[go: up one dir, main page]

JPH09186315A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH09186315A
JPH09186315A JP7342071A JP34207195A JPH09186315A JP H09186315 A JPH09186315 A JP H09186315A JP 7342071 A JP7342071 A JP 7342071A JP 34207195 A JP34207195 A JP 34207195A JP H09186315 A JPH09186315 A JP H09186315A
Authority
JP
Japan
Prior art keywords
layer
electrode
main surface
igbt
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7342071A
Other languages
Japanese (ja)
Other versions
JP3331846B2 (en
Inventor
Yasuhiko Kono
恭彦 河野
Mutsuhiro Mori
森  睦宏
Junpei Uruno
純平 宇留野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP34207195A priority Critical patent/JP3331846B2/en
Publication of JPH09186315A publication Critical patent/JPH09186315A/en
Application granted granted Critical
Publication of JP3331846B2 publication Critical patent/JP3331846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D12/00Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
    • H10D12/411Insulated-gate bipolar transistors [IGBT]
    • H10D12/441Vertical IGBTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/103Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
    • H10D62/105Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] 
    • H10D62/106Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]  having supplementary regions doped oppositely to or in rectifying contact with regions of the semiconductor bodies, e.g. guard rings with PN or Schottky junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D8/00Diodes

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the withstand voltage of a semiconductor device form being reduced and to make it possible to prevent a diode from being broken due to a field concentration by a method wherein the relation between the distance between the junctions at both end parts of an overvoltage inhibiting diode and the distance between a junction at the end part, which is located on the gate electrode side, of the inhibiting diode and the outermost peripheral terminal of an FLR is specified. SOLUTION: In a semiconductor element consisting of a withstand voltage holding region, which is formed on an oxide film 121 and has a polycrystalline diode, the distance L1 between a fifth layer, which is closest to an IGBT region, and a fifth layer, which is furthest from the IGBT region, is set 4/5 or shorter of the distance L2 between the junction between polycrystalline silicon diodes, which is closest to the IGBT region, and the junction between the polycrystalline silicon diodes, which is furthest from the IGBT region. In this relation, as a change in a potential in the outer peripheral part of a field limiting ring(FLR) is equalized by an overvoltage inhibiting diode 130, a field concentration is not generated and the withstand voltage of a semiconductor device is not reduced. A potential distribution becomes equal in the outer periphery of the FLR by the diode 130 and the deterioration of the withstand voltage of the device can be prevented from being generated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、帰還ダイオード及
び過電圧抑制ダイオードを内蔵したIGBT、特にイン
バータ用IGBTに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an IGBT including a feedback diode and an overvoltage suppressing diode, and more particularly to an inverter IGBT.

【0002】[0002]

【従来の技術】近年、地球的規模でのエネルギー枯渇が
大きな問題となっており、電気システムの省エネルギー
化が強く求められている。また、産業機器の高度化,複
雑化に伴い、モーター等の駆動機器の高性能化,小型
化,低騒音化,使い勝手の向上等が望まれている。これ
らの要求に応えるために駆動機器のインバータ化が進め
られており、エアコンや照明等の民生用機器分野から、
鉄鋼,電車等の大電力分野に至るまで、インバータが広
く適用されてきている。
2. Description of the Related Art In recent years, energy depletion on a global scale has become a serious problem, and there is a strong demand for energy saving of electric systems. In addition, as industrial equipment has become more sophisticated and complex, driving equipment such as motors are required to have higher performance, smaller size, lower noise, and improved usability. In order to meet these demands, the conversion of drive equipment into inverters is being promoted, and from the field of consumer equipment such as air conditioners and lighting,
Inverters have been widely applied to large power fields such as steel and electric trains.

【0003】インバータの高性能化のためには、スイッ
チング素子の高性能化が必須である。最近では、サイリ
スタ,GTOに代わって、絶縁ゲートバイポーラトラン
ジスタ(以下IGBTと呼ぶ)が広く用いられるように
なってきている。IGBTは、MOSFETの高速スイッチン
グ特性とバイポーラトランジスタの高出力特性とを併せ
持つ素子であり、インバータの省エネルギー化,小型化
等に有効である。
In order to improve the performance of the inverter, it is essential to improve the performance of the switching element. Recently, insulated gate bipolar transistors (hereinafter referred to as IGBTs) have been widely used in place of thyristors and GTOs. The IGBT is an element that has both high-speed switching characteristics of a MOSFET and high output characteristics of a bipolar transistor, and is effective for energy saving and downsizing of an inverter.

【0004】図2にIGBTを用いた三層フルブリッジ
インバータの回路を示す。図2において、200はIG
BT、201は帰還ダイオード、210,211は直流
電源に接続された直流端子、212〜214は負荷に接
続された交流端子である。
FIG. 2 shows a circuit of a three-layer full bridge inverter using an IGBT. In FIG. 2, 200 is IG
BT, 201 is a feedback diode, 210 and 211 are DC terminals connected to a DC power source, and 212 to 214 are AC terminals connected to a load.

