[go: up one dir, main page]

JPH09163640A - Power converter - Google Patents

Power converter

Info

Publication number
JPH09163640A
JPH09163640A JP7346212A JP34621295A JPH09163640A JP H09163640 A JPH09163640 A JP H09163640A JP 7346212 A JP7346212 A JP 7346212A JP 34621295 A JP34621295 A JP 34621295A JP H09163640 A JPH09163640 A JP H09163640A
Authority
JP
Japan
Prior art keywords
gas
liquid
storage container
pressure
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7346212A
Other languages
Japanese (ja)
Inventor
Isao Nihei
勲 二瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7346212A priority Critical patent/JPH09163640A/en
Publication of JPH09163640A publication Critical patent/JPH09163640A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Jet Pumps And Other Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an equipment excellent in safety wherein high energy conversion efficiency can be obtained, pollution material like exhaust gas is not discharged during operation, nearby construction to a consumer area is possible, and operation is easy. SOLUTION: This power converter is equipped with a gas storing vessel 1 of high pressure and liquid storing vessels 2, 3, and transports gas from the gas storing vessel 1 to the liquid storing vessels 2, 3 by connecting a system transporting gas. Liquid is spouted from the liquid storing vessel 2 or 3 by the pressure of gas, and a water turbine generator 6 is installed in the way of the spouted liquid flow. Electric power, during power, etc., are generated from the stored gas of high pressure by flowing power of the spouted liquid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】エネルギーを高圧ガスとして貯蔵
し、必要な時にかつ必要な場所で、電力や駆動力などの
動力に変換し利用できるため、電力供給産業をはじめと
して、広く各種産業界で利用することができる。
[Industrial application] Energy is stored as high-pressure gas, and can be converted to power such as electric power and driving power at the time and when it is needed, so it is widely used in various industries including the power supply industry. Can be used.

【0002】[0002]

【従来の技術】エネルギーを高圧ガスとして貯蔵する方
法は従来から用いられており、この高圧ガスからエネル
ギー特に電気を取り出す装置には、ガスタービン発電機
が利用されている。ガスタービン発電機はガスを噴射し
タービンを高速回転させ、発電機を回して電気を発生さ
せる。しかしガスタービン発電機の発電効率は、噴射す
るガスが高温ほど良好であるため、貯蔵するガスとして
空気を用い、これに燃料を混合し燃焼させ、高温かつ高
圧のガスとして噴射し,タービンを回転させる方法が採
用されている。
2. Description of the Related Art A method of storing energy as high-pressure gas has been conventionally used, and a gas turbine generator is used as a device for extracting energy, particularly electricity from this high-pressure gas. A gas turbine generator injects gas to rotate a turbine at a high speed, and rotates a generator to generate electricity. However, the higher the temperature of the injected gas, the better the power generation efficiency of the gas turbine generator. Therefore, air is used as the gas to be stored, fuel is mixed with it and burned, and it is injected as high-temperature and high-pressure gas to rotate the turbine. The method of letting is adopted.

【0003】[0003]

【発明が解決しようとする課題】エネルギーを高圧ガス
として貯蔵し、必要に応じ、電気や駆動力などのエネル
ギーに変換して使用する装置において、本発明は従来の
技術の以下の課題を解決する。 (1)低出力から高出力にわたる広い出力範囲で、高い
エネルギー変換効率が得られること。 (2)常温近傍の低温で使用することができ、使用材料
上の制約が少ないこと。 (3)燃料などの補助的原料を必要とせず、運転中に排
ガスなどの公害物質を出さないこと。 (4)高圧ガスを貯蔵する場所とエネルギーに変換して
使用する場所との距離的制約が少なく、消費地に近接し
て建設できること。 (5)運転中の騒音レベルが低いこと。 (6)装置の起動停止を短時間に行うことができ、かつ
操作が容易なこと。 (7)安全性に優れていること。
SUMMARY OF THE INVENTION The present invention solves the following problems of the prior art in an apparatus for storing energy as high-pressure gas and converting it into energy such as electricity or driving force as needed. . (1) High energy conversion efficiency can be obtained in a wide output range from low output to high output. (2) It can be used at low temperatures near room temperature, and there are few restrictions on the materials used. (3) It does not require auxiliary raw materials such as fuel and does not emit pollutants such as exhaust gas during operation. (4) There are few restrictions on the distance between the place where high-pressure gas is stored and the place where it is converted into energy for use, and it can be built close to the place of consumption. (5) The noise level during operation is low. (6) The device can be started and stopped in a short time, and the operation is easy. (7) Excellent safety.

