented carbide-based wear-resistant material, and the action surface on the side that controls mass transfer. Of the cemented carbide-based wear resistant layer having a metal binder phase content of 2 to 10% by weight, and at least a part of the back surface thereof has a metal binder phase content of 15%.
A structure composed of a weldable cemented carbide based weldable layer of ˜40% by weight, the two layers being integrally joined by direct sinter joining and / or indirect joining with an intermediate layer between the two layers. A screw conveyor blade, which is fixed to the tip end portion of the screw conveyor blade in a spiral form by direct welding using the cemented carbide-based weldable layer.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP33808195A JPH09150932A (en) | 1995-11-30 | 1995-11-30 | Screw conveyor blade |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP33808195A JPH09150932A (en) | 1995-11-30 | 1995-11-30 | Screw conveyor blade |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH09150932A true JPH09150932A (en) | 1997-06-10 |
Family
ID=18314734
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP33808195A Pending JPH09150932A (en) | 1995-11-30 | 1995-11-30 | Screw conveyor blade |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH09150932A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6634781B2 (en) | 2001-01-10 | 2003-10-21 | Saint Gobain Industrial Ceramics, Inc. | Wear resistant extruder screw |
| EP1757885A3 (en) * | 2001-10-25 | 2007-03-14 | Kabushiki Kaisha Kobe Seiko Sho | Screw for discharging reduced iron |
| CN102371215A (en) * | 2010-08-20 | 2012-03-14 | 上海市离心机械研究所有限公司 | Edge protective tile structure for helical blades of centrifuge |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5511133A (en) * | 1978-07-10 | 1980-01-25 | Ishikawajima Harima Heavy Ind Co Ltd | Abrasion resistant member made of sintered alloy |
| JPH07300375A (en) * | 1994-04-28 | 1995-11-14 | Sumitomo Coal Mining Co Ltd | Cemented carbide abrasion-resistant material and method for producing the same |
-
1995
- 1995-11-30 JP JP33808195A patent/JPH09150932A/en active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5511133A (en) * | 1978-07-10 | 1980-01-25 | Ishikawajima Harima Heavy Ind Co Ltd | Abrasion resistant member made of sintered alloy |
| JPH07300375A (en) * | 1994-04-28 | 1995-11-14 | Sumitomo Coal Mining Co Ltd | Cemented carbide abrasion-resistant material and method for producing the same |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6634781B2 (en) | 2001-01-10 | 2003-10-21 | Saint Gobain Industrial Ceramics, Inc. | Wear resistant extruder screw |
| EP1757885A3 (en) * | 2001-10-25 | 2007-03-14 | Kabushiki Kaisha Kobe Seiko Sho | Screw for discharging reduced iron |
| CN102371215A (en) * | 2010-08-20 | 2012-03-14 | 上海市离心机械研究所有限公司 | Edge protective tile structure for helical blades of centrifuge |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4802828A (en) | Turbine blade having a fused metal-ceramic tip | |
| US7828526B2 (en) | Metallic blade having a composite inlay | |
| US4919220A (en) | Cutting structures for steel bodied rotary drill bits | |
| US7445294B2 (en) | Attack tool | |
| US5183390A (en) | Method of forming a trailing edge on a steam turbine blade and the blade made thereby | |
| GB2294951A (en) | Metallic part with bonded coating containing hard particles | |
| KR20030022118A (en) | Friction stir welding using a superabrasive tool | |
| JPH02176026A (en) | Composite excavating tooth | |
| US5673618A (en) | Screw press flight with wear resistant surface | |
| CN101791758B (en) | Hydraulic machine newly manufactured component, method for manufacturing or repairing such a component | |
| JP2011527979A (en) | Method for bonding SiC-diamond | |
| US20170266782A1 (en) | Abrasive article having shaped segments | |
| US20220274191A1 (en) | Saw Tool | |
| JPH09150932A (en) | Screw conveyor blade | |
| CN108798805A (en) | Handle the method for turbine baffle and processed turbine baffle | |
| JPS62183995A (en) | Cobalt base alloy as padding material for guide rail of chain saw | |
| EP3656975B1 (en) | Disc cutter for tunnel boring machines and a method of manufacture thereof | |
| WO2009045788A2 (en) | Aircraft skid shoes with wear-resistant cladding layers | |
| JPH09150933A (en) | Transfer screw blade | |
| JP4159654B2 (en) | Manufacturing method of wear-resistant liner | |
| JPS6320647B2 (en) | ||
| CN201486843U (en) | Wear-resistant part of concrete pump and concrete pump comprising same | |
| US20240181546A1 (en) | Reciprocating Saw Blade Having Teeth Formed of a Cemented Ceramic Material Welded to the Body of the Blade | |
| JPH05263604A (en) | Turbine blade | |
| JPH06240308A (en) | Method for directly joining tic cermet and sintered hard alloy and jointing material therefor |