JPH09165655A - Austenitic stainless steel for high temperature equipment and method for producing the same - Google Patents
Austenitic stainless steel for high temperature equipment and method for producing the sameInfo
- Publication number
- JPH09165655A JPH09165655A JP32582195A JP32582195A JPH09165655A JP H09165655 A JPH09165655 A JP H09165655A JP 32582195 A JP32582195 A JP 32582195A JP 32582195 A JP32582195 A JP 32582195A JP H09165655 A JPH09165655 A JP H09165655A
- Authority
- JP
- Japan
- Prior art keywords
- less
- high temperature
- temperature
- stainless steel
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
(57)【要約】
【課題】高温において、耐高温腐食性、耐高温酸化性ば
かりでなく、強度に優れた高温機器用オーステナイトス
テンレス鋼およびその製造方法を提供すること。
【解決手段】重量分率で、C:0.05〜0.12%、
Si:2.5%以下、Mn:2.0%以下、Cr:1
6.0〜20.0%、Ni:6.0〜14.0%、M
o:0.01〜4%、N:0.005〜0.25%、M
g:0.05%以下(0%を含む)、Cu:0.01〜
4%、B:0.001〜0.005%、Zr:0.1%
以下(0%を含む)、Al:0.5%以下(0%を含
む)であり、さらに、Nb:0.45%以下、Ti:
0.25%以下、V:0.25%以下のうちの1種以上
を含み、かつ、以下の式を満足し、残部がFeおよび不
可避的不純物である、高温強度に優れた高温機器用オー
ステナイトステンレス鋼。
1≦(C/12+N/14)/(Nb/93+Ti/4
8+V/51)≦2(57) Abstract: [PROBLEMS] To provide an austenitic stainless steel for high temperature equipment, which has excellent strength as well as high temperature corrosion resistance and high temperature oxidation resistance at high temperatures, and a method for producing the same. SOLUTION: C: 0.05 to 0.12% in weight fraction,
Si: 2.5% or less, Mn: 2.0% or less, Cr: 1
6.0-20.0%, Ni: 6.0-14.0%, M
o: 0.01 to 4%, N: 0.005 to 0.25%, M
g: 0.05% or less (including 0%), Cu: 0.01 to
4%, B: 0.001 to 0.005%, Zr: 0.1%
The following (including 0%), Al: 0.5% or less (including 0%), and Nb: 0.45% or less, Ti:
Austenite for high-temperature equipment, which contains at least one of 0.25% or less and V: 0.25% or less, satisfies the following formula, and the balance is Fe and unavoidable impurities and has excellent high-temperature strength. Stainless steel. 1 ≦ (C / 12 + N / 14) / (Nb / 93 + Ti / 4
8 + V / 51) ≦ 2
Description
【0001】[0001]
【発明の属する技術分野】この発明は、耐高温腐食性、
耐高温酸化性、高温強度を兼備した高温機器用オーステ
ナイトステンレス鋼およびその製造方法に関する。TECHNICAL FIELD The present invention relates to high temperature corrosion resistance,
The present invention relates to an austenitic stainless steel for high-temperature equipment, which has both high-temperature oxidation resistance and high-temperature strength, and a method for producing the same.
【0002】[0002]
【従来の技術】加熱炉材料、火力発電プラントのボイラ
ーチューブや排ガスダクトなど、最高使用温度が約60
0℃を超える高温・耐熱機器用材料は、耐高温腐食性、
耐高温酸化性、高温強度が同時に求められる。2. Description of the Related Art The maximum operating temperature of heating furnace materials, boiler tubes and exhaust gas ducts of thermal power plants is about 60.
Materials for high temperature and heat resistant equipment exceeding 0 ° C have high temperature corrosion resistance,
High temperature oxidation resistance and high temperature strength are required at the same time.
【0003】従来、これらの用途向けには、Cr−Mo
鋼、フェライト系耐熱鋼、オーステナイト系ステンレス
鋼などが使用されているが、使用温度が600℃を超え
ると、フェライト系の耐熱ステンレス鋼では高温強度が
不足することから、使用可能な鋼は、16%以上のCr
含有量のオーステナイト系ステンレス鋼にほぼ限定され
る。Conventionally, Cr-Mo has been used for these applications.
Steel, ferritic heat-resistant steel, austenitic stainless steel, etc. are used. However, when the operating temperature exceeds 600 ° C., ferritic heat-resistant stainless steel lacks high-temperature strength. % Or more of Cr
Almost limited to the content of austenitic stainless steel.
【0004】中でも、特開昭59−70752号公報、
特開昭56−169755号公報等に開示されているよ
うな、Nb、TiまたはV含有型のステンレス鋼は、炭
窒化物の微細分散による強化作用により、高い高温強度
を得ようとするものであり、Crによって良好な耐高温
腐食性・耐高温酸化性を具備しているのみならず、装置
構造材料としてのある程度の信頼性を得ることができ
る。Among them, Japanese Patent Laid-Open No. 59-70752,
The Nb, Ti or V-containing stainless steel as disclosed in JP-A-56-169755 is intended to obtain high high temperature strength due to the strengthening action by fine dispersion of carbonitride. Therefore, Cr not only has good high-temperature corrosion resistance and high-temperature oxidation resistance, but also has a certain degree of reliability as a device structural material.
【0005】[0005]
【発明が解決しようとする課題】ところが、上記のよう
な炭窒化物析出型のステンレス鋼では、析出可能なC、
N、Nb、Ti、Vを十分母相中に固溶させるために、
溶体化処理を高温行なう必要が生じる。18%Cr以上
の系では溶体化処理温度として通常1100℃以上が要
求され、これより温度が低い場合は、添加したC、N、
Nb、Ti、V量に見合う高温強度が得られないのみな
らず、これらの未固溶分が粗大炭窒化物や金属間化合物
の形で組織中に存在する結果、母材金属の延性や靭性が
著しく損なわれる場合も多い。このため、これらの添加
量によっては1150℃以上の溶体化処理温度が求めら
れる場合もある。However, in the carbonitride precipitation type stainless steel as described above, C
In order to sufficiently dissolve N, Nb, Ti, and V in the matrix,
It is necessary to carry out the solution heat treatment at a high temperature. A solution treatment temperature of 18% Cr or higher usually requires a solution treatment temperature of 1100 ° C. or higher. If the temperature is lower than this, the added C, N,
Not only high-temperature strength commensurate with the amounts of Nb, Ti, and V cannot be obtained, but also the undissolved contents of these exist in the structure in the form of coarse carbonitrides or intermetallic compounds, resulting in ductility and toughness of the base metal. Is often significantly impaired. For this reason, a solution treatment temperature of 1150 ° C. or higher may be required depending on the amount of these added.
