[go: up one dir, main page]

JPH09178567A - Wavemeter for light - Google Patents

Wavemeter for light

Info

Publication number
JPH09178567A
JPH09178567A JP35058195A JP35058195A JPH09178567A JP H09178567 A JPH09178567 A JP H09178567A JP 35058195 A JP35058195 A JP 35058195A JP 35058195 A JP35058195 A JP 35058195A JP H09178567 A JPH09178567 A JP H09178567A
Authority
JP
Japan
Prior art keywords
light
measurement
beam splitter
wavelength
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35058195A
Other languages
Japanese (ja)
Inventor
Shinya Nagashima
伸哉 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ando Electric Co Ltd
Original Assignee
Ando Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ando Electric Co Ltd filed Critical Ando Electric Co Ltd
Priority to JP35058195A priority Critical patent/JPH09178567A/en
Publication of JPH09178567A publication Critical patent/JPH09178567A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wavemeter for light in which fluctuation of interference frequency due to a heat mass generated in an interference path can be suppressed while enhancing the accuracy of measurement. SOLUTION: A reference light and a measuring light from a reference light source 1 and a measuring light source 16 are split, reflected and multiplexed, respectively, by means of a beam splitter 2, a fixed mirror 3 and a moving mirror 4 to generate a reference interference light and a measuring interference light which are then subjected to photoelectric conversion and the interference wave numbers N, K are counted at wave number counting sections 11, 12. The air is fed to the interference optical path using a fan 15 and, while stirring a tot mass generated in the interference optical path, a moving mirror 4 is moved in the direction of optical axis through a linear motion mechanism 5 and then the moving mirror 4 is located by means of three positional sensors 6, 7, 8. Wave numbers N, K, a positional signal, and a reference light wavelength λ1 are inputted to an arithmetic section 13 where the wavelength λ2 of measuring light is calculated for each moving section of moving mirror 4 and averaged and then the operation results are presented at a display section 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は光波長計、より具
体的には測定光の波長を基準光との干渉を利用して測定
する光波長計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical wavelength meter, and more particularly to an optical wavelength meter for measuring the wavelength of measuring light by utilizing the interference with reference light.

【0002】[0002]

【従来の技術】従来技術による光波長計の構成を図3、
図4により説明する。尚、図3は従来技術による光波長
計の構成図である。図4は図3内の移動鏡光路内に生じ
た熱塊を図示したものと、移動鏡掃引時に受光器から出
力される信号の波形図を対比したものであり、縦軸は電
流、横軸は距離(時間)を示す。また、図4内の符号は
図3内の同一符号に相当する。
2. Description of the Related Art FIG. 3 shows the configuration of a conventional optical wavelength meter.
This will be described with reference to FIG. Incidentally, FIG. 3 is a block diagram of an optical wavelength meter according to the prior art. FIG. 4 is a diagram comparing the heat mass generated in the optical path of the moving mirror in FIG. 3 with the waveform diagram of the signal output from the optical receiver when the moving mirror is swept. Indicates the distance (time). Further, the reference numerals in FIG. 4 correspond to the same reference numerals in FIG.

【0003】図3において、基準光源1からは波長が既
知である基準光L1が出力される。この基準光L1はビ
ームスプリッタ2により反射光L1aと通過光L1bに
二分岐される。反射光L1aは固定鏡3で反射され、再
びビームスプリッタ2に入射される。通過光L1bは移
動鏡4により反射され、ビームスプリッタ2内で固定鏡
3からの反射光L1aと合波される。これによって基準
となる干渉縞が形成された基準干渉光L1′が形成され
る。この基準干渉光L1′は受光器9で基準干渉信号S
1に光電変換され、波数カウント部11に入力される。
In FIG. 3, a reference light source 1 outputs a reference light L1 having a known wavelength. The reference light L1 is split by the beam splitter 2 into a reflected light L1a and a passing light L1b. The reflected light L1a is reflected by the fixed mirror 3 and is incident on the beam splitter 2 again. The passing light L1b is reflected by the moving mirror 4 and is combined with the reflected light L1a from the fixed mirror 3 in the beam splitter 2. As a result, the reference interference light L1 'on which the reference interference fringes are formed is formed. This reference interference light L1 'is received by the light receiver 9 as the reference interference signal S.
It is photoelectrically converted into 1 and is input to the wave number counting unit 11.