【0005】IGBTは電圧駆動型素子であるので、イ
ンバータに適用すると駆動回路の小型化,駆動電力の低
減を図れる。また、動作速度が高速であるのでインバー
タを高周波化でき、騒音を低減できる等のメリットがあ
る。これらの理由から、エアコンや照明,熱器具などの
民生機器分野への適用が盛んであり、今後更に、応用分
野を拡大して行くものと考えられる。しかしそのために
は、一層の高信頼化,低コスト化を図る必要がある。
Since the IGBT is a voltage drive type element, if it is applied to an inverter, the drive circuit can be downsized and the drive power can be reduced. Further, since the operating speed is high, there are advantages that the frequency of the inverter can be increased and noise can be reduced. For these reasons, it is widely applied to the field of consumer equipment such as air conditioners, lighting, and heat appliances, and it is considered that the field of application will be further expanded in the future. However, for that purpose, it is necessary to further improve reliability and reduce cost.

【0006】高信頼で低コストのインバータ用IGBT
の実現のために図3に示す回路構成を一体化したIGB
Tが検討されている。図4は図3の回路をIGBTに内
蔵したときの断面構造を示す図である。図3,図4にお
いて、図2と共通の構成要素には同一の符号を付してあ
る。図3において、110はゲート電極、111はエミ
ッタ電極、112は過電圧抑制ダイオードゲート側電
極、113は過電圧抑制ダイオードコレクタ側電極、1
15はコレクタ電極、130は過電圧抑制ダイオード、
300はIGBT、301はゲート―エミッタ間抵抗、
302は帰還ダイオードである。また、図4において、
100はコレクタ層、101はバッファ層、102はド
リフト層、103はベース層、104はソース層、10
5は耐圧保持のための電界緩和構造(以下これをField
Limitting Ring:FLR層と呼ぶ)、106はカソード
層、114はカソード配線、120は層間絶縁膜、12
1は酸化膜、400は帰還ダイオードの電流経路を模式
的に示した矢印、401は帰還ダイオードを便宜的に示
した記号である。過電圧抑制用ダイオード130は、p
型層とn型層とが交互に配列された多結晶シリコンから
なり、酸化膜によりドリフト層102からは絶縁されて
いる。このp型層とn型層の繰り返し配列数はIGBT
の耐圧により決まり、一般的には素子耐圧600VのI
GBTで、40〜80直列程度である。図示してはいな
いが、ゲート電極110は過電圧抑制用ダイオードゲー
ト側電極112に接続されており、また、これも図示し
ないが、ゲート電極110とエミッタ電極111の間に
はゲートエミッタ間抵抗301が接続されている。さら
に、IGBTセルを形成した領域を導通領域,耐圧保持
のための構造を形成した領域を耐圧保持領域と呼ぶ。
Highly reliable and low cost IGBT for inverter
IGB that integrates the circuit configuration shown in FIG.
T is being considered. FIG. 4 is a diagram showing a sectional structure when the circuit of FIG. 3 is incorporated in an IGBT. 3 and 4, the same components as those in FIG. 2 are designated by the same reference numerals. In FIG. 3, 110 is a gate electrode, 111 is an emitter electrode, 112 is an overvoltage suppressing diode gate side electrode, 113 is an overvoltage suppressing diode collector side electrode, 1
15 is a collector electrode, 130 is an overvoltage suppressing diode,
300 is an IGBT, 301 is a gate-emitter resistance,
302 is a feedback diode. Also, in FIG.
100 is a collector layer, 101 is a buffer layer, 102 is a drift layer, 103 is a base layer, 104 is a source layer, 10
5 is an electric field relaxation structure for maintaining the breakdown voltage (hereinafter referred to as Field
Limiting Ring: referred to as FLR layer), 106 is a cathode layer, 114 is a cathode wiring, 120 is an interlayer insulating film, 12
Reference numeral 1 is an oxide film, 400 is an arrow that schematically shows the current path of the feedback diode, and 401 is a symbol that conveniently shows the feedback diode. The overvoltage suppressing diode 130 is p
The drift layer 102 is insulated from the drift layer 102 by an oxide film, which is made of polycrystalline silicon in which the type layers and the n-type layers are alternately arranged. The number of repeating arrangements of the p-type layer and the n-type layer is IGBT.
Of the device withstand voltage of 600V.
It is about 40 to 80 series in GBT. Although not shown, the gate electrode 110 is connected to the overvoltage suppressing diode gate side electrode 112, and although not shown, a gate-emitter resistor 301 is provided between the gate electrode 110 and the emitter electrode 111. It is connected. Further, the region in which the IGBT cell is formed is called a conduction region, and the region in which a structure for holding the breakdown voltage is formed is called a breakdown voltage holding region.