【0006】このように、通常、炭窒化物析出型ステン
レス鋼では比較的高い温度での溶体化処理が求められ
る。一方、通常生産規模で行なわれる熱処理は、大気炉
またはガス燃焼型の工業炉であることが多く、高温の熱
処理には必ずしも最適ではない。また、上記のような酸
素存在雰囲気の加熱炉では、熱処理中の鋼の表面酸化は
高温ほど速く進行し、特に1150℃を超えるような高
温では、スケールの過剰生成は重大な問題となる。板材
を例にとると、酸化減量が過大となり、板厚公差の管理
が非常に難しくなると同時に、生産コストが増大する。
また、粒界酸化が生じやすくなり、金属母材内に根をお
ろしたスケールは、熱間加工中の傷発生の原因にもなり
やすく、内部酸化が進むようになると、酸洗、ショット
デスケーリング等の手段によっても、スケールを除去す
ることができないという事態が発生する。Thus, carbonitride precipitation type stainless steel is usually required to undergo solution treatment at a relatively high temperature. On the other hand, the heat treatment usually performed on a production scale is often an atmospheric furnace or a gas combustion type industrial furnace, and is not necessarily optimum for high temperature heat treatment. Further, in the above-described heating furnace in the presence of oxygen, surface oxidation of steel during heat treatment progresses faster at higher temperatures, and particularly at high temperatures exceeding 1150 ° C, excessive production of scale becomes a serious problem. Taking a plate material as an example, the weight loss due to oxidation becomes excessively large, and it becomes very difficult to control the plate thickness tolerance, and at the same time, the production cost increases.
In addition, grain boundary oxidation is likely to occur, and the scale rooted in the metal base material is also likely to cause scratches during hot working.If internal oxidation progresses, pickling, shot descaling Even with such means, a situation occurs in which the scale cannot be removed.
【0007】この発明はかかる事情に鑑みてなされたも
のであって、高温において、耐高温腐食性、耐高温酸化
性ばかりでなく、強度に優れた高温機器用オーステナイ
トステンレス鋼およびその製造方法を提供することを目
的とする。The present invention has been made in view of the above circumstances, and provides an austenitic stainless steel for high temperature equipment, which is excellent not only in high temperature corrosion resistance and high temperature oxidation resistance at high temperatures but also in strength, and a method for producing the same. The purpose is to do.
【0008】[0008]
【課題を解決するための手段】本発明者らは、高温での
過剰なスケール発生を抑制する抜本的な解決策は、成分
組成を検討することによって、低温での溶体化処理によ
っても高温溶体化処理の場合と同程度の高温強度を得る
ことができる鋼を開発することであるとの考えに基づき
検討を重ねた。ある溶体化処理温度における析出強化元
素の母相への固溶量は、高温であるほど多量であるとい
う関係が一般的であるが、析出強化元素の添加割合と添
加量を様々に振り分けて溶解度積の式を検討した結果、
析出強化元素をある割合で添加したとき、熱処理温度が
一定であっても高温強度が増加する場合が増加する場合
があることを見出した。このことを検証するため、数多
くの実験溶解によって、溶解と析出との関係を把握し
た。その結果、例えば、18〜20%Crを含有し、
C、N、Nb、Ti、Vを含有する析出強化型オーステ
ナイト鋼の場合、1140℃で溶体化処理した場合の6
50℃で105 時間のクリープ破断強度は、C、N、N
b、Ti、Vの添加レベルが変化しなければ、1180
℃で溶体化処理した場合より20MPa程度低下する
が、添加元素の総量が一定でもNb、Ti、Vの比率を
高めた場合に顕著にクリープ強度が改善され、上記20
MPa程度低下した値よりも5〜10MPa程度高い値
となる条件が存在することが明らかとなった。これを添
加元素の観点から数式化すると、必ず (C/12+N/14)/(Nb/93+Ti/48+
V/51)≦2 となる関係を満たすことが明らかとなった。すなわち、
この式を満たす場合に、低温溶体化処理における高温強
度が著しく改善されるという結論を得た。DISCLOSURE OF THE INVENTION The present inventors have devised a drastic solution for suppressing excessive scale generation at high temperature by examining the composition of components, thereby making it possible to carry out high temperature solution treatment even by solution treatment at low temperature. The study was repeated based on the idea that it is to develop a steel that can obtain the same high-temperature strength as in the case of chemical treatment. The solid solution amount of the precipitation strengthening element in the matrix phase at a certain solution treatment temperature is generally larger as the temperature is higher.However, the solubility and solubility of the precipitation strengthening element are variously distributed. As a result of examining the product formula,
It has been found that when the precipitation strengthening element is added at a certain ratio, the high temperature strength may increase even if the heat treatment temperature is constant. In order to verify this, the relationship between dissolution and precipitation was grasped by many experimental dissolutions. As a result, for example, containing 18 to 20% Cr,
In the case of precipitation strengthened austenitic steel containing C, N, Nb, Ti and V, 6 when solution-treated at 1140 ° C.
Creep rupture strength at 105 ° C for 10 5 hours is C, N, N
If the addition levels of b, Ti, and V do not change, 1180
Although it is reduced by about 20 MPa as compared with the case where the solution heat treatment is performed at 0 ° C., the creep strength is remarkably improved when the ratio of Nb, Ti, and V is increased even when the total amount of the additive elements is constant.
It became clear that there is a condition that the value is higher by about 5 to 10 MPa than the value lowered by about MPa. When this is mathematically expressed from the viewpoint of additional elements, it is always (C / 12 + N / 14) / (Nb / 93 + Ti / 48 +
It became clear that the relationship of V / 51) ≦ 2 was satisfied. That is,
It was concluded that the high temperature strength in the low temperature solution treatment is significantly improved when this equation is satisfied.
【0009】一方、本発明者らは、このような鋼におい
ては、C+N量に対するTi+Nb+V量の原子分率が
相対的に低い領域に元素添加を行うべきであることも明
らかにした。これを数式で表現した場合、 1≦(C/12+N/14)/(Nb/93+Ti/4
8+V/51) となる。これは、炭窒化物とならない余剰のTi、N
b、Vがあると、母相に固溶しきれない分が不安定な金
属化合物または複合化合物を形成し、粒界および粒内に
粗大に析出して高温強度を劣化させるためであると考え
られる。On the other hand, the present inventors have also clarified that in such a steel, element addition should be performed in a region where the atomic fraction of Ti + Nb + V content relative to C + N content is relatively low. When this is expressed by a mathematical expression, 1 ≦ (C / 12 + N / 14) / (Nb / 93 + Ti / 4
8 + V / 51). This is the excess Ti, N that does not become carbonitride.
It is considered that when b and V are present, the part that cannot be completely dissolved in the mother phase forms an unstable metal compound or composite compound, and coarsely precipitates at grain boundaries and within grains to deteriorate high temperature strength. To be
【0010】これらの知見を総合して、Ti+Nb+V
量に対するC+N量の原子分率の比が 1≦(C/12+N/14)/(Nb/93+Ti/4
8+V/51)≦2 を満たす場合に、低温溶体化処理でも高い高温強度が得
られるという結論が得られた。Based on these findings, Ti + Nb + V
The ratio of the atomic fraction of the amount of C + N to the amount is 1 ≦ (C / 12 + N / 14) / (Nb / 93 + Ti / 4
It was concluded that high temperature strength can be obtained even by low temperature solution heat treatment when 8 + V / 51) ≦ 2 is satisfied.
【0011】本発明はこれらの知見に基づいて完成され
たものである。すなわち、本発明は、第1に、重量分率
で、C:0.05〜0.12%、Si:2.5%以下、
Mn:2.0%以下、Cr:16.0〜20.0%、N
i:6.0〜14.0%、Mo:0.01〜4%、N:
0.005〜0.25%、Mg:0.05%以下(0%
を含む)、Cu:0.01〜4%、B:0.001〜
0.005%、Zr:0.1%以下(0%を含む)、A
l:0.5%以下(0%を含む)であり、さらに、N
b:0.45%以下、Ti:0.25%以下、V:0.