【0004】同様に測定光源16からは波長が未知であ
る測定光L2が基準光L1と平行に出力される。この測
定光L2はビームスプリッタ2により反射光L2aと通
過光L2bに二分岐される。反射光L2aは固定鏡3で
反射され、ビームスプリッタ2に入射される。通過光L
2bは移動鏡4により反射され、ビームスプリッタ2内
で固定鏡3からの反射光L2aと合波される。これによ
って測定干渉縞が形成された測定干渉光L2′が形成さ
れる。この測定干渉光L2′は受光器10で測定干渉信
号S2に光電変換され、波数カウント部12に入力され
る。
Similarly, the measuring light source 16 outputs measuring light L2 having an unknown wavelength in parallel with the reference light L1. The measuring light L2 is split into two by the beam splitter 2 into a reflected light L2a and a passing light L2b. The reflected light L2a is reflected by the fixed mirror 3 and enters the beam splitter 2. Passing light L
2b is reflected by the moving mirror 4 and is combined with the reflected light L2a from the fixed mirror 3 in the beam splitter 2. As a result, the measurement interference light L2 'on which the measurement interference fringes are formed is formed. The measurement interference light L2 ′ is photoelectrically converted into a measurement interference signal S2 by the light receiver 10 and input to the wave number counting unit 12.

【0005】ここで、移動鏡4は移動ステージ51とガ
イドレール52で構成される線形移動機構5の移動ステ
ージ51に固定されており、移動ステージ51がガイド
レール52上を矢印Aの方向(ビームスプリッタ2の通
過光L1b,L2bと平行な方向)に移動すると、基準
干渉信号S1と測定干渉信号S2は干渉によって周期的
に繰り返す光強度変化に対応したアナログ信号となる。
The movable mirror 4 is fixed to the movable stage 51 of the linear movement mechanism 5 composed of the movable stage 51 and the guide rail 52, and the movable stage 51 moves on the guide rail 52 in the direction of arrow A (beam). When moving in a direction parallel to the light beams L1b and L2b passing through the splitter 2), the reference interference signal S1 and the measurement interference signal S2 become analog signals corresponding to light intensity changes which are periodically repeated due to interference.

【0006】また、移動ステージ51の移動速度をVと
すると、前記基準干渉信号S1と測定干渉信号S2のそ
れぞれ周波数Fは(1)式によって求められる。基準干
渉信号S1と測定干渉信号S2の周波数比は基準光L1
と測定光L2の光周波数比に相当する。
When the moving speed of the moving stage 51 is V, the frequencies F of the reference interference signal S1 and the measurement interference signal S2 can be obtained by the equation (1). The frequency ratio between the reference interference signal S1 and the measurement interference signal S2 is the reference light L1.
And the optical frequency ratio of the measurement light L2.

【0007】 F=2×V/(λ0 /n0 ) …(1) ここで、λ0 は基準光L1または測定光L2の真空中で
の光波長であり、n0 は基準光L1または測定光L2の
大気の屈折率を表す。
F = 2 × V / (λ 0 / n 0 ) ... (1) where λ 0 is the optical wavelength of the reference light L1 or the measurement light L2 in vacuum, and n 0 is the reference light L1 or It represents the refractive index of the measurement light L2 in the atmosphere.

【0008】波数カウント部11,12は基準干渉信号
S1の波数Nと測定干渉信号S2の波数Kを計数する。
演算部13は基準干渉信号S1と測定干渉信号S2の周
波数比が基準光L1と測定光L2の光周波数比に相当す
ることから、波数カウント部11,12より入力された
波数NとKより(2)式の演算を行い、測定光L2の真
空中での波長λ2 を求める。この演算によって得られた
測定光L2の波長λ2は表示部14に適宜表示される。
The wave number counting units 11 and 12 count the wave number N of the reference interference signal S1 and the wave number K of the measurement interference signal S2.
Since the frequency ratio between the reference interference signal S1 and the measurement interference signal S2 corresponds to the optical frequency ratio between the reference light L1 and the measurement light L2, the calculation unit 13 calculates from the wave numbers N and K input from the wave number counting units 11 and 12 ( Equation (2) is calculated to obtain the wavelength λ 2 of the measurement light L2 in vacuum. The wavelength λ 2 of the measurement light L2 obtained by this calculation is appropriately displayed on the display unit 14.