【0004】[0004]

【課題を解決するための手段】ガス体は圧縮性が大きい
ためエネルギーを高圧ガスとして貯蔵することができ
る。しかし、この高圧ガスを直接タービンの稼動に使用
することは、エネルギー変換効率が悪い。一方、液体は
非圧縮性のため圧力としてエネルギーを貯蔵することは
できないが、流れの力でタービンを稼動する際のエネル
ギー変換効率は高い。このため、貯蔵ガスの圧力を非圧
縮性の液体に移し、この圧力により液体を高流速で噴出
し、タービンを稼動させることにより、高い変換効率を
得ることができる。すなわちこの発明によれば、高圧の
ガス貯蔵容器から液体貯蔵容器に、ガスを移送する系統
をとうしガスを移送し、このガスの圧力によって、液体
貯蔵容器より、液体を噴出し、この噴出する液体の流れ
の力により動力発生機を稼動し、電気や駆動力などのエ
ネルギーに変換させることにより、上記課題をすべて解
決することができる。
Since the gas body has a large compressibility, energy can be stored as high-pressure gas. However, if this high-pressure gas is directly used to operate the turbine, the energy conversion efficiency is poor. On the other hand, the liquid cannot store energy as pressure because it is incompressible, but the energy conversion efficiency when the turbine is operated by the force of the flow is high. Therefore, by transferring the pressure of the stored gas to the incompressible liquid, jetting the liquid at a high flow rate by this pressure, and operating the turbine, it is possible to obtain high conversion efficiency. That is, according to the present invention, the gas is transferred from the high-pressure gas storage container to the liquid storage container through the system for transferring the gas, and the pressure of the gas ejects the liquid from the liquid storage container and ejects the liquid. All of the above problems can be solved by operating the power generator by the force of the liquid flow and converting it into energy such as electricity and driving force.

【0005】[0005]

【発明の実施の形態】本発明は、高い圧力のガス休から
エネルギーを取り出すための装置である。実施の形態
は、高圧のガス貯蔵容器から液体貯蔵容器に、ガスを移
送する系統を接続し、この系統をとうし、ガスの圧力に
よって、液体貯蔵容器より液体を噴出させ、この液体の
流れの途中に動力発生機を設置する形態のものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an apparatus for extracting energy from a high pressure gas rest. In the embodiment, a system for transferring gas is connected from a high-pressure gas storage container to a liquid storage container, the system is passed, and the pressure of the gas causes the liquid to be ejected from the liquid storage container, so that the flow of the liquid The power generator is installed on the way.

【0006】[0006]