25%以下のうちの1種以上を含み、かつ、以下の
(1)式を満足し、残部がFeおよび不可避的不純物で
あることを特徴とする、高温強度に優れた高温機器用オ
ーステナイトステンレス鋼を提供する。The present invention has been completed based on these findings. That is, the present invention is, firstly, by weight fraction, C: 0.05 to 0.12%, Si: 2.5% or less,
Mn: 2.0% or less, Cr: 16.0 to 20.0%, N
i: 6.0 to 14.0%, Mo: 0.01 to 4%, N:
0.005-0.25%, Mg: 0.05% or less (0%
), Cu: 0.01-4%, B: 0.001-
0.005%, Zr: 0.1% or less (including 0%), A
1: 0.5% or less (including 0%), and N
b: 0.45% or less, Ti: 0.25% or less, V: 0.
Austenitic stainless steel for high-temperature equipment, which contains at least one of 25% or less, satisfies the following formula (1), and the balance is Fe and unavoidable impurities, and has excellent high-temperature strength. I will provide a.
【0012】本発明は、第2に、重量分率で、C:0.
05〜0.12%、Si:2.5%以下、Mn:2.0
%以下、Cr:16.0〜20.0%、Ni:6.0〜
14.0%、Mo:0.01〜4%、N:0.005〜
0.25%、Mg:0.05%以下(0%を含む)、C
u:0.01〜4%、B:0.001〜0.005%、
Zr:0.1%以下(0%を含む)、Al:0.5%以
下(0%を含む)であり、Nb:0.45%以下、T
i:0.25%以下、V:0.25%以下のうちの1種
以上を含み、さらに、Ce、La、Hfのうちの1種以
上を0.1%以下含み、かつ、以下の(1)式を満足
し、残部がFeおよび不可避的不純物であることを特徴
とする、高温強度に優れた高温機器用オーステナイトス
テンレス鋼を提供する。The present invention is secondly the weight fraction of C: 0.
05-0.12%, Si: 2.5% or less, Mn: 2.0
% Or less, Cr: 16.0 to 20.0%, Ni: 6.0 to
14.0%, Mo: 0.01-4%, N: 0.005-
0.25%, Mg: 0.05% or less (including 0%), C
u: 0.01 to 4%, B: 0.001 to 0.005%,
Zr: 0.1% or less (including 0%), Al: 0.5% or less (including 0%), Nb: 0.45% or less, T
i: 0.25% or less, V: 0.25% or less, and at least one of Ce, La, and Hf 0.1% or less, and the following ( Provided is an austenitic stainless steel for high-temperature equipment, which is characterized by satisfying the formula (1) and the balance being Fe and inevitable impurities and having excellent high-temperature strength.
【0013】本発明は、第3に、重量分率で、C:0.
05〜0.12%、Si:2.5%以下、Mn:2.0
%以下、Cr:16.0〜20.0%、Ni:6.0〜
14.0%、Mo:0.01〜4%、N:0.005〜
0.25%、Mg:0.05%以下(0%を含む)、C
u:0.01〜4%、B:0.001〜0.005%、
Zr:0.1%以下(0%を含む)、Al:0.5%以
下(0%を含む)であり、さらに、Nb:0.45%以
下、Ti:0.25%以下、V:0.25%以下のうち
の1種以上を含み、かつ、以下の(1)式を満足する鋼
を、鋳造工程、熱間加工工程を経て所定の製品形状また
は半製品となした後に、1150℃以下の温度で溶体化
処理することを特徴とする、高温強度に優れた高温機器
用オーステナイトステンレス鋼の製造方法を提供する。Thirdly, the present invention has a weight fraction of C: 0.
05-0.12%, Si: 2.5% or less, Mn: 2.0
% Or less, Cr: 16.0 to 20.0%, Ni: 6.0 to
14.0%, Mo: 0.01-4%, N: 0.005-
0.25%, Mg: 0.05% or less (including 0%), C
u: 0.01 to 4%, B: 0.001 to 0.005%,
Zr: 0.1% or less (including 0%), Al: 0.5% or less (including 0%), Nb: 0.45% or less, Ti: 0.25% or less, V: After the steel containing at least one of 0.25% or less and satisfying the following formula (1) is formed into a predetermined product shape or a semi-finished product through a casting process and a hot working process, 1150 Provided is a method for producing austenitic stainless steel for high-temperature equipment, which is excellent in high-temperature strength, characterized by performing solution treatment at a temperature of ℃ or less.
【0014】本発明は、第4に、重量分率で、C:0.
05〜0.12%、Si:2.5%以下、Mn:2.0
%以下、Cr:16.0〜20.0%、Ni:6.0〜
14.0%、Mo:0.01〜4%、N:0.005〜
0.25%、Mg:0.05%以下(0%を含む)、C
u:0.01〜4%、B:0.001〜0.005%、
Zr:0.1%以下(0%を含む)、Al:0.5%以
下(0%を含む)であり、Nb:0.45%以下、T
i:0.25%以下、V:0.25%以下のうちの1種
以上を含み、さらに、Ce、La、Hfのうちの1種以
上を0.1%以下含み、かつ、以下の(1)式を満足す
る鋼を、鋳造工程、熱間加工工程を経て所定の製品形状
または半製品となした後に、1150℃以下の温度で溶
体化処理することを特徴とする、高温強度に優れた高温
機器用オーステナイトステンレス鋼の製造方法を提供す
る。 1≦(C/12+N/14)/(Nb/93+Ti/48+V/51)≦2 ……(1)Fourthly, the present invention provides a weight fraction of C: 0.
05-0.12%, Si: 2.5% or less, Mn: 2.0
% Or less, Cr: 16.0 to 20.0%, Ni: 6.0 to
14.0%, Mo: 0.01-4%, N: 0.005-
0.25%, Mg: 0.05% or less (including 0%), C
u: 0.01 to 4%, B: 0.001 to 0.005%,
Zr: 0.1% or less (including 0%), Al: 0.5% or less (including 0%), Nb: 0.45% or less, T
i: 0.25% or less, V: 0.25% or less, and at least one of Ce, La, and Hf 0.1% or less, and the following ( Excellent high temperature strength, characterized by subjecting steel satisfying the formula (1) to a predetermined product shape or semi-finished product through a casting process and a hot working process, and then subjecting it to solution treatment at a temperature of 1150 ° C or lower. A method for producing austenitic stainless steel for high temperature equipment is provided. 1 ≦ (C / 12 + N / 14) / (Nb / 93 + Ti / 48 + V / 51) ≦ 2 (1)
【0015】[0015]
【発明の実施の形態】以下、本発明について具体的に説
明する。本発明に係るオーステナイトステンレス鋼は、
重量分率で、C:0.05〜0.12%、Si:2.5
%以下、Mn:2.0%以下、Cr:16.0〜20.
0%、Ni:6.0〜14.0%、Mo:0.01〜4
%、N:0.005〜0.25%、Mg:0.05%以
下(0%を含む)、Cu:0.01〜4%、B:0.0
01〜0.005%、Zr:0.1%以下(0%を含
む)、Al:0.5%以下(0%を含む)であり、さら
に、Nb:0.45%以下、Ti:0.25%以下、
V:0.25%以下のうちの1種以上を含むものであ
る。さらに、Ce、La、Hfのうちの1種以上を0.
1%以下含んでもよい。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described specifically. The austenitic stainless steel according to the present invention,
Weight fraction C: 0.05 to 0.12%, Si: 2.5
% Or less, Mn: 2.0% or less, Cr: 16.0 to 20.