【0007】まず、過電圧抑制ダイオードの動作を簡単
に説明すると、コレクタ―エミッタ間に過電圧が印加さ
れると過電圧抑制ダイオード130が降伏し、コレクタ
―ゲート間に電流が流れる。この電流が、ゲート―エミ
ッタ間抵抗301を流れることによりゲート電位VGを
上昇させ、IGBTをオンして過電圧の上昇を抑制す
る。このダイオードをIGBTに付加することにより、
過電圧に対するIGBTの破壊耐量を向上でき、スナバ
レス化等により装置の小型化が図れる。また、図4に示
す構造でIGBTに内蔵すると、素子の体積を増大させ
ることなくこの機能を付加できる。過電圧抑制機能内蔵
IGBTに関しては、特開平2−185069 号に開示になっ
ている。
First, the operation of the overvoltage suppressing diode will be briefly described. When an overvoltage is applied between the collector and the emitter, the overvoltage suppressing diode 130 breaks down and a current flows between the collector and the gate. This current flows through the gate-emitter resistor 301 to increase the gate potential VG, turn on the IGBT, and suppress the increase in overvoltage. By adding this diode to the IGBT,
The breakdown resistance of the IGBT against overvoltage can be improved, and the device can be downsized by making it snubberless. If the structure shown in FIG. 4 is incorporated in the IGBT, this function can be added without increasing the volume of the device. An IGBT with an overvoltage suppressing function is disclosed in Japanese Patent Laid-Open No. 2-185069.

【0008】次に、帰還ダイオードの動作について説明
する。インバータの回生モードで、IGBTに逆バイア
スが印加されると、図3に示した帰還ダイオード302
が導通する。この帰還ダイオードは図4のベース層10
3,ドリフト層102の接合部分に形成されており、図
4では401で示されている。帰還ダイオードの電流は
経路400を流れ、コレクタ電極に至る。帰還ダイオー
ドをIGBTに内蔵することにより、従来12個の半導
体素子で構成されていた図2の三層フルブリッジインバ
ータ回路を、6個の半導体素子で構成できることにな
り、より小型化が図れる。この様な帰還ダイオード内蔵
IGBTは、例えば、特願平2−512038 号に開示されて
いる。
Next, the operation of the feedback diode will be described. When a reverse bias is applied to the IGBT in the regenerative mode of the inverter, the feedback diode 302 shown in FIG.
Conducts. This feedback diode is the base layer 10 of FIG.
3, it is formed at the junction of the drift layer 102, and is indicated by 401 in FIG. The feedback diode current flows through path 400 to the collector electrode. By incorporating the feedback diode in the IGBT, the three-layer full-bridge inverter circuit of FIG. 2, which has been conventionally composed of 12 semiconductor elements, can be composed of 6 semiconductor elements, and the size can be further reduced. Such a feedback diode built-in IGBT is disclosed in, for example, Japanese Patent Application No. 2-512038.

【0009】以上の、高信頼化と、低コスト化の2つの
方策を同時にIGBTに実施すれば、信頼性が高く低コ
ストのIGBTが実現できる。
If the above two measures for high reliability and low cost are simultaneously applied to the IGBT, a highly reliable and low cost IGBT can be realized.

【0010】[0010]

【発明が解決しようとする課題】しかし、上述の過電圧
抑制ダイオード及び帰還ダイオードを内蔵したIGBT
には次の問題点がある。
However, an IGBT incorporating the above-described overvoltage suppressing diode and feedback diode is incorporated.
Has the following problems.

【0011】第1の問題点は、過電圧抑制用ダイオード
130の電位分布とFLR105の電位分布とが一致しないた
めに、素子の耐圧が低下するという問題である。図5
(a)に過電圧抑制ダイオードによる電位分布を、
(b)にFLRによる電位分布を示す。過電圧抑制ダイ
オードの場合は、p型n型繰り返し層の各々で均等にコ
レクタ―エミッタ間電圧を分担するために、電位分布は
図7(a)の500で示すように均等な等電位線を示す。
これに対して、FLR構造の場合は、隣接するFLRの
間隔に依存して等電位線の分布が変化する。一般に、I
GBTのFLRでは、安定して耐圧を保持できるため、
チップ端部に近づく程、電位変化が大きくなる様な構成
をとる場合が多い。
The first problem is that the breakdown voltage of the device is lowered because the potential distribution of the overvoltage suppressing diode 130 does not match the potential distribution of the FLR 105. FIG.
The potential distribution by the overvoltage suppressing diode is shown in (a),
The potential distribution by FLR is shown in (b). In the case of the overvoltage suppressing diode, since the collector-emitter voltage is evenly shared by each of the p-type n-type repeating layers, the potential distribution shows a uniform equipotential line as shown by 500 in FIG. 7 (a). .
On the other hand, in the case of the FLR structure, the distribution of equipotential lines changes depending on the interval between adjacent FLRs. In general, I
Since the FLT of GBT can stably maintain the withstand voltage,
In many cases, the configuration is such that the potential change increases as it approaches the edge of the chip.

【0012】しかしながら、過電圧抑制ダイオードとF
LR構造とを同時に適用した図4の構造では、過電圧抑
制ダイオードによる電位分布とFLRによる電位分布が
一致しないため、耐圧が低下するという問題が生じる。
これを図6に示す。図6では、FLRによる電位の分布
と、過電圧抑制ダイオードによる電位の分布との相互作
用を考慮した電位分布を示す。図6に示すように、両者
の電位分布が一致しないために、電界が集中する箇所が
生じ、降伏現象を引き起こして素子耐圧を低下させると
いう問題点を有する。
However, the overvoltage suppressing diode and the F
In the structure of FIG. 4 to which the LR structure is applied at the same time, the potential distribution due to the overvoltage suppressing diode and the potential distribution due to the FLR do not match each other, which causes a problem that the breakdown voltage decreases.
This is shown in FIG. FIG. 6 shows a potential distribution that takes into consideration the interaction between the potential distribution by the FLR and the potential distribution by the overvoltage suppressing diode. As shown in FIG. 6, since the electric potential distributions of the two do not match, a portion where the electric field is concentrated occurs, which causes a breakdown phenomenon to lower the breakdown voltage of the device.