【0009】 λ2 =(N/K)×(n2 /n1 )×λ1…(2) ここで、λ1 は真空中での基準光L1の波長、n1 は基
準光L1の大気屈折率、n2 は測定光L2の大気屈折率
とする。
Λ 2 = (N / K) × (n 2 / n 1 ) × λ 1 (2) where λ 1 is the wavelength of the reference light L 1 in vacuum, and n 1 is the atmosphere of the reference light L 1. The refractive index, n 2 is the atmospheric refractive index of the measurement light L2.

【0010】[0010]

【発明が解決しようとする課題】ところで、一般に大気
は温度の塊となって存在し、温度の塊は熱塊と呼ばれ
る。また、大気中の光屈折率は気温、気圧、湿度によっ
て変化することから、図3に示す構成の光波長計では、
図4に示すように基準光L1の通過光L1bの光路内だ
けに熱塊C1が生じると、熱塊C1内外に空気屈折率差
が生じ、(1)式で表される基準干渉信号S1の周波数
が一時的に変化する。
By the way, generally, the atmosphere exists as a mass of temperature, and the mass of temperature is called a heat mass. Further, since the optical refractive index in the atmosphere changes depending on the temperature, atmospheric pressure, and humidity, the optical wavelength meter with the configuration shown in FIG.
As shown in FIG. 4, when the heat mass C1 is generated only in the optical path of the passing light L1b of the reference light L1, an air refractive index difference is generated inside and outside the heat mass C1, and the reference interference signal S1 represented by the equation (1) The frequency changes temporarily.

【0011】これは基準干渉信号S1の波数Nに誤差が
生じたものと等価である。このため、(2)式で求めら
れる測定光波長λ2 の確度が劣化してしまう。特に、熱
塊C1の径が大きければ平均化処理による改善が見込め
ない。
This is equivalent to an error in the wave number N of the reference interference signal S1. Therefore, the accuracy of the measurement light wavelength λ 2 obtained by the equation (2) deteriorates. In particular, if the diameter of the heat mass C1 is large, the improvement due to the averaging process cannot be expected.

【0012】本発明は、基準光の経路に存在する熱塊に
よる誤差をなくし、さらに測定精度を向上させることの
できる光波長計を提供することを目的とする。
An object of the present invention is to provide an optical wavelength meter capable of eliminating an error due to a heat mass existing in the path of the reference light and further improving the measurement accuracy.

【0013】[0013]