0%, Ni: 6.0 to 14.0%, Mo: 0.01 to 4
%, N: 0.005 to 0.25%, Mg: 0.05% or less (including 0%), Cu: 0.01 to 4%, B: 0.0
01-0.005%, Zr: 0.1% or less (including 0%), Al: 0.5% or less (including 0%), and Nb: 0.45% or less, Ti: 0. 0.25% or less,
V: Contains at least one of 0.25% or less. Furthermore, at least one of Ce, La, and Hf is set to 0.
You may contain 1% or less.
【0016】以下、これら各元素の限定理由等について
詳細に説明する。Cは、耐熱鋼の高温強度を得るために
有効な元素であるが、その効果は0.05%以上でなけ
れば十分ではなく、一方0.12%を超えると溶接性に
対して有害となるため、C含有量を0.05〜0.12
%とする。The reasons for limiting each of these elements will be described in detail below. C is an element effective for obtaining the high temperature strength of heat resistant steel, but its effect is not sufficient unless it is 0.05% or more, while if it exceeds 0.12%, it becomes harmful to weldability. Therefore, the C content is 0.05 to 0.12.
%.
【0017】Siは鋼の脱酸に有効であるが、2.5%
を超えて添加すると相安定性を著しく損なうため、その
含有量を2.5%以下とする。Mnは、鋼のオーステナ
イト安定化に有効な元素であるが、2.0%を超えて添
加すると耐高温酸化性を損なうため、その含有量を2.
0%以下とする。Si is effective for deoxidizing steel, but 2.5%
If it is added in excess of 1, the phase stability will be significantly impaired, so the content is made 2.5% or less. Mn is an element effective for stabilizing austenite in steel, but if it is added in an amount exceeding 2.0%, the high temperature oxidation resistance is impaired, so its content is 2.
It is 0% or less.
【0018】Crは、鋼の一般耐食性付与に最も有効な
元素であり、前述したように、加熱炉材料、火力発電プ
ラントのボイラーチューブや排ガスダクトなど、最高使
用温度が約600℃を超えるような高温・耐熱機器用に
は、16.0%以上含まれないと耐高温腐食性、耐高温
酸化性が十分ではない。しかし、20.0%を超えて含
有すると相安定性の確保が困難となる。したがって、C
r含有量は16.0〜20.0%の範囲とする。Cr is the most effective element for imparting general corrosion resistance to steel, and as described above, the maximum operating temperature exceeds about 600 ° C. for heating furnace materials, boiler tubes of thermal power plants, exhaust gas ducts, etc. For high-temperature / heat-resistant equipment, unless the content is 16.0% or more, the high-temperature corrosion resistance and high-temperature oxidation resistance are insufficient. However, if the content exceeds 20.0%, it becomes difficult to secure phase stability. Therefore, C
The r content is in the range of 16.0 to 20.0%.
【0019】Niは、鋼のオーステナイト安定性を高め
る元素として非常に重要であり、その含有量が6.0%
以上でないとその効果が十分ではない。しかし、14.
0%を超えるとその効果が飽和するばかりか、著しく高
価になる。したがって、Ni含有量を6.0〜14.0
%の範囲とする。Ni is very important as an element that enhances the austenite stability of steel, and its content is 6.0%.
The effect is not sufficient unless it is above. However, 14.
If it exceeds 0%, not only the effect is saturated, but also it becomes extremely expensive. Therefore, the Ni content is 6.0 to 14.0.
% Range.
【0020】Moは、母相に固溶し、固溶強化すること
で高温強度の上昇に寄与する元素である。しかし、0.
01%以上含有しないとその効果は十分ではなく、4%
を超えると延性が極端に低下する。したがって、Mo含
有量を0.01〜4%の範囲とする。Mo is an element that contributes to the increase in high temperature strength by forming a solid solution in the matrix and strengthening the solution. However, 0.
If it is not contained more than 01%, its effect is not sufficient, and 4%
If it exceeds, the ductility will be extremely reduced. Therefore, the Mo content is set to the range of 0.01 to 4%.
【0021】Nは、鋼のオーステナイト安定化および高
温強度の両方に有効な元素である。しかし、その量が
0.005%以上でなければその効果が十分ではなく、
0.25%を超えて含有すると溶接性を損なうので、そ
の含有量は0.005〜0.25%とする。N is an element effective for both austenite stabilization and high temperature strength of steel. However, the effect is not sufficient unless the amount is 0.005% or more,
If the content exceeds 0.25%, the weldability is impaired, so the content is made 0.005-0.25%.
【0022】Mgは、脱酸に有効な元素であり、0.0
5%以下であれば熱間加工性を損なうことなく脱酸する
ことができる。ただし、0.02%以上のAlを含む場
合には含有する必要はない。したがって、Mg含有量を
0.05%以下(0%を含む)とする。Mg is an element effective for deoxidation, and is 0.0
If it is 5% or less, deoxidation can be performed without impairing hot workability. However, when it contains 0.02% or more of Al, it is not necessary to contain it. Therefore, the Mg content is set to 0.05% or less (including 0%).
【0023】Cuは、析出強化によって高温強度上昇に
寄与する元素である。しかし、0.01%以上でなけれ
ばその効果が十分ではなく、4%を超えると延性が極端
に低下する。したがって、Cu含有量を0.01〜4%
とする。Cu is an element that contributes to the increase in high temperature strength by precipitation strengthening. However, if it is not more than 0.01%, the effect is not sufficient, and if it exceeds 4%, the ductility is extremely lowered. Therefore, the Cu content is 0.01 to 4%.
And
【0024】Bは、クリープ延性の向上に有効な元素で
あり、その効果を発揮するために0.001%以上含有
することが必要であるが、0.005%を超えて添加す
ると熱間加工性を損なうため、その含有量を0.001
〜0.005%の範囲とする。B is an element effective in improving creep ductility, and it is necessary to contain 0.001% or more in order to exert its effect, but if it is added in excess of 0.005%, hot working is performed. Content of 0.001
To 0.005%.
【0025】Zrは、必須の成分ではないが、Bと同様
クリープ延性の向上に有効な元素である。しかし、0.
1%を超えて添加すると熱間加工性を損なうため、その
含有量を0.1%以下(0%を含む)とする。Zr is not an essential component, but is an element effective for improving creep ductility, like B. However, 0.
If added in excess of 1%, hot workability is impaired, so the content is made 0.1% or less (including 0%).
【0026】Alは、脱酸に有効な元素であり、0.5
%以下であれば熱間加工性を損なうことなく脱酸するこ
とができる。ただし、0.01%以上のMgを含む場合
には含有する必要はない。したがって、Al含有量を
0.5%以下(0%を含む)とする。Al is an element effective for deoxidation, and is 0.5
%, It is possible to deoxidize without impairing the hot workability. However, when 0.01% or more of Mg is contained, it is not necessary to contain Mg. Therefore, the Al content is set to 0.5% or less (including 0%).
【0027】Nb、Ti、Vは、炭窒化物を形成して金
属組織中に微細分散し、鋼のクリープ破断強度向上に寄
与する元素であり、これらを1種以上含むことが本発明
の主眼の一つである。Nb, Ti, and V are elements that form carbonitrides and are finely dispersed in the metal structure to contribute to the improvement of the creep rupture strength of steel. The main purpose of the present invention is to include one or more of these. one of.