【0013】第2の問題点として、帰還ダイオードの電
流集中による破壊現象がある。これを図7を用いて説明
する。図7は過電圧抑制ダイオード及び帰還ダイオード
を内蔵したIGBTチップの平面図、特にチップ角部の
拡大図である。図7において、図2〜6と共通の構成要
素には同一の符号を付してある。図7において、700は
帰還ダイオードの電流を模式的を示す電流線である。図
7から分かるように、チップの角部では帰還ダイオード
の電流密度が、他の場所に比べて高く、通電による温度
上昇が大きくなる。よく知られているように、ダイオー
ドの電流は正の温度特性を持つために、温度上昇と共
に、チップ角部では帰還ダイオードの電流が増加する。
これが正帰還となって、電流は増加し続け、最終的に破
壊に至る。また、チップ角部以外でも、他の場所より電
流が流れやすい箇所があると電流集中を起こし、前述し
た正帰還により、ダイオードが破壊に至るという問題が
ある。
The second problem is a breakdown phenomenon due to current concentration in the feedback diode. This will be described with reference to FIG. FIG. 7 is a plan view of an IGBT chip having an overvoltage suppressing diode and a feedback diode built-in, and in particular, an enlarged view of a corner portion of the chip. 7, the same components as those in FIGS. 2 to 6 are designated by the same reference numerals. In FIG. 7, 700 is a current line schematically showing the current of the feedback diode. As can be seen from FIG. 7, the current density of the feedback diode is higher at the corners of the chip than at other places, and the temperature rise due to energization becomes large. As is well known, since the current of the diode has a positive temperature characteristic, the current of the feedback diode increases at the corner of the chip as the temperature rises.
This becomes positive feedback, the current continues to increase, and eventually it is destroyed. In addition, there is a problem in that, if there is a portion where a current flows more easily than other places other than the corner portion of the chip, current concentration occurs and the diode is destroyed due to the positive feedback described above.

【0014】本発明の目的は、上述した問題点を解決す
るものであって、過電圧抑制ダイオードとFLRの電位
分布の適正化により耐圧の低下を防止すると共に、帰還
ダイオードの電流集中による破壊を防止し、低コスト,
低損失で且つ信頼性の高いインバータ用IGBTを提供
することにある。
An object of the present invention is to solve the above-mentioned problems, in which the breakdown voltage is prevented from being lowered by optimizing the potential distribution of the overvoltage suppressing diode and the FLR, and the breakdown due to the current concentration of the feedback diode is prevented. Low cost,
It is to provide an inverter IGBT with low loss and high reliability.

【0015】[0015]

【課題を解決するための手段】上述した問題を解決し、
本発明の目的を達成するための手段として、以下の手段
が考えられる。
Means for Solving the Problems To solve the above problems,
The following means are conceivable as means for achieving the object of the present invention.

【0016】すなわち、一対の主表面を有し、一方の主
表面に接する第1導電型の第1の層と、第1の層と他方
の主表面とに隣接する第2の導電型の第2の層と、一方
の主表面に形成された第1の電極とからなる半導体基体
と、第2の層内に他方の主表面に隣接して選択的に形成
された第1導電型の第3の層と、第3の層内に他方の主
表面に隣接して選択的に形成された第2導電型の第4の
層と、第3の層の他方の主表面の露出部分に絶縁膜を介
して形成された第2の電極と、第3の層と第4の層とに
接触形成された第3の電極とからなるIGBTが繰り返し配
置されたIGBT領域と、前記IGBT領域を包囲し
て、前記第2の層内に前記他方の主表面に隣接して選択
的に形成された第1導電型の複数の第5の層と、第2の
層内に前記他方の主表面と前記半導体基体端面とに隣接
して選択的に形成された第2導電型の第6の層と、第6
の層に接触して形成され、前記第1の電極に電気的に接
続された第4の電極と、前記第6の層を除く他方の主表
面に形成された酸化膜と、一方の端部が第2の電極に他
方の端部が第4の電極に接続され、両端部間に繰り返し
配列された複数の第1導電型と第2導電型の層から成
り、前記酸化膜上に形成された多結晶シリコンダイオー
ドとを有する耐圧保持領域とからなる半導体素子におい
て、最もIGBT領域に近い前記第5の層から、最もI
GBT領域より遠い第5の層までの距離L1が、前記多
結晶シリコンダイオードの最もIGBT領域に近い接合
から、最もIGBTより遠い接合までの距離L2の4/
5以下である手段である。
That is, a first conductive type first layer having a pair of main surfaces and in contact with one main surface, and a second conductive type first layer adjacent to the first layer and the other main surface. Second layer, a semiconductor substrate comprising a first electrode formed on one main surface, and a first conductivity type first selectively formed in the second layer adjacent to the other main surface. 3 layer, a fourth layer of the second conductivity type selectively formed in the third layer adjacent to the other main surface, and an insulating portion on the exposed portion of the other main surface of the third layer An IGBT region in which an IGBT composed of a second electrode formed through a film and a third electrode formed in contact with the third layer and the fourth layer is repeatedly arranged, and the IGBT region is surrounded. And a plurality of fifth layers of the first conductivity type selectively formed adjacent to the other main surface in the second layer, and the other main surface in the second layer. A sixth layer of the second conductivity type selectively formed adjacent to the surface and the end surface of the semiconductor substrate;
A fourth electrode formed in contact with the first electrode and electrically connected to the first electrode, an oxide film formed on the other main surface excluding the sixth layer, and one end portion thereof. Is formed on the oxide film by being composed of a plurality of layers of the first conductivity type and the second conductivity type, the second electrode being connected to the second electrode, the other end being connected to the fourth electrode, and being repeatedly arranged between both ends. And a withstand voltage holding region having a polycrystalline silicon diode and a I layer from the fifth layer closest to the IGBT region.
The distance L1 to the fifth layer farther from the GBT region is 4 / of the distance L2 from the junction closest to the IGBT region of the polycrystalline silicon diode to the junction farthest from the IGBT.
It is a means of 5 or less.