【課題を解決するための手段】上記の目的を達成するた
めに本発明に係る光波長計は、波長が既知の基準光を出
力する基準光源1と、この基準光源1からの光と測定光
をそれぞれ2方向に分岐し、各分岐方向からの反射光を
合波するビームスプリッタ2と、このビームスプリッタ
2により分岐された一方の基準光と測定光を反射して前
記ビームスプリッタ2に再入力する固定鏡3と、前記ビ
ームスプリッタ2で分岐された他方の基準光と測定光を
反射して前記ビームスプリッタ2に再入力する移動鏡4
と、前記移動鏡4を光軸方向に移動させる線形移動機構
5と、前記移動鏡4の移動範囲を区分し、区分両端の位
置に移動鏡4が到達したことを検出する位置検出手段
6,7,8と、前記ビームスプリッタ2の合波によって
得られる基準干渉光及び測定干渉光それぞれを光電変換
してする受光手段9,10と、この受光手段器9,10
からの基準干渉信号及び測定干渉信号の波数を計数する
波数カウント手段11,12と、前記位置検出手段6,
7,8からの位置検出信号により各区分に対応する基準
干渉信号の波数と測定干渉信号の波数と前記基準光の波
長から区分毎に測定光の波長を算出して平均化処理を行
う演算部13と、この演算部13からの演算結果を表示
する表示部14と、前記ビームスプリッタ2と前記固定
鏡3との間、前記ビームスプリッタ2及び前記移動鏡4
の間の少なくともいずれか一方の光路に向けて送風する
送風手段15とを具備するようにした。
In order to achieve the above object, an optical wavelength meter according to the present invention comprises a reference light source 1 for outputting reference light having a known wavelength, a light from the reference light source 1 and a measurement light. Beam splitter 2 that splits each of the light beams into two directions and multiplexes the reflected light beams from the respective branching directions, and one of the reference light beam and the measurement light beam split by this beam splitter 2 is reflected and re-entered into the beam splitter 2. Fixed mirror 3 and moving mirror 4 for reflecting the other reference light and measurement light split by the beam splitter 2 and re-inputting them into the beam splitter 2.
And a linear movement mechanism 5 for moving the movable mirror 4 in the optical axis direction, and a position detection means 6 for dividing the moving range of the movable mirror 4 and detecting that the movable mirror 4 has reached the positions at both ends of the division. 7, 8 and light receiving means 9 and 10 for photoelectrically converting the reference interference light and the measurement interference light obtained by the combination of the beam splitter 2, and the light receiving means 9 and 10.
Wave number counting means 11, 12 for counting the wave numbers of the reference interference signal and the measurement interference signal from the position detecting means 6,
An arithmetic unit that calculates the wavelength of the measurement light for each section from the wave number of the reference interference signal corresponding to each section, the wave number of the measurement interference signal, and the wavelength of the reference light based on the position detection signals from 7 and 8 and performs averaging processing. 13, a display unit 14 for displaying a calculation result from the calculation unit 13, a space between the beam splitter 2 and the fixed mirror 3, the beam splitter 2 and the movable mirror 4.
And an air blowing unit 15 for blowing air toward at least one of the optical paths.

【0014】さらに、前記移動鏡4を複数回掃引して前
記位置検出手段6,7,8によって得られる各区分毎に
生じる基準干渉信号の波数と測定干渉信号の波数と基準
光波長から測定光の波長を複数回算出し、各算出結果を
平均化するようにした。
Further, the moving mirror 4 is swept a plurality of times to obtain the measuring light from the wave number of the reference interference signal, the wave number of the measuring interference signal and the reference light wavelength generated in each section obtained by the position detecting means 6, 7 and 8. Was calculated a plurality of times and the respective calculation results were averaged.

【0015】[0015]

【発明の実施の形態】以下、図1及び図2を参照して本
発明の実施の形態を詳細に説明する。但し、図1及び図
2において、図3及び図4と同一部分には同一符号を付
して示し、ここでは重複する説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to FIGS. However, in FIGS. 1 and 2, the same parts as those of FIGS. 3 and 4 are denoted by the same reference numerals, and the duplicated description is omitted here.

【0016】図1は本発明の一実施形態とする光波長計
の構成を示す図である。また、図2は図1内の移動鏡掃
引時に受光器から出力される信号の波形図であり、縦軸
は電流、横軸は距離(時間)を示す。また、図2内の符
号は図1内の同一符号に相当する。
FIG. 1 is a diagram showing the configuration of an optical wavelength meter as an embodiment of the present invention. Further, FIG. 2 is a waveform diagram of a signal output from the light receiver at the time of sweeping the moving mirror in FIG. 1, in which the vertical axis represents current and the horizontal axis represents distance (time). Further, the reference numerals in FIG. 2 correspond to the same reference numerals in FIG.

【0017】この実施形態の光波長計で特徴とする点
は、ビームスプリッタ2と移動鏡4との間に風を送るフ
ァン15を設け、さらに移動鏡4が任意位置まで到達し
たことを検出する少なくとも3つ以上の位置センサ6,
7,8を移動鏡4の移動方向に沿って設けるようにした
点にある。
A feature of the optical wavelength meter of this embodiment is that a fan 15 for sending wind is provided between the beam splitter 2 and the movable mirror 4, and it is further detected that the movable mirror 4 has reached an arbitrary position. At least three or more position sensors 6,
7 and 8 are provided along the moving direction of the movable mirror 4.