【実施例】以下に図示した実施例を参照してこの発明を
さらに説明する。第1図はこの発明の動力変換装置の実
施例を示したものである。高圧ガス貯蔵容器1は内容積
約1万立方メートルで、約150気圧の空気を貯蔵して
いる。液体貯蔵容器(甲)2は内容積約110立方メー
トルで、内部に約100立方メートルの水を貯蔵してい
る。また液体貯蔵容器(乙)3は液体貯蔵容器(甲)2
と同じ形状、大きさで、内部は空である。高圧ガス貯蔵
容器1と液体貯蔵容器(甲)2及び液体貯蔵容器(乙)
3はガス移送系4により連結されている。液体貯蔵容器
(甲)2と液体貯蔵容器(乙)3との液相の底部は液体
移送系5により連結されている。液体移送系5の途中に
は、水車型タービン発電機6が設置されている。ガス移
送系4の減圧弁7により、高圧ガス貯蔵容器1からの圧
力を約2気圧に減圧し弁8を開け、液体貯蔵容器(甲)
2の水に約2気圧の圧力をかける。液相移送系5の弁9
及び弁10を開けることにより液体貯蔵容器(甲)2の
水は液体貯蔵容器(乙)3に流入する。流入する水の流
速は毎秒10数メートルである。この流入する水の力に
より、水車型タービン発電機6が回転し発電する。液体
貯蔵容器(乙)3のガス放出弁11を大気に解放するこ
とにより、水は液体貯蔵容器(甲)2より液体貯蔵容器
(乙)3に一定流速で流れ、一定の電気出力が得られ
る。発電容量は、供給されるガスの圧力、水車型タービ
ン発電機6及び液体移送系5の大きさなどにより、任意
に選択できる。液体貯蔵容器(甲)2の水が全て液体貯
蔵容器(乙)3に移送された後は、弁8を閉じ、弁12
を開け、高圧ガス貯蔵容器1の空気を液体貯蔵容器
(乙)3に導入する。液相移送系5の弁9及び10を閉
じ、弁13及び14を開け、さらにガス放出弁15を大
気に解放することにより、液体貯蔵容器(乙)3の水は
液体貯蔵容器(甲)2に、逆に移送され、水車型タービ
ン発電機6が作動し発電する。以上、本装置の起動及び
運転について説明したが、停止についても、ガス移送系
4及び液体移送系5の弁を閉じることにより短時間で実
施することができる。即ち消費側の要求に応じ起動停止
の操作を容易に行うことができる。本装置の運転は高圧
ガス貯蔵容器1の貯蔵空気が大気圧になるまで続けるこ
とができる。この場合の積算発電量は約4万Kwhであ
る。配管系の流動抵抗、水車型タービン発電機6の効率
等により、実際の発電量はこれより低い値になるが70
%以上のエネルギー変換効率を達成することができる。
本実施例は、高圧ガス貯蔵容器1、液体貯蔵容器(甲)
2、液体貯蔵容器(乙)3及び水車型タービン発電機6
が各々1基のシステムであるが、複数基を距離的にも離
れた場所で結合するシステムも可能である。ガス移送系
4を流れるガスの流動抵抗は小さく、長い距離を接続し
ても、エネルギーの損失は少ない。このためガスを貯蔵
する場所とエネルギーに変換して使用する場所との距離
的制約が少なく、消費地に近接して建設できる。また高
圧ガス貯蔵容器1を多数設置することにより積算発電量
を増加することができる。本実施例は、貯蔵された高圧
ガスのエネルギーを電気に変換する装置に関するもので
あるが、水車型タービン発電機6のかわりに、水車やピ
ストンなどの機器を用いることにより、回転や往復運動
などの駆動力に変換し利用することもできる。この装置
に用いられる高圧ガス及び水は常温近傍の低温で稼動す
ることができ、安全性が高く、材料的制約が少ない。水
車型タービン発電機6を作動するための液体として水銀
や油等も利用できる。水銀は高比重のため、液体貯蔵容
器やタービン発電機を小さくすることができ、油はター
ビン発電機の潤滑性を向上させ、さらに防食効果の点で
も優れている。
The present invention will be further described with reference to the embodiments shown below. FIG. 1 shows an embodiment of the power converter of the present invention. The high-pressure gas storage container 1 has an internal volume of about 10,000 cubic meters and stores air of about 150 atm. The liquid storage container (instep) 2 has an internal volume of about 110 cubic meters and stores about 100 cubic meters of water inside. The liquid storage container (Otsu) 3 is the liquid storage container (A) 2
It has the same shape and size as, but is empty inside. High-pressure gas storage container 1, liquid storage container (A) 2 and liquid storage container (B)
3 are connected by a gas transfer system 4. The bottoms of the liquid phases of the liquid storage container (the former) 2 and the liquid storage container (the second) 3 are connected by a liquid transfer system 5. A water turbine type turbine generator 6 is installed in the middle of the liquid transfer system 5. The pressure from the high-pressure gas storage container 1 is reduced to about 2 atm by the pressure reducing valve 7 of the gas transfer system 4, and the valve 8 is opened, so that the liquid storage container (the former)
Apply a pressure of about 2 atmospheres to the water of 2. Valve 9 of liquid phase transfer system 5
Also, by opening the valve 10, the water in the liquid storage container (step A) 2 flows into the liquid storage container (exhibit B) 3. The flow rate of the inflowing water is ten and several meters per second. The force of this inflowing water causes the turbine-type turbine generator 6 to rotate and generate electricity. By releasing the gas release valve 11 of the liquid storage container (B) 3 to the atmosphere, water flows from the liquid storage container (A) 2 to the liquid storage container (B) 3 at a constant flow rate, and a constant electric output is obtained. . The power generation capacity can be arbitrarily selected depending on the pressure of the supplied gas, the sizes of the turbine type turbine generator 6 and the liquid transfer system 5, and the like. After all the water in the liquid storage container (A) 2 has been transferred to the liquid storage container (B) 3, the valve 8 is closed and the valve 12 is closed.
Open and introduce the air in the high-pressure gas storage container 1 into the liquid storage container (B) 3. By closing the valves 9 and 10 of the liquid phase transfer system 5, opening the valves 13 and 14, and further opening the gas release valve 15 to the atmosphere, the water in the liquid storage container (B) 3 is stored in the liquid storage container (A) 2 , The water turbine type turbine generator 6 is activated to generate electricity. Although the startup and operation of the present apparatus have been described above, the shutdown can be performed in a short time by closing the valves of the gas transfer system 4 and the liquid transfer system 5. That is, the operation of starting and stopping can be easily performed in response to a request from the consumer. The operation of this device can be continued until the air stored in the high-pressure gas storage container 1 becomes atmospheric pressure. In this case, the integrated power generation amount is about 40,000 Kwh. Due to the flow resistance of the piping system, the efficiency of the turbine type turbine generator 6, etc.
Energy conversion efficiencies of greater than or equal to% can be achieved.
In this embodiment, the high pressure gas storage container 1 and the liquid storage container (the former) are used.
2, liquid storage container (Otsu) 3 and turbine type turbine generator 6
Is a single system, but a system in which a plurality of groups are connected at distances is also possible. The flow resistance of the gas flowing through the gas transfer system 4 is small, and even if a long distance is connected, the energy loss is small. Therefore, there is little distance restriction between the place where the gas is stored and the place where the gas is used after being converted into energy, and it can be built close to the consuming place. In addition, by installing a large number of high pressure gas storage containers 1, it is possible to increase the integrated power generation amount. This embodiment relates to a device for converting the energy of stored high-pressure gas into electricity, but by using a device such as a water turbine or a piston instead of the water turbine type turbine generator 6, rotation, reciprocating motion, etc. It can also be used by converting it into a driving force. The high-pressure gas and water used in this device can operate at low temperatures near room temperature, have high safety, and have few material restrictions. Mercury, oil, or the like can be used as a liquid for operating the water turbine type turbine generator 6. Since mercury has a high specific gravity, the liquid storage container and the turbine generator can be made small, and the oil improves the lubricity of the turbine generator, and is also excellent in the anticorrosion effect.