【0017】また、一対の主表面を有し、一方の主表面
に接する第1導電型の第1の層と、第1の層と他方の主
表面とに隣接する第2の導電型の第2の層と、一方の主
表面に形成された第1の電極とからなる半導体基体と、
第2の層内に他方の主表面に隣接して選択的に形成され
た第1導電型の第3の層と、第3の層内に他方の主表面
に隣接して選択的に形成された第2導電型の第4の層
と、第3の層の他方の主表面の露出部分に絶縁膜を介し
て形成された第2の電極と、第3の層と第4の層とに接
触形成された第3の電極とからなるIGBTが繰り返し配置
されたIGBT領域と、前記IGBT領域を包囲して、
前記第2の層内に前記他方の主表面と前記半導体基体端
面とに隣接して選択的に形成された第2導電型の第5の
層と、第5の層に接触して形成され、前記第1の電極に
電気的に接続された第4の電極と、前記第5の層を除く
他方の主表面に形成された酸化膜と、一方の端部が第2
の電極に他方の端部が第4の電極に接続され、両端部間
に繰り返し配列された複数の第1導電型と第2導電型の
層から成り、前記酸化膜上に形成された多結晶シリコン
ダイオードとを有する耐圧保持領域とからなる半導体素
子において、前記多結晶シリコンダイオードの第1導電
型と第2導電型の繰り返し配列の間隔が、第2の電極側
では広く、第4の電極側では狭くなっている手段であ
る。
A first conductive type first layer having a pair of main surfaces and in contact with one main surface, and a second conductive type first layer adjacent to the first layer and the other main surface. A semiconductor substrate comprising a second layer and a first electrode formed on one main surface;
A third layer of the first conductivity type selectively formed in the second layer adjacent to the other main surface; and a third layer selectively formed in the third layer adjacent to the other main surface. A fourth layer of the second conductivity type, a second electrode formed on an exposed portion of the other main surface of the third layer via an insulating film, a third layer and a fourth layer. An IGBT region in which an IGBT including a third electrode formed in contact is repeatedly arranged, and surrounds the IGBT region,
A second layer of the second conductivity type selectively formed in the second layer adjacent to the other main surface and the end surface of the semiconductor substrate; and in contact with the fifth layer, A fourth electrode electrically connected to the first electrode, an oxide film formed on the other main surface excluding the fifth layer, and one end portion of the second electrode
The other end of the electrode is connected to the fourth electrode, and is composed of a plurality of first-conductivity-type and second-conductivity-type layers repeatedly arranged between both ends, and is formed on the oxide film. In a semiconductor element including a breakdown voltage holding region having a silicon diode, the interval between the first conductive type and the second conductive type repeating arrays of the polycrystalline silicon diode is wide on the second electrode side and on the fourth electrode side. Is a narrowing means.

【0018】さらに、前記IGBT領域の端部に位置す
る第4の層に接触し、前記他方の主表面に隣接して選択
的に形成された第1導電型の第7の層を有し、第7の層
が、前記多結晶シリコンダイオードのIGBT領域側端
部から最も近い接合よりも、IGBT領域側に形成され
ていることを特徴とする手段である。前記IGBT領域
端部に位置する前記第3の電極と前記第4の層との接触
位置から、前記第7の層の耐圧保持領域側の端部までの
距離L3が20μm以上有る手段である。
Further, there is provided a seventh layer of the first conductivity type which is in contact with the fourth layer located at the end of the IGBT region and is selectively formed adjacent to the other main surface, The seventh layer is formed on the IGBT region side of the junction closest to the end of the polycrystalline silicon diode on the IGBT region side. The distance L3 from the contact position between the third electrode and the fourth layer located at the end of the IGBT region to the end of the seventh layer on the breakdown voltage holding region side is 20 μm or more.