【0018】ファン15の風向きは移動鏡4の光軸と垂
直となるように調整される。基準光源1と測定光源16
から出力され、受光部9と受光部10に達する光の過程
は従来技術と同一である。
The wind direction of the fan 15 is adjusted so as to be perpendicular to the optical axis of the movable mirror 4. Reference light source 1 and measurement light source 16
The process of the light output from the light receiving unit 9 and the light receiving unit 10 is the same as in the prior art.

【0019】すなわち、上記構成では、風向きが移動鏡
4の光軸と垂直となるように設置されたファン15を駆
動することにより、移動鏡4の入射/反射光路内の空気
を攪拌し、基準光側に分布して周波数に影響の及ぼす大
きな熱塊C1を、微小径でしかも均一な熱塊C2の分布
に分離する。
That is, in the above configuration, by driving the fan 15 installed so that the wind direction is perpendicular to the optical axis of the movable mirror 4, the air in the incident / reflected optical path of the movable mirror 4 is agitated to obtain the reference. The large heat mass C1 distributed on the light side and affecting the frequency is separated into a uniform heat mass C2 distribution with a small diameter.

【0020】ここで、線形移動機構5の移動ステージ5
1が熱塊C2が分布しているガイドレール52上を矢印
A方向に移動すると、基準光の受光部9と測定光の受光
部10からは従来技術と同様に基準干渉信号S1と測定
干渉信号S2が出力され、それぞれ波数カウント部1
1,12に入力される。
Here, the moving stage 5 of the linear moving mechanism 5
When 1 moves in the direction of arrow A on the guide rail 52 where the heat mass C2 is distributed, the reference interference signal S1 and the measurement interference signal are emitted from the reference light receiving unit 9 and the measurement light receiving unit 10 as in the conventional technique. S2 is output and the wave number counting unit 1 is output.
1, 12 are input.

【0021】各波数カウント部11,12は基準干渉信
号S1の波数Nと測定干渉信号S2の波数Kを計数す
る。一方、演算部13は、位置センサ6,7,8からの
移動鏡位置検出信号から、位置センサ6,7間と位置セ
ンサ7,8間の波数N,Kをカウント部11,12から
読み込む。
The wave number counting units 11 and 12 count the wave number N of the reference interference signal S1 and the wave number K of the measurement interference signal S2. On the other hand, the calculation unit 13 reads the wave numbers N and K between the position sensors 6 and 7 and between the position sensors 7 and 8 from the counting units 11 and 12 from the moving mirror position detection signals from the position sensors 6, 7, and 8.

【0022】次に、演算部13は位置センサ6,7間、
位置センサ7,8間に生じる波数Nと波数Kから測定光
波長λ2 を前述の(2)式により別々に算出する。さら
に、微小径の熱塊C2内外の空気屈折率差による波長測
定誤差を低減するため、別々に演算した測定光波長λ2
の平均値を演算し、その演算結果を表示部14に表示さ
せる。
Next, the calculation unit 13 is arranged between the position sensors 6 and 7,
From the wave number N and the wave number K generated between the position sensors 7 and 8, the measurement light wavelength λ 2 is separately calculated by the above equation (2). Furthermore, in order to reduce the wavelength measurement error due to the difference in air refractive index between the inside and outside of the small-diameter heat mass C2, the measurement light wavelength λ 2 calculated separately is reduced.
Is calculated, and the calculation result is displayed on the display unit 14.

【0023】したがって、上記構成による光波長計は、
ファン15を駆動することにより、移動鏡4の入射/反
射光路内の空気を攪拌し、基準光側に分布する熱塊C1
を微小径でしかも均一な熱塊C2の分布に分離している
ので、基準干渉信号S1の周波数に与える影響が抑える
ことができる。
Therefore, the optical wavemeter having the above-mentioned configuration is
By driving the fan 15, the air in the incident / reflection optical path of the movable mirror 4 is agitated, and the heat mass C1 distributed on the reference light side is agitated.
Is separated into a uniform distribution of heat lumps C2 having a small diameter, the influence on the frequency of the reference interference signal S1 can be suppressed.