【0028】しかし、Nbは、0.45%を超えて添加
すると、金属間化合物等の粗大な析出が生じ、クリープ
延性を損なうようになり、Ti、Vはいずれも0.25
%を超えて添加すると、やはり金属間化合物等の粗大な
析出が生じ、クリープ延性を損なうようになる。なお、
これらNb、Ti、Vはいずれも同様の機能を果たすた
め、これらのうち少なくとも1種を含有すればよい。However, if Nb is added in excess of 0.45%, coarse precipitation of intermetallic compounds and the like will occur and creep ductility will be impaired, and both Ti and V will be 0.25.
If it is added in an amount of more than 0.1%, coarse precipitation of intermetallic compounds and the like also occurs, and the creep ductility is impaired. In addition,
Since all of Nb, Ti, and V have the same function, at least one of them may be contained.
【0029】これらの他、Ce、La、Hfは、いずれ
も耐高温酸化性に対して有効な元素であるため、これら
のうち少なくとも1種を0.1%以下の範囲で含有して
もよい。In addition to these, Ce, La, and Hf are all elements effective for high-temperature oxidation resistance, so at least one of them may be contained in the range of 0.1% or less. .
【0030】本発明では、上述したように、このように
各成分の範囲を規定する他、 1≦(C/12+N/14)/(Nb/93+Ti/4
8+V/51)≦2 の式を満たすことを要件としている。この式を満たすこ
とにより、高温でも有効な析出強化を達成することがで
きるため、高い高温強度が得られ、しかも、所定の強度
を得るための溶体化処理の低温化が可能となる。In the present invention, as described above, in addition to defining the range of each component as described above, 1 ≦ (C / 12 + N / 14) / (Nb / 93 + Ti / 4
8 + V / 51) ≦ 2 is required to be satisfied. By satisfying this formula, effective precipitation strengthening can be achieved even at high temperature, so that high temperature strength can be obtained, and further, the temperature of the solution treatment for obtaining a predetermined strength can be lowered.
【0031】次に、本発明の製造方法について説明す
る。本発明では、上述のような組成範囲の鋼を、鋳造工
程、熱間加工工程を経て所定の製品形状または半製品と
なした後に、1150℃以下の温度で溶体化処理する。
すなわち、上述の組成の鋼は、1150℃以下の温度で
の溶体化処理においても高温での強度に優れている。Next, the manufacturing method of the present invention will be described. In the present invention, the steel having the composition range as described above is subjected to a solution treatment at a temperature of 1150 ° C. or lower after forming a predetermined product shape or a semi-finished product through a casting process and a hot working process.
That is, the steel having the above composition is excellent in strength at high temperature even in the solution treatment at a temperature of 1150 ° C. or lower.
【0032】[0032]
【実施例】以下、この発明の実施例について説明する。
表1、2に示すような成分・組成を有する本発明鋼およ
び比較鋼を実験室の150kgw真空溶解炉にて溶製
し、25kgwインゴットに鋳造した後、熱間圧延によ
り圧下比2.5の粗圧延を加え、さらに圧下比3.5の
仕上げ圧延を施して板厚12mmとした。Embodiments of the present invention will be described below.
Steels of the present invention and comparative steels having the components / compositions shown in Tables 1 and 2 were melted in a laboratory 150kgw vacuum melting furnace, cast into 25kgw ingots, and then hot rolled to obtain a reduction ratio of 2.5. Rough rolling was performed and finish rolling with a reduction ratio of 3.5 was performed to obtain a plate thickness of 12 mm.
【0033】これらの鋼に対して、実生産を模したガス
燃焼型シミュレータ炉を用いた1140〜1180℃で
の溶体化熱処理(ST)を施し、断面光学顕微鏡観察に
よって粒界酸化および内部酸化の有無を確認するととも
に、650℃クリープ破断試験を行い、約10000時
間までの試験結果を外挿して100000時間破断強度
を求めた。表1、2に、化学組成と、以下に示す当量比
Rの値、および650℃、100000時間クリープ破
断強度をまとめて示す。These steels were subjected to solution heat treatment (ST) at 1140-1180 ° C. using a gas combustion type simulator furnace simulating actual production, and grain boundary oxidation and internal oxidation were observed by cross-section optical microscope observation. In addition to confirming the presence or absence, a 650 ° C. creep rupture test was performed, and the test results up to about 10,000 hours were extrapolated to obtain the 100,000 hour rupture strength. Tables 1 and 2 collectively show the chemical composition, the value of the equivalent ratio R shown below, and the creep rupture strength at 650 ° C. for 100,000 hours.
【0034】R=(C/12+N/14)/(Nb/9
3+Ti/48+V/51) なお、表1の鋼番1〜16は本発明鋼であり、表2の鋼
番17〜31は比較鋼である。R = (C / 12 + N / 14) / (Nb / 9
3 + Ti / 48 + V / 51) Steel Nos. 1 to 16 in Table 1 are the present invention steels, and Steel Nos. 17 to 31 in Table 2 are comparative steels.
【0035】[0035]
【表1】 [Table 1]
【0036】[0036]
【表2】 [Table 2]
【0037】また、表3に、溶体化処理後の断面観察に
おける粒界酸化の程度を示す。一部の鋼を除いて、11
40℃の溶体化処理材では粒界酸化が発生しておらず、
これに対し、1180℃での溶体化熱処理材では、ほと
んどに粒界酸が認められた。これらの不均一なスケール
生成は、圧延後の表面傷の発生と顕著な対応を有してい
たことから、健常な板材を得るための溶体化熱処理条件
として、一般に1180℃は高すぎると考えられる。Further, Table 3 shows the degree of grain boundary oxidation in the cross-section observation after the solution treatment. 11 excluding some steel
No grain boundary oxidation occurred in the solution heat treated material at 40 ° C.
On the other hand, in the solution heat-treated material at 1180 ° C., grain boundary acid was found in almost all. Since these non-uniform scale formation had a remarkable correspondence with the occurrence of surface scratches after rolling, it is generally considered that 1180 ° C. is too high as a solution heat treatment condition for obtaining a healthy plate material. .
【0038】[0038]
【表3】 [Table 3]
【0039】上記のクリープ破断強度をR値で整理する
と、図1に示すような関係となる。1140℃、118
0℃溶体化熱処理材はともに、1≦R≦2の範囲で65
0℃、100000時間クリープ破断強度が特に良好で
あることがわかるが、また、1140℃処理材と118
0℃処理材のクリープ破断強度の差も、この1≦R≦2
の範囲で比較的小さいことも特徴である。これは、この
範囲において、溶体化処理の低温化を行った場合も、高
温強度の低下を最小限に抑えることができることを意味
している。When the creep rupture strength is arranged by the R value, the relationship shown in FIG. 1 is obtained. 1140 ° C, 118
Both of the 0 ° C. solution heat-treated materials had 65 within the range of 1 ≦ R ≦ 2.
It can be seen that the creep rupture strength at 0 ° C. for 100,000 hours is particularly good.
The difference in creep rupture strength of 0 ° C. treated materials is also 1 ≦ R ≦ 2
It is also characterized by being relatively small in the range of. This means that in this range, even if the solution treatment is performed at a low temperature, the decrease in the high temperature strength can be suppressed to the minimum.