【0019】前記第4の電極に接続された少なくとも1
本以上の第1の配線を有し、前記第1の配線の任意の1
本から最も遠い第4の電極上の第1の点があり、この第
1の点と前記第1の配線の任意の1本との距離L4と、
前記第4の電極の断面積Aと、前記第4の電極を流れる
電流Iと、第4の電極の抵抗率ρとが、 0.035≧ρ×(L4/A)×I/2 を満たす手段である。
At least one connected to the fourth electrode
1 or more first wirings, and any one of the first wirings
There is a first point on the fourth electrode farthest from the book, and the distance L4 between this first point and any one of the first wirings,
The cross-sectional area A of the fourth electrode, the current I flowing through the fourth electrode, and the resistivity ρ of the fourth electrode satisfy 0.035 ≧ ρ × (L4 / A) × I / 2 It is a means.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施例を図面を参
照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】(実施例1)図1に本発明による第1の実
施例の断面構成を示す。図1において、100はコレク
タ層、101はバッファ層、102はドリフト層、10
3はベース層、104はソース層、105はFLR層、
106はカソード層、110はゲート電極、111はエ
ミッタ電極、112は過電圧抑制ダイオードゲート側電
極、113は過電圧抑制ダイオードコレクタ側電極、11
4はカソード配線、115はコレクタ電極、120は層
間絶縁膜、121は酸化膜、130は過電圧抑制ダイオ
ードである。また、図1で、L1は過電圧抑制ダイオー
ドの両端部の接合間の距離、L2は過電圧抑制ダイオー
ドのゲート電極側の端部の接合から、最外周のFLRの終
端までの距離である。
(Embodiment 1) FIG. 1 shows a sectional structure of a first embodiment according to the present invention. In FIG. 1, 100 is a collector layer, 101 is a buffer layer, 102 is a drift layer, 10
3 is a base layer, 104 is a source layer, 105 is an FLR layer,
106 is a cathode layer, 110 is a gate electrode, 111 is an emitter electrode, 112 is an overvoltage suppressing diode gate side electrode, 113 is an overvoltage suppressing diode collector side electrode, 11
4 is a cathode wiring, 115 is a collector electrode, 120 is an interlayer insulating film, 121 is an oxide film, and 130 is an overvoltage suppressing diode. Further, in FIG. 1, L1 is the distance between the junctions at both ends of the overvoltage suppressing diode, and L2 is the distance from the junction at the end on the gate electrode side of the overvoltage suppressing diode to the end of the outermost FLR.

【0022】本実施例の特徴は、L1とL2が、 L2≦(4/5)×L1 …(1) の関係を満たすことである。L2が上記条件を満たさな
くなったとき、すなわち、 L2≧(4/5)×L1 となった時には、耐圧は急激に低下することが、実験的
に確認されている。
The feature of this embodiment is that L1 and L2 satisfy the relationship of L2 ≦ (4/5) × L1 (1). It has been experimentally confirmed that when L2 does not satisfy the above condition, that is, when L2 ≧ (4/5) × L1, the breakdown voltage sharply decreases.

【0023】式(1)を満たすときには、図5(b)示
したFLR外周部での電位変化を過電圧抑制ダイオード
が均等化するために図6で示したような電界集中が起こ
らず、耐圧は低下しない。FLRの電位分布と過電圧抑
制ダイオードの電位分布を一致させるためにはL1をL
2より20%程長くすることが効果的である。この時の
電位分布を図8に示す。FLR外周では、過電圧抑制ダ
イオードにより電位分布が均等になり、耐圧の劣化を防
止できる。
When the expression (1) is satisfied, the electric field concentration as shown in FIG. 6 does not occur because the overvoltage suppressing diode equalizes the potential change in the FLR outer peripheral portion shown in FIG. Does not fall. In order to match the potential distribution of the FLR with the potential distribution of the overvoltage suppressing diode, L1 is set to L
It is effective to make it 20% longer than 2. The potential distribution at this time is shown in FIG. On the outer periphery of the FLR, the overvoltage suppressing diode makes the potential distribution uniform and prevents the breakdown voltage from deteriorating.

【0024】図9は第1の実施例のIGBTの平面構成
図である。図2〜図8と共通の構成には同一の符号を付
してある。図9において、900はゲートワイヤーが接
続されるゲートパッド、901はエミッタワイヤーが接
続されるエミッタパッド、902はゲート配線である。
過電圧抑制ダイオードは130の矢印で示された範囲に
チップ周囲を包囲する形で形成されている。また、FLR1
05は図9においては過電圧抑制ダイオード130の下に
形成されており、点線で示してある。また、図示しては
いないが、カソード配線114はカソード電極113上
の任意の位置に任意の本数だけ接続することが出来る。
FIG. 9 is a plan view of the IGBT of the first embodiment. The same components as those in FIGS. 2 to 8 are designated by the same reference numerals. In FIG. 9, 900 is a gate pad to which a gate wire is connected, 901 is an emitter pad to which an emitter wire is connected, and 902 is a gate wiring.
The overvoltage suppressing diode is formed so as to surround the periphery of the chip in the range indicated by the arrow 130. Also, FLR1
Reference numeral 05 is formed below the overvoltage suppressing diode 130 in FIG. 9, and is shown by a dotted line. Although not shown, the cathode wiring 114 can be connected to any position on the cathode electrode 113 by any number.