【0024】さらに、演算部13において、位置センサ
6〜8からの移動鏡位置検出信号から、移動鏡4の移動
範囲を区分し、それぞれの区分で得られる測定光波長λ
2 を平均化処理するようにしているので、波長測定誤差
を(位置センサ数−1)1/2だけ改善することができ、
これによって測定精度を向上させることができる。
Further, in the arithmetic unit 13, the moving range of the moving mirror 4 is divided based on the moving mirror position detection signals from the position sensors 6 to 8, and the measurement light wavelength λ obtained in each division.
Since 2 is averaged, the wavelength measurement error can be improved by (number of position sensors-1) 1/2 ,
This can improve the measurement accuracy.

【0025】尚、上記実施形態では、ファン15によっ
て移動鏡4の入射/反射光路内の空気を撹拌するように
したが、固定鏡3の入射/反射光路内に対し、風向きが
光軸と垂直となるようにファン15を配置し、その光路
内の空気を撹拌するようにしても同様の効果がある。両
方実施した方がよいことは勿論である。
In the above embodiment, the fan 15 stirs the air in the incident / reflected optical path of the movable mirror 4, but the wind direction is perpendicular to the optical axis with respect to the incident / reflected optical path of the fixed mirror 3. The same effect can be obtained by disposing the fan 15 so that the air in the optical path is agitated. Of course, it is better to do both.

【0026】さらに、演算部13は位置センサ6,7,
8間に生じる波数Nと波数Kと基準光波長λ1 から測定
光の波長λ2 を(2)式により算出した後、さらに複数
回、位置センサ6,7,8間に生じる波数Nと波数Kと
基準光波長λ1 から測定光の波長λ2 を(2)式により
算出する。そして、複数回測定した測定光波長λ2 の平
均値を演算して、その演算結果を表示部14に表示させ
るようにしてもよい。このようにすれば、微小径の熱塊
C2内外の空気屈折率差による波長測定誤差をさらに低
減することができる。
Further, the calculation unit 13 includes position sensors 6, 7,
After calculating the wavelength λ 2 of the measurement light from the wave number N and wave number K generated between 8 and the reference light wavelength λ 1 by the formula (2), the wave number N and wave number generated between the position sensors 6, 7 and 8 are further repeated. The wavelength λ 2 of the measurement light is calculated from K and the reference light wavelength λ 1 by the equation (2). Then, the average value of the measurement light wavelength λ 2 measured a plurality of times may be calculated, and the calculation result may be displayed on the display unit 14. By doing so, it is possible to further reduce the wavelength measurement error due to the difference in air refractive index between the inside and outside of the heat lump C2 having a small diameter.

【0027】[0027]

【発明の効果】以上のように本発明によれば、ファンの
風により移動鏡の光路中の熱塊を攪拌し熱塊を微小径で
しかも均一な熱塊の分布に分離して測定光波長を測定
し、平均化処理することで微小径の熱塊内外の空気屈折
率差による波長測定誤差を(位置センサ数−1)1/2
け改善した光波長計ができる。
As described above, according to the present invention, the heat lump in the optical path of the movable mirror is agitated by the wind of the fan to separate the heat lump into a distribution of the heat lump having a small diameter and a uniform measurement light wavelength. By measuring and averaging, the optical wavelength meter in which the wavelength measurement error due to the difference in air refractive index between the inside and outside of the small-diameter heat mass is improved by (position sensor number-1) 1/2 can be made.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による一実施形態とする光波長計の構成
を示す図である。
FIG. 1 is a diagram showing a configuration of an optical wavelength meter according to an embodiment of the present invention.

【図2】同実施形態において、移動鏡の光路中の熱塊を
攪拌する様子と基準干渉信号と測定干渉信号の周波数変
化の様子を関連付けて示す図である。
FIG. 2 is a diagram showing, in association with each other, a state of stirring a heat mass in an optical path of a movable mirror and a state of frequency change of a reference interference signal and a measurement interference signal in the same embodiment.