【0007】[0007]

【発明の効果】以上の説明から分かるように、この発明
によれば、次のような効果を達成することができる。 (1) 大容量のエネルギーを高圧ガスとして貯蔵し、
これから電気や駆動力などのエネルギーを、低出力から
高出力にわたる広い出力範囲にわたって、高い変換効率
で取り出し、利用することができる。 (2) 貯蔵される高圧ガス及びエネルギーを取り出す
ための液体は、いずれも常温近傍の低温で使用すること
ができ、かつガス及び液体には腐食性の少ないものを選
択することができるため、使用材料上の制約が少ない。 (3) 燃料などの補助的原料を必要とせず、運転中に
排ガスなどの公害物質を出さない。また大気中の酸素を
必要とすることもないため、地球環境にやさしい装置で
ある。 (4) 高圧のガス貯蔵容器と液体貯蔵容器とを接続す
る系統内を流れるガスの流動抵抗は小さく、長い距離を
接続しても、エネルギーの損失は少ない。このためガス
を貯蔵する場所とエネルギーに変換して使用する場所と
の距離的制約が少なく、消費地に近接して建設できる。 (5) ガスの移送及び液体タービンの回転の際に発生
する音はガスタービン発電機の運転音に比べ小さく、騒
音レベルの低い装置にすることができる。 (6) システムの構成が単純なため、起動停止を短時
間に行うことができ、かつ操作が容易である。 (7) 以上述べてきた効果により、安全性に優れたシ
ステムを構成することができる。
As can be seen from the above description, according to the present invention, the following effects can be achieved. (1) Store a large amount of energy as high-pressure gas,
From this, energy such as electricity and driving force can be extracted and utilized with high conversion efficiency over a wide output range from low output to high output. (2) The stored high-pressure gas and the liquid for extracting energy can be used at a low temperature near room temperature, and the gas and the liquid can be selected so as to have low corrosiveness. There are few material restrictions. (3) It does not require auxiliary materials such as fuel, and does not emit pollutants such as exhaust gas during operation. Moreover, since it does not require atmospheric oxygen, it is a device that is kind to the global environment. (4) The flow resistance of the gas flowing in the system connecting the high-pressure gas storage container and the liquid storage container is small, and the energy loss is small even if the gas is connected over a long distance. Therefore, there is little distance restriction between the place where the gas is stored and the place where the gas is used after being converted into energy, and it can be built close to the consuming place. (5) The noise generated when the gas is transferred and the liquid turbine is rotated is smaller than the operating noise of the gas turbine generator, and the device can be made to have a low noise level. (6) Since the system configuration is simple, it can be started and stopped in a short time, and the operation is easy. (7) Due to the effects described above, a system having excellent safety can be configured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】動力変換装置の実施例である。FIG. 1 is an example of a power conversion device.