【0040】こうしたR値での評価を、各元素の添加量
の適正化と同時に検討することにより、良好なクリープ
破断強度を発揮する範囲を把握することができる。すな
わち、本発明鋼では、1≦R≦2であるため、1140
℃の溶体化処理温度でも高温強度が高く、かつ粒界酸化
も発生しない。これに対して、比較鋼18、27では、
それぞれCおよびNの含有量が下限より少ないため、十
分な高温強度が得られなかった。比較鋼20,21,2
2は、それぞれNb,Ti,Vの添加が過剰であったた
めに、金属組織中に粗大な相が析出し、クリープ延性の
低下、破断寿命の低下につながったものである。また、
比較鋼23は、Cr含有量が低すぎ、650℃クリープ
破断試験中の大気酸化が著しく、減肉によって破断が早
期化した。比較鋼24,25,26は、Cr,Si、N
i等の含有量が適正値を外れていることにより、相安定
性の調整が困難となり、シグマ相等の脆い金属間化合物
析出につながり、長時間高温強度が低下した。比較鋼2
7にも低Nに起因する同様の傾向が認められた。また、
比較鋼30,31は、それぞれMoおよびCuが適正範
囲を外れているため延性が低く、クリープ破断強度も低
下した。さらに、比較鋼17,19,28、29は、R
値が適正値を外れているため、1140℃溶体化処理後
の高温クリープ破断強度が低かった。By examining the evaluation with such R value at the same time as optimizing the addition amount of each element, it is possible to grasp the range in which good creep rupture strength is exhibited. That is, in the steel of the present invention, since 1 ≦ R ≦ 2, 1140
Even at the solution treatment temperature of ℃, high temperature strength is high and no grain boundary oxidation occurs. On the other hand, in Comparative Steels 18 and 27,
Since the contents of C and N were smaller than the lower limits, respectively, sufficient high temperature strength could not be obtained. Comparative steels 20, 21, 2
In No. 2, the addition of Nb, Ti, and V was excessive, so that a coarse phase was precipitated in the metal structure, leading to a decrease in creep ductility and a decrease in rupture life. Also,
In Comparative Steel 23, the Cr content was too low, the atmospheric oxidation during the 650 ° C. creep rupture test was remarkable, and the rupture was accelerated due to the thinning. Comparative steels 24, 25, 26 are Cr, Si, N
When the content of i, etc. deviates from the appropriate value, it becomes difficult to adjust the phase stability, which leads to precipitation of brittle intermetallic compounds such as sigma phase, resulting in low long-time high-temperature strength. Comparative steel 2
7 also showed a similar tendency due to low N. Also,
Comparative steels 30 and 31 had low ductility and low creep rupture strength because Mo and Cu were out of the proper ranges, respectively. Further, the comparative steels 17, 19, 28 and 29 are R
Since the value was out of the proper value, the high temperature creep rupture strength after the solution treatment at 1140 ° C was low.
【0041】以上のように、各元素の含有量の適正化お
よびR値の適正化を行うことによって、本発明鋼1〜1
6のように、良好な高温強度を得ることができ、例えば
650℃、100000時間クリープ破断強度が、11
40℃溶体化熱処理材の場合でも、約85MPaと高い
値となることが確認された。As described above, the steels 1 to 1 of the present invention were prepared by optimizing the contents of the respective elements and the R value.
6, a good high temperature strength can be obtained, for example, a creep rupture strength of 100,000 hours at 650 ° C. is 11
It was confirmed that even in the case of the solution heat treated at 40 ° C., the value was as high as about 85 MPa.
【0042】[0042]
【発明の効果】以上説明したように、本発明によって初
めて、中・低温度域はもとより、600℃以上の高温に
おける耐熱強度への要求にも十分に対応することがで
き、しかも耐高温腐食性、耐高温酸化性が優れた材料が
得られる。しかも、表面性能低下・歩留まり低下を引き
起こす金属の高温溶体化処理を避けた1150℃以下の
温度での溶体化処理において、上述のような特性を達成
することができ、火力・原子力発電複合プラント等の高
性能高温機器の高効率化、および建造における経済性向
上に寄与することができる。As described above, according to the present invention, for the first time, it is possible to sufficiently meet the requirements for heat resistance strength at a high temperature of 600 ° C. or higher, as well as in the middle / low temperature range, and high temperature corrosion resistance. A material having excellent high temperature oxidation resistance can be obtained. Moreover, the characteristics as described above can be achieved in the solution treatment at a temperature of 1150 ° C. or lower, which avoids the high temperature solution treatment of the metal that causes the deterioration of the surface performance and the yield. It is possible to contribute to higher efficiency of high-performance high-temperature equipment, and improvement of economic efficiency in construction.
【図1】鋼のR値と、650℃、100000時間クリ
ープ破断強度との関係を示す図。FIG. 1 is a diagram showing the relationship between the R value of steel and creep rupture strength at 650 ° C. for 100,000 hours.
Claims (4)
%、Si:2.5%以下、Mn:2.0%以下、Cr:
16.0〜20.0%、Ni:6.0〜14.0%、M
o:0.01〜4%、N:0.005〜0.25%、M
g:0.05%以下(0%を含む)、Cu:0.01〜
4%、B:0.001〜0.005%、Zr:0.1%
以下(0%を含む)、Al:0.5%以下(0%を含
む)であり、さらに、Nb:0.45%以下、Ti:
0.25%以下、V:0.25%以下のうちの1種以上
を含み、かつ、以下の式を満足し、残部がFeおよび不
可避的不純物であることを特徴とする、高温強度に優れ
た高温機器用オーステナイトステンレス鋼。 1≦(C/12+N/14)/(Nb/93+Ti/4
8+V/51)≦21. A weight fraction of C: 0.05 to 0.12.
%, Si: 2.5% or less, Mn: 2.0% or less, Cr:
16.0 to 20.0%, Ni: 6.0 to 14.0%, M
o: 0.01 to 4%, N: 0.005 to 0.25%, M
g: 0.05% or less (including 0%), Cu: 0.01 to
4%, B: 0.001 to 0.005%, Zr: 0.1%
The following (including 0%), Al: 0.5% or less (including 0%), and Nb: 0.45% or less, Ti:
Excellent in high temperature strength, containing at least one of 0.25% or less and V: 0.25% or less, satisfying the following formula, and the balance being Fe and inevitable impurities. Austenitic stainless steel for high temperature equipment. 1 ≦ (C / 12 + N / 14) / (Nb / 93 + Ti / 4
8 + V / 51) ≦ 2
%、Si:2.5%以下、Mn:2.0%以下、Cr:
16.0〜20.0%、Ni:6.0〜14.0%、M
o:0.01〜4%、N:0.005〜0.25%、M
g:0.05%以下(0%を含む)、Cu:0.01〜
4%、B:0.001〜0.005%、Zr:0.1%
以下(0%を含む)、Al:0.5%以下(0%を含
む)であり、Nb:0.45%以下、Ti:0.25%
以下、V:0.25%以下のうちの1種以上を含み、さ
らに、Ce、La、Hfのうちの1種以上を0.1%以
下含み、かつ、以下の式を満足し、残部がFeおよび不
可避的不純物であることを特徴とする、高温強度に優れ
た高温機器用オーステナイトステンレス鋼。 1≦(C/12+N/14)/(Nb/93+Ti/4
8+V/51)≦22. A weight fraction of C: 0.05 to 0.12.