【図3】従来技術による光波長計の構成を示す図であ
る。
FIG. 3 is a diagram showing a configuration of an optical wavelength meter according to a conventional technique.

【図4】従来の光波長計において、移動鏡の光路中に熱
塊が発生したときの様子と基準干渉信号と測定干渉信号
の周波数変化を様子を示す図である。
FIG. 4 is a diagram showing a conventional optical wavelength meter when a heat mass is generated in the optical path of a movable mirror and a frequency change of a reference interference signal and a measurement interference signal.

【符号の説明】[Explanation of symbols]

1 基準光源 2 ビームスプリッタ 3 固定鏡 4 移動鏡 5 線形移動機構 51 移動ステージ 52 ガイドレール 6,7,8 位置センサ 9 基準光用受光器 10 測定光用受光器 11,12 波数カウント部 13 演算部 14 表示部 15 ファン 16 測定光源 L1 基準光 L1′ 基準干渉光 S1 基準干渉信号 L2 測定光 L2′ 測定干渉光 S2 測定干渉信号 N 基準干渉波数 K 測定干渉波数 1 Reference Light Source 2 Beam Splitter 3 Fixed Mirror 4 Moving Mirror 5 Linear Moving Mechanism 51 Moving Stage 52 Guide Rails 6, 7, 8 Position Sensor 9 Reference Light Receiver 10 Measuring Light Receiver 11, 12 Wavenumber Counting Unit 13 Computing Unit 14 display section 15 fan 16 measurement light source L1 reference light L1 'reference interference light S1 reference interference signal L2 measurement light L2' measurement interference light S2 measurement interference signal N reference interference wave number K measurement interference wave number

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 波長が既知の基準光を出力する基準光源
(1) と、 この基準光源(1) からの光と測定光をそれぞれ2方向に
分岐し、各分岐方向からの反射光を合波するビームスプ
リッタ(2) と、 このビームスプリッタ(2) により分岐された一方の基準
光と測定光を反射して前記ビームスプリッタ(2) に再入
力する固定鏡(3) と、 前記ビームスプリッタ(2) で分岐された他方の基準光と
測定光を反射して前記ビームスプリッタ(2) に再入力す
る移動鏡(4) と、 前記移動鏡(4) を光軸方向に移動させる線形移動機構
(5) と、 前記移動鏡(4) の移動範囲を区分し、区分両端の位置に
移動鏡(4) が到達したことを検出する位置検出手段(6,
7,8) と、 前記ビームスプリッタ(2) の合波によって得られる基準
干渉光及び測定干渉光それぞれを光電変換してする受光
手段(9,10)と、 この受光手段器(9,10)からの基準干渉信号及び測定干渉
信号の波数を計数する波数カウント手段(11,12) と、 前記位置検出手段(6,7,8) からの位置検出信号により各
区分に対応する基準干渉信号の波数と測定干渉信号の波
数と前記基準光の波長から区分毎に測定光の波長を算出
して平均化処理を行う演算部(13)と、 この演算部(13)からの演算結果を表示する表示部(14)
と、 前記ビームスプリッタ(2) と前記固定鏡(3) との間、前
記ビームスプリッタ(2) 及び前記移動鏡(4) の間の少な
くともいずれか一方の光路に向けて送風する送風手段(1
5)とを具備することを特徴とする光干渉計。
1. A reference light source for outputting reference light having a known wavelength.
(1), a beam splitter (2) that splits the light from the reference light source (1) and the measurement light into two directions, respectively, and multiplexes the reflected light from each split direction, and this beam splitter (2) A fixed mirror (3) that reflects one of the split reference light and measurement light and re-enters the beam splitter (2), and reflects the other split reference light and measurement light by the beam splitter (2). Moving mirror (4) that re-enters the beam splitter (2) and a linear moving mechanism that moves the moving mirror (4) in the optical axis direction.
(5) and the position detection means (6, 6) that divides the movement range of the movable mirror (4) and detects that the movable mirror (4) has reached the positions at both ends of the division.
7,8), a light receiving means (9,10) for photoelectrically converting each of the reference interference light and the measurement interference light obtained by the combination of the beam splitter (2), and this light receiving means device (9,10) From the reference interference signal corresponding to each section by the wave number counting means (11, 12) for counting the wave number of the reference interference signal and the measurement interference signal from the position detection signal from the position detection means (6, 7, 8). A calculation unit (13) that calculates the wavelength of the measurement light for each category from the wave number, the wave number of the measurement interference signal, and the wavelength of the reference light, and displays the calculation result from this calculation unit (13). Display (14)
And a blowing means (1) for blowing air toward at least one optical path between the beam splitter (2) and the fixed mirror (3) and between the beam splitter (2) and the movable mirror (4).
5) An optical interferometer comprising:
【請求項2】 前記移動鏡(4) を複数回掃引して前記位
置検出手段(6,7,8)によって得られる各区分毎に生じる
基準干渉信号の波数と測定干渉信号の波数と基準光波長
から測定光の波長を複数回算出し、各算出結果を平均化
することを特徴とする光干渉計。
2. The wave number of a reference interference signal, the wave number of a measurement interference signal, and the reference light generated for each section by the position detecting means (6, 7, 8) obtained by sweeping the movable mirror (4) a plurality of times. An optical interferometer characterized by calculating the wavelength of measurement light a plurality of times from the wavelength and averaging the respective calculation results.
JP35058195A 1995-12-22 1995-12-22 Wavemeter for light Pending JPH09178567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35058195A JPH09178567A (en) 1995-12-22 1995-12-22 Wavemeter for light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35058195A JPH09178567A (en) 1995-12-22 1995-12-22 Wavemeter for light