【0025】本実施例では、過電圧抑制ダイオードのp
型n型層の繰り返し配列数6回の例を示したが、勿論こ
れに限定されるものではなく、素子の耐圧に合わせて、
この繰り返し配列数を変化させることが出来る。また同
様に、FLRに関しても特に3本の場合について示した
が、この本数は何本でも良い。更に、本実施例中ではバ
ッファ層101を備えたいわゆるパンチスルー型IGB
Tの例を示したが、バッファ層を備えていないノンパン
チスルー型IGBTの場合も同様に本発明が適用可能で
ある。当然、これらの条件は、以下の実施例でも同様に
考えることが出来る。
In this embodiment, p of the overvoltage suppressing diode is
Although an example in which the number of repeating n-type layers is 6 has been shown, of course, the invention is not limited to this, and it may be adjusted according to the breakdown voltage of the element.
The number of repeating sequences can be changed. Similarly, the FLR is also shown to have three lines in particular, but the number may be any number. Further, in this embodiment, a so-called punch-through type IGB provided with the buffer layer 101 is used.
Although the example of T is shown, the present invention can be similarly applied to the case of a non-punch through type IGBT that does not have a buffer layer. Of course, these conditions can be similarly considered in the following embodiments.

【0026】(実施例2)図10は本発明による第2の
実施例を示す平面構成図である。図10において図2〜
図9間と共通の構成要素には同一の符号を付してある。
図10において、図9と異なる点は、過電圧抑制ダイオ
ードがゲートパッドに隣接した領域にだけ形成されてい
る点である。過電圧抑制ダイオードの幅L1は実施例1
でも述べたように、FLRの幅L2よりも大きくしてお
かなければならない。そのため、FLRだけの耐圧保持
領域の構造よりも寸法が大きくなる。これに対し、本実
施例では過電圧抑制ダイオードをゲートパッドに隣接し
た領域に限定したことにより、この面積の損失を低減で
きる。つまり、過電圧抑制ダイオードが形成されていな
い領域では耐圧保持領域の面積を低減でき、素子サイズ
を縮小することが出来る。
(Embodiment 2) FIG. 10 is a plan view showing a second embodiment according to the present invention. 2 through FIG.
The same components as those in FIG. 9 are designated by the same reference numerals.
10 is different from FIG. 9 in that the overvoltage suppressing diode is formed only in a region adjacent to the gate pad. The width L1 of the overvoltage suppressing diode is the same as that of the first embodiment.
However, as described above, it must be larger than the width L2 of the FLR. Therefore, the size is larger than that of the structure of the breakdown voltage holding region of only FLR. On the other hand, in the present embodiment, the loss of this area can be reduced by limiting the overvoltage suppressing diode to the region adjacent to the gate pad. That is, the area of the breakdown voltage holding region can be reduced in the region where the overvoltage suppressing diode is not formed, and the element size can be reduced.

【0027】しかしながら、本実施例による過電圧抑制
ダイオードは、素子サイズを縮小したために、ダイオー
ドの抵抗成分が増加し、過電圧抑制動作の遅れや、損失
を増加させることになる。そのため、素子面積の低減が
重要な場合と、過電圧動作の遅れや損失を低減が重要な
場合とで、実施例1もしくは実施例2の一方の適当な構
造を選択する必要がある。本実施例では、過電圧抑制ダ
イオード1000をゲートパッド脇に形成した例を示し
たが、過電圧抑制ダイオードの位置はこれに限定される
ものではなが、ゲートパッドに隣接して形成した場合に
は、ゲートパッドから過電圧抑制ダイオードまでの配線
が短くなり、配線に生じる寄生容量や寄生インダクタン
スの影響を最小に出来るというメリットがある。
However, in the overvoltage suppressing diode according to the present embodiment, since the element size is reduced, the resistance component of the diode increases, and the delay of overvoltage suppressing operation and the loss increase. Therefore, depending on whether it is important to reduce the element area or to reduce the delay or loss of the overvoltage operation, it is necessary to select an appropriate structure of either the first embodiment or the second embodiment. In this embodiment, the example in which the overvoltage suppressing diode 1000 is formed beside the gate pad has been shown. However, the position of the overvoltage suppressing diode is not limited to this, but when it is formed adjacent to the gate pad, The wiring from the gate pad to the overvoltage suppressing diode is shortened, which has the merit that the influence of parasitic capacitance and parasitic inductance generated in the wiring can be minimized.

【0028】(実施例3)図11は本発明による第3の
実施例を示す断面構成である。図11において、図1か
ら図10までと共通の構成要素には同一の符号を付して
ある。本実施例の特徴は、過電圧抑制ダイオードのp型
n型層の繰り返し配列間隔を調整する事により、過電圧
抑制ダイオードに高い電界緩和効果を持たせ、FLRを
削除して内蔵の帰還ダイオードの抵抗を低減した点にあ
る。
(Embodiment 3) FIG. 11 is a sectional view showing a third embodiment according to the present invention. In FIG. 11, the same components as those in FIGS. 1 to 10 are designated by the same reference numerals. The feature of this embodiment is that by adjusting the repeating arrangement interval of the p-type n-type layers of the overvoltage suppressing diode, the overvoltage suppressing diode has a high electric field relaxation effect, and the FLR is eliminated to reduce the resistance of the built-in feedback diode. There is a reduction.