%, Si: 2.5% or less, Mn: 2.0% or less, Cr:
16.0 to 20.0%, Ni: 6.0 to 14.0%, M
o: 0.01 to 4%, N: 0.005 to 0.25%, M
g: 0.05% or less (including 0%), Cu: 0.01 to
4%, B: 0.001 to 0.005%, Zr: 0.1%
The following (including 0%), Al: 0.5% or less (including 0%), Nb: 0.45% or less, Ti: 0.25%
V: 0.25% or less, at least one of Ce, La, and Hf is 0.1% or less, and the following formula is satisfied. An austenitic stainless steel for high-temperature equipment, which has excellent high-temperature strength and is Fe and inevitable impurities. 1 ≦ (C / 12 + N / 14) / (Nb / 93 + Ti / 4
8 + V / 51) ≦ 2
%、Si:2.5%以下、Mn:2.0%以下、Cr:
16.0〜20.0%、Ni:6.0〜14.0%、M
o:0.01〜4%、N:0.005〜0.25%、M
g:0.05%以下(0%を含む)、Cu:0.01〜
4%、B:0.001〜0.005%、Zr:0.1%
以下(0%を含む)、Al:0.5%以下(0%を含
む)であり、さらに、Nb:0.45%以下、Ti:
0.25%以下、V:0.25%以下のうちの1種以上
を含み、かつ、以下の式を満足する鋼を、鋳造工程、熱
間加工工程を経て所定の製品形状または半製品となした
後に、1150℃以下の温度で溶体化処理することを特
徴とする、高温強度に優れた高温機器用オーステナイト
ステンレス鋼の製造方法。 1≦(C/12+N/14)/(Nb/93+Ti/4
8+V/51)≦23. A weight fraction of C: 0.05 to 0.12.
%, Si: 2.5% or less, Mn: 2.0% or less, Cr:
16.0 to 20.0%, Ni: 6.0 to 14.0%, M
o: 0.01 to 4%, N: 0.005 to 0.25%, M
g: 0.05% or less (including 0%), Cu: 0.01 to
4%, B: 0.001 to 0.005%, Zr: 0.1%
The following (including 0%), Al: 0.5% or less (including 0%), and Nb: 0.45% or less, Ti:
Steel containing at least one of 0.25% or less and V: 0.25% or less and satisfying the following formula is formed into a predetermined product shape or a semi-finished product through a casting process and a hot working process. After that, a solution treatment is performed at a temperature of 1150 ° C. or less, and a method for producing an austenitic stainless steel for high temperature equipment, which is excellent in high temperature strength. 1 ≦ (C / 12 + N / 14) / (Nb / 93 + Ti / 4
8 + V / 51) ≦ 2
%、Si:2.5%以下、Mn:2.0%以下、Cr:
16.0〜20.0%、Ni:6.0〜14.0%、M
o:0.01〜4%、N:0.005〜0.25%、M
g:0.05%以下(0%を含む)、Cu:0.01〜
4%、B:0.001〜0.005%、Zr:0.1%
以下(0%を含む)、Al:0.5%以下(0%を含
む)であり、Nb:0.45%以下、Ti:0.25%
以下、V:0.25%以下のうちの1種以上を含み、さ
らに、Ce、La、Hfのうちの1種以上を0.1%以
下含み、かつ、以下の式を満足する鋼を、鋳造工程、熱
間加工工程を経て所定の製品形状または半製品となした
後に、1150℃以下の温度で溶体化処理することを特
徴とする、高温強度に優れた高温機器用オーステナイト
ステンレス鋼の製造方法。 1≦(C/12+N/14)/(Nb/93+Ti/4
8+V/51)≦24. A weight fraction of C: 0.05 to 0.12.
%, Si: 2.5% or less, Mn: 2.0% or less, Cr:
16.0 to 20.0%, Ni: 6.0 to 14.0%, M
o: 0.01 to 4%, N: 0.005 to 0.25%, M
g: 0.05% or less (including 0%), Cu: 0.01 to
4%, B: 0.001 to 0.005%, Zr: 0.1%
The following (including 0%), Al: 0.5% or less (including 0%), Nb: 0.45% or less, Ti: 0.25%
Hereinafter, V: steel containing at least one of 0.25% or less, 0.1% or less of at least one of Ce, La, and Hf, and satisfying the following formula, Manufacture of austenitic stainless steel for high temperature equipment excellent in high temperature strength, which is characterized by performing solution treatment at a temperature of 1150 ° C. or less after forming a predetermined product shape or semi-finished product through a casting process and a hot working process. Method. 1 ≦ (C / 12 + N / 14) / (Nb / 93 + Ti / 4
8 + V / 51) ≦ 2
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP32582195A JPH09165655A (en) | 1995-12-14 | 1995-12-14 | Austenitic stainless steel for high temperature equipment and method for producing the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP32582195A JPH09165655A (en) | 1995-12-14 | 1995-12-14 | Austenitic stainless steel for high temperature equipment and method for producing the same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH09165655A true JPH09165655A (en) | 1997-06-24 |
Family
ID=18180980
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP32582195A Pending JPH09165655A (en) | 1995-12-14 | 1995-12-14 | Austenitic stainless steel for high temperature equipment and method for producing the same |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH09165655A (en) |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1342807A3 (en) * | 2002-03-08 | 2004-01-28 | Sumitomo Metal Industries, Ltd. | Austenitic stainless steel tube and manufacturing method thereof |
| EP1679387A4 (en) * | 2003-10-20 | 2009-12-23 | Kubota Kk | HEAT-RESISTANT CAST STEEL FOR A REACTION TUBE FOR THE PRODUCTION OF HYDROGEN WITH OUTSTANDING AGING DURABILITY AND PERMANENT RESISTANCE |
| WO2012153814A1 (en) | 2011-05-11 | 2012-11-15 | 株式会社神戸製鋼所 | Heat-resistant austenitic stainless steel having excellent cyclic oxidation resistance |
| CN103911559A (en) * | 2014-03-18 | 2014-07-09 | 济钢集团有限公司 | Steel plate used for pressure vessel in nuclear power plant and manufacturing method of the steel plate |
| CN104060190A (en) * | 2014-07-09 | 2014-09-24 | 上海大学兴化特种不锈钢研究院 | Chromium-saving and nickel-saving type high-silicon heat-resistant stainless steel |
| WO2015014592A3 (en) * | 2013-07-30 | 2015-04-09 | Schott Ag | Tubular element consisting of austenitic steel, and solar receiver |
| WO2015133551A1 (en) * | 2014-03-05 | 2015-09-11 | 株式会社神戸製鋼所 | Austenitic heat-resistant alloy |
| CN105256256A (en) * | 2015-11-11 | 2016-01-20 | 江苏宇恒电气有限公司 | Production process of compression-resistant anti-corrosion expansion joint with thermally conductive insulating property |
| CN105369157A (en) * | 2015-12-04 | 2016-03-02 | 苏州市神龙门窗有限公司 | Processing process of anti-sticking and abrasion-resistant stainless steel door frame |
| CN105369158A (en) * | 2015-12-04 | 2016-03-02 | 苏州市神龙门窗有限公司 | Processing process of high-temperature-resistant stainless steel window frame |
| CN105369159A (en) * | 2015-12-04 | 2016-03-02 | 苏州市吴中区胥口丰收机械配件厂 | Processing process of high-temperature-resistant and anti-abrasion supporting hanger |
| EP2799570A4 (en) * | 2011-12-27 | 2016-03-02 | Kobe Steel Ltd | Heat-resistant austenitic stainless steel highly inhibited from releasing scale, and stainless-steel pipe |
| CN105401089A (en) * | 2015-11-11 | 2016-03-16 | 江苏宇恒电气有限公司 | Production technology of crush-resisting corrosion-resisting suspension and support suitable for low-temperature environment |
| CN105506252A (en) * | 2015-12-04 | 2016-04-20 | 苏州市吴中区胥口丰收机械配件厂 | Treatment process for anti-sticking wear-resisting low-temperature-resistant flange |