Publications (1)

Publication Number Publication Date
JPH09178567A true JPH09178567A (en) 1997-07-11

Family

ID=18411453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35058195A Pending JPH09178567A (en) 1995-12-22 1995-12-22 Wavemeter for light

Country Status (1)

Country Link
JP (1) JPH09178567A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6687013B2 (en) 2000-03-28 2004-02-03 Hitachi, Ltd. Laser interferometer displacement measuring system, exposure apparatus, and electron beam lithography apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6687013B2 (en) 2000-03-28 2004-02-03 Hitachi, Ltd. Laser interferometer displacement measuring system, exposure apparatus, and electron beam lithography apparatus
US6839142B2 (en) 2000-03-28 2005-01-04 Hitachi, Ltd. Laser interferometer displacement measuring system, exposure apparatus, and electron beam lithography apparatus

Similar Documents

Publication Publication Date Title
JPH0419512B2 (en)
CN101825432B (en) Dual-wavelength optical fiber interference large-range high-resolution displacement measurement system
US20100054935A1 (en) Wind Turbine Having a Sensor System for Detecting Deformation in a Wind Turbine Rotor Blade and Corresponding Method
US5757489A (en) Interferometric apparatus for measuring a physical value
JPH07181007A (en) Interferometer applied measuring device
JPH0749207A (en) Absolute interferometry method and laser interferometer suitable for this method
CN110207733B (en) Optical fiber interferometer arm length difference measuring device and method based on sweep frequency laser
TW201504613A (en) Use of one or more retro-reflectors in a gas analyzer system
US3286582A (en) Interference technique and apparatus for spectrum analysis
JPH0634318A (en) Interference measuring apparatus
US6462823B1 (en) Wavelength meter adapted for averaging multiple measurements
KR20130048183A (en) Measurement apparatus
JPH04326005A (en) Straightness measuring device
US4611915A (en) Absolute distance sensor
JPH09178567A (en) Wavemeter for light
US20230288185A1 (en) Optical interference range sensor
US20220171035A1 (en) Optical interferometric lidar system to control main measurement range using active selection of reference optical path length
JP2012103140A (en) Interference measuring method and interference measuring device
US4345838A (en) Apparatus for spectrometer alignment
JPH11295153A (en) Wavelength detector
JP5088915B2 (en) Displacement measuring device
JP3795976B2 (en) Non-contact temperature measuring device
JPS61114120A (en) Scanning type thickness measuring device
JPH06117810A (en) Absolute length measuring instrument with disturbance correction function
JPH0989675A (en) Light wavemeter