【符号の説明】[Explanation of symbols]

1 高圧ガス貯蔵容器 2 液体貯蔵容器(甲) 3 液体貯蔵容器(乙) 4 ガス移送系 5 液体移送系 6 水車型タービン発電機 7 減圧弁 8 弁 9 弁 10 弁 11 ガス放出弁 12 弁 13 弁 14 弁 15 ガス放出弁 1 High-pressure gas storage container 2 Liquid storage container (A) 3 Liquid storage container (Otsu) 4 Gas transfer system 5 Liquid transfer system 6 Water turbine type turbine generator 7 Pressure reducing valve 8 valve 9 valve 10 valve 11 Gas release valve 12 valve 13 valve 14 valves 15 gas release valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高圧のガス貯蔵容器と液体貯蔵容器とを
有し、ガス貯蔵容器から、液体貯蔵容器に、ガスを移送
する系統を接続し、この系統をとうして、ガス貯蔵容器
から液体貯蔵容器にガスを移送し、このガスの圧力によ
って、液体貯蔵容器より、液体を噴出し、この噴出する
液体の流れの途中に動力発生機を設置し、この噴出する
液体の流れの力により動力発生機を稼動することによ
り、貯蔵された高圧のガスから動力を発生する動力変換
装置。
1. A system having a high-pressure gas storage container and a liquid storage container, wherein a system for transferring gas from the gas storage container to the liquid storage container is connected. The gas is transferred to the storage container, the pressure of this gas causes the liquid to be ejected from the liquid storage container, a power generator is installed in the middle of the flow of the ejected liquid, and the power of the ejected liquid flow is used to drive the power. A power conversion device that generates power from stored high-pressure gas by operating a generator.
JP7346212A 1995-12-01 1995-12-01 Power converter Pending JPH09163640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7346212A JPH09163640A (en) 1995-12-01 1995-12-01 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7346212A JPH09163640A (en) 1995-12-01 1995-12-01 Power converter

Publications (1)

Publication Number Publication Date
JPH09163640A true JPH09163640A (en) 1997-06-20

Family

ID=18381873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7346212A Pending JPH09163640A (en) 1995-12-01 1995-12-01 Power converter

Country Status (1)