| CN106634436A (en) * | 2016-12-21 | 2017-05-10 | 苏州劲元油压机械有限公司 | Production process of impact-resistant corrosion-resistant check valve |
| KR20180005713A (en) * | 2015-07-01 | 2018-01-16 | 신닛테츠스미킨 카부시키카이샤 | Austenitic heat-resistant alloys and welded structures |
| KR20180012813A (en) * | 2015-07-01 | 2018-02-06 | 신닛테츠스미킨 카부시키카이샤 | Austenitic heat-resistant alloys and welded structures |
-
1995
- 1995-12-14 JP JP32582195A patent/JPH09165655A/en active Pending
Cited By (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1342807A3 (en) * | 2002-03-08 | 2004-01-28 | Sumitomo Metal Industries, Ltd. | Austenitic stainless steel tube and manufacturing method thereof |
| US7014720B2 (en) | 2002-03-08 | 2006-03-21 | Sumitomo Metal Industries, Ltd. | Austenitic stainless steel tube excellent in steam oxidation resistance and a manufacturing method thereof |
| EP1679387A4 (en) * | 2003-10-20 | 2009-12-23 | Kubota Kk | HEAT-RESISTANT CAST STEEL FOR A REACTION TUBE FOR THE PRODUCTION OF HYDROGEN WITH OUTSTANDING AGING DURABILITY AND PERMANENT RESISTANCE |
| WO2012153814A1 (en) | 2011-05-11 | 2012-11-15 | 株式会社神戸製鋼所 | Heat-resistant austenitic stainless steel having excellent cyclic oxidation resistance |
| JP2013076156A (en) * | 2011-05-11 | 2013-04-25 | Kobe Steel Ltd | Heat-resistant austenitic stainless steel having excellent high-temperature strength and cyclic oxidation resistance |
| EP2708611A4 (en) * | 2011-05-11 | 2015-04-08 | Kobe Steel Ltd | Heat-resistant austenitic stainless steel having excellent cyclic oxidation resistance |
| EP2799570A4 (en) * | 2011-12-27 | 2016-03-02 | Kobe Steel Ltd | Heat-resistant austenitic stainless steel highly inhibited from releasing scale, and stainless-steel pipe |
| CN105431558A (en) * | 2013-07-30 | 2016-03-23 | 肖特股份有限公司 | Tubular element consisting of austenitic steel, and solar receiver |
| WO2015014592A3 (en) * | 2013-07-30 | 2015-04-09 | Schott Ag | Tubular element consisting of austenitic steel, and solar receiver |
| JP2015168834A (en) * | 2014-03-05 | 2015-09-28 | 株式会社神戸製鋼所 | Austenitic heat resistant steel |
| WO2015133551A1 (en) * | 2014-03-05 | 2015-09-11 | 株式会社神戸製鋼所 | Austenitic heat-resistant alloy |
| CN103911559A (en) * | 2014-03-18 | 2014-07-09 | 济钢集团有限公司 | Steel plate used for pressure vessel in nuclear power plant and manufacturing method of the steel plate |
| CN104060190A (en) * | 2014-07-09 | 2014-09-24 | 上海大学兴化特种不锈钢研究院 | Chromium-saving and nickel-saving type high-silicon heat-resistant stainless steel |
| KR20180005713A (en) * | 2015-07-01 | 2018-01-16 | 신닛테츠스미킨 카부시키카이샤 | Austenitic heat-resistant alloys and welded structures |
| KR20180012813A (en) * | 2015-07-01 | 2018-02-06 | 신닛테츠스미킨 카부시키카이샤 | Austenitic heat-resistant alloys and welded structures |
| CN105256256A (en) * | 2015-11-11 | 2016-01-20 | 江苏宇恒电气有限公司 | Production process of compression-resistant anti-corrosion expansion joint with thermally conductive insulating property |
| CN105401089A (en) * | 2015-11-11 | 2016-03-16 | 江苏宇恒电气有限公司 | Production technology of crush-resisting corrosion-resisting suspension and support suitable for low-temperature environment |
| CN105369157A (en) * | 2015-12-04 | 2016-03-02 | 苏州市神龙门窗有限公司 | Processing process of anti-sticking and abrasion-resistant stainless steel door frame |
| CN105369158A (en) * | 2015-12-04 | 2016-03-02 | 苏州市神龙门窗有限公司 | Processing process of high-temperature-resistant stainless steel window frame |
| CN105369159A (en) * | 2015-12-04 | 2016-03-02 | 苏州市吴中区胥口丰收机械配件厂 | Processing process of high-temperature-resistant and anti-abrasion supporting hanger |
| CN105506252A (en) * | 2015-12-04 | 2016-04-20 | 苏州市吴中区胥口丰收机械配件厂 | Treatment process for anti-sticking wear-resisting low-temperature-resistant flange |
| CN106634436A (en) * | 2016-12-21 | 2017-05-10 | 苏州劲元油压机械有限公司 | Production process of impact-resistant corrosion-resistant check valve |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108396223B (en) | A kind of super austenitic stainless steel and its alloy composition optimization design method | |
| EP2199420B1 (en) | Austenitic stainless steel | |
| JP4277113B2 (en) | Ni-base alloy for heat-resistant springs | |
| JPH09165655A (en) | Austenitic stainless steel for high temperature equipment and method for producing the same | |
| JPH0734202A (en) | Rotor for steam turbine | |
| CN108026623B (en) | Ferritic stainless steel | |
| US8865060B2 (en) | Austenitic stainless steel | |
| JP2019189889A (en) | Austenitic stainless steel | |
| JP6160787B2 (en) | Thin plate and manufacturing method thereof | |
| JP6547599B2 (en) | Austenitic heat resistant steel | |
| JP6776469B1 (en) | Duplex stainless steel and its manufacturing method | |
| RU2383649C2 (en) | Precipitation hardening steel (versions) and item out of steel (versions) | |
| JP4116134B2 (en) | Austenitic stainless steel excellent in high temperature sag resistance and method for producing the same | |
| JPH06322489A (en) | Steel tube for boiler excellent in steam oxidation resistance | |
| JP2000328198A (en) | Austenitic stainless steel with excellent hot workability | |
| JP6624345B1 (en) | Ferritic stainless steel | |
| JPWO2018066573A1 (en) | Austenitic heat-resistant alloy and welded joint using the same | |
| JPH0830253B2 (en) | Precipitation hardening type martensitic stainless steel with excellent workability | |
| CN115461477B (en) | Method for producing austenitic heat-resistant steel | |
| WO2019151125A1 (en) | Ferritic stainless steel | |
| JP2970432B2 (en) | High temperature stainless steel and its manufacturing method | |
| JP2015132019A (en) | High purity ferritic stainless steel sheet excellent in oxidation resistance and high temperature strength and method for producing the same | |
| JP3591486B2 (en) | High Cr ferritic heat resistant steel | |
| WO2020189789A1 (en) | Ferritic heat-resistant steel | |
| JPH09165654A (en) | Austenitic stainless steel for high temperature equipment and method for producing the same |