Country Link
JP (1) JPH09163640A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501776A (en) * 2006-08-21 2010-01-21 韓国機械研究院 Compressed air storage power generation system and power generation method using compressed air storage power generation system
CN102384112A (en) * 2011-08-25 2012-03-21 吕夏春 Method for lifting fluid and device
JP2012527865A (en) * 2009-05-22 2012-11-08 ジェネラル コンプレッション インコーポレイテッド Compression and / or expansion device
JP2013530661A (en) * 2010-04-09 2013-07-25 ダニエル・ジョン・ケンウェイ System and method for storing and extracting energy
JP2020007941A (en) * 2018-07-05 2020-01-16 株式会社豊田中央研究所 Fluid energy converter
IT201900021450A1 (en) * 2019-11-18 2021-05-18 Bucchia Lorenzo Del Apparatus for producing energy from hydrostatic force
CN115875244A (en) * 2023-02-13 2023-03-31 西安热工研究院有限公司 Constant-pressure full-capacity energy release type compressed air energy storage system and energy storage method
JP2024542808A (en) * 2021-12-03 2024-11-15 パワーエイト テック インコーポレイテッド ENERGY STORAGE SYSTEM AND METHOD USING A DIFFICULT PRESSURE MEDIA INTERACTING MODULES - Patent application
EP4571094A1 (en) * 2023-12-12 2025-06-18 Christy Flood Fluid generator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501776A (en) * 2006-08-21 2010-01-21 韓国機械研究院 Compressed air storage power generation system and power generation method using compressed air storage power generation system
JP2012527865A (en) * 2009-05-22 2012-11-08 ジェネラル コンプレッション インコーポレイテッド Compression and / or expansion device
JP2013530661A (en) * 2010-04-09 2013-07-25 ダニエル・ジョン・ケンウェイ System and method for storing and extracting energy
CN102384112A (en) * 2011-08-25 2012-03-21 吕夏春 Method for lifting fluid and device
JP2020007941A (en) * 2018-07-05 2020-01-16 株式会社豊田中央研究所 Fluid energy converter
IT201900021450A1 (en) * 2019-11-18 2021-05-18 Bucchia Lorenzo Del Apparatus for producing energy from hydrostatic force
JP2024542808A (en) * 2021-12-03 2024-11-15 パワーエイト テック インコーポレイテッド ENERGY STORAGE SYSTEM AND METHOD USING A DIFFICULT PRESSURE MEDIA INTERACTING MODULES - Patent application
CN115875244A (en) * 2023-02-13 2023-03-31 西安热工研究院有限公司 Constant-pressure full-capacity energy release type compressed air energy storage system and energy storage method
US12025157B1 (en) 2023-02-13 2024-07-02 Xi'an Thermal Power Research Institute Co., Ltd Compressed-air energy storage system and method of constant-pressure full-capacity energy-release type
EP4571094A1 (en) * 2023-12-12 2025-06-18 Christy Flood Fluid generator
WO2025125279A1 (en) * 2023-12-12 2025-06-19 Christy Flood Fluid generator

Similar Documents

Publication Publication Date Title
US8806866B2 (en) Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8307651B2 (en) Arrangement for exhaust gas heat utilization
CN100359279C (en) On-board hydrogen storage unit with heat transfer system for use in hydrogen-powered vehicles
CN104481697B (en) A kind of combustion gas, diesel oil and supercritical carbon dioxide generating boats and ships power-driven system
US9581296B2 (en) System for supplying liquefied natural gas fuel and method of operating the same
JP2004522046A (en) Hand scanner
CA2401926A1 (en) Combined liquefied gas and compressed gas re-fueling station and method of operating a combined liquefied gas and compressed gas re-fueling station
CN109677639A (en) The high-power Nuclear Power System in space based on Closed Brayton Power Cycle
PL85439B1 (en)
JPH09163640A (en) Power converter
JP2004036608A (en) Gaseous fuel feed facility to power generation system of liquefied gas transportation marine vessel
US20090120092A1 (en) Single loop heat pump generator
EP2102058A1 (en) Fuel supply apparatus of liquefied gas carrier and fuel supply method thereof
CN103026021A (en) Marine denitration system and ship provided with same
JP2003227599A (en) Methane tanker
AU782458B2 (en) Method for discharging waste gas from submarines without a signature
CN101187466A (en) Furnace slag residual heat recovering device
CN114320603B (en) Supercritical fluid and gas turbine combined cycle system
KR101588679B1 (en) Apparatus for reducing ship resistance
JPH09242661A (en) Method for transmitting energy to remote place
CN202272167U (en) Power system of ship
CA2340463A1 (en) Method and apparatus for power generation version 2
JPH1054339A (en) Method for integrating and storing energy
JPH09222003A (en) Method for converting heat energy into power
CN113606055A (en) Supercritical carbon dioxide energy storage power generation system of marine diesel engine