【0029】帰還ダイオードの電流は図4の400で示
される経路を流れるため、FLR層105が大きな抵抗
となっている。帰還ダイオードの抵抗の低減のためには
このFLR層105を削除する必要があるが、これを削
除してしまうと、十分な耐圧が得られないことが分かっ
ている。これは、過電圧抑制ダイオードの電界緩和効果
がドリフト層内部までは及ばず、表面から数μm以上深
いドリフト層領域では、電界集中が発生してしまうため
である。この傾向は、高耐圧のIGBT、つまり耐圧保
持領域長が大きいIGBTで顕著となる。
Since the current of the feedback diode flows through the path indicated by 400 in FIG. 4, the FLR layer 105 has a large resistance. It is necessary to remove the FLR layer 105 in order to reduce the resistance of the feedback diode, but it has been found that if this is removed, a sufficient breakdown voltage cannot be obtained. This is because the electric field relaxation effect of the overvoltage suppressing diode does not reach the inside of the drift layer, and electric field concentration occurs in the drift layer region deeper than several μm from the surface. This tendency becomes remarkable in a high breakdown voltage IGBT, that is, an IGBT having a large breakdown voltage holding region length.

【0030】そこで、本実施例では、過電圧抑制ダイオ
ードのp型n型層の繰り返し配列間隔を、チップ端部に
近づくほど狭くし、過電圧抑制ダイオードの電界緩和効
果の強化を実現する。チップ外周部に近づくほど配列間
隔を狭くすることにより、ドリフト層内部での電界集中
を緩和することが可能となり、実施例2の構成よりも高
耐圧品に適用できる。但し、本実施例では実施例1,2
の構成に比べ耐圧保持領域幅が増加するために、チップ
サイズが増加してしまう。このため、帰還ダイオードの
損失低減を重視するか、あるいはチップサイズの縮小を
重視するかにより、選択する必要がある。
In view of this, in this embodiment, the p-type n-type layer of the overvoltage suppressing diode is repeatedly arranged at an interval closer to the end of the chip to strengthen the electric field relaxing effect of the overvoltage suppressing diode. By narrowing the arrangement interval toward the outer peripheral portion of the chip, it becomes possible to mitigate the electric field concentration inside the drift layer, and it can be applied to a product having a higher breakdown voltage than the configuration of the second embodiment. However, in this embodiment,
Since the withstand voltage holding region width is increased as compared with the above configuration, the chip size is increased. Therefore, it is necessary to make a selection depending on whether reduction of the loss of the feedback diode is important or reduction of the chip size is important.

【0031】(実施例4)図12に本発明による第4の
実施例を示す。図12において、図1から図11と共通
の構成要素には同一の符号を付してある。図12におい
て、1200はウェル層である。本実施例の特徴は、ウ
ェル層1200の終端が、過電圧抑制ダイオードのゲー
ト電極側端部の接合1201よりも導通領域側にある点
である。ウェル層1200が、上記接合を越えてチップ
外周部に伸びるとウェル層1200の端部で電界集中が
発生し、素子の耐圧を低下させる。これを図13(a)
に示す。本発明の場合は図13(b)に示す様に電界は
緩和され、素子耐圧の低下を防止できる。
(Embodiment 4) FIG. 12 shows a fourth embodiment of the present invention. In FIG. 12, the same components as those in FIGS. 1 to 11 are designated by the same reference numerals. In FIG. 12, 1200 is a well layer. The feature of this embodiment is that the end of the well layer 1200 is located closer to the conduction region than the junction 1201 at the gate electrode side end of the overvoltage suppressing diode. When the well layer 1200 extends beyond the above junction to the outer periphery of the chip, electric field concentration occurs at the end of the well layer 1200, and the breakdown voltage of the device is lowered. This is shown in FIG.
Shown in In the case of the present invention, the electric field is relaxed as shown in FIG.

【0032】(実施例5)図14に本発明による第5の
実施例の断面構成を示す。図14において、図1から図
13と共通の構成要素には同一の符号を付してある。本
実施例の特徴は、導通領域端部のベース層103及びウ
ェル層1200とエミッタ電極111とのコンタクト部
から、ウェル層1200の耐圧保持領域側の端部までの
距離L3が20μm以上である点である。図7で説明し
たように、チップの角部では電流集中により素子の破壊
が起こりやすくなる。また、チップ角部以外でも、電流
が集中し易い箇所は、正帰還により素子が破壊しやす
い。
(Embodiment 5) FIG. 14 shows a sectional structure of a fifth embodiment according to the present invention. 14, the same components as those in FIGS. 1 to 13 are designated by the same reference numerals. The feature of this embodiment is that the distance L3 from the contact portion between the base layer 103 and the well layer 1200 at the end of the conduction region and the emitter electrode 111 to the end of the well layer 1200 on the breakdown voltage holding region side is 20 μm or more. Is. As described with reference to FIG. 7, element breakdown is likely to occur at the corners of the chip due to current concentration. In addition, other than the chip corner portion, the element is likely to be broken by the positive feedback in the portion where the current is likely to concentrate.

【0033】本実施例では、L3を20μm以上とする
ことにより、ウェル層1200での抵抗を増大させ、ダ
イオードの正帰還を抑制している。具体的に説明する
と、ウェル層1200の抵抗は温度上昇につれて増大す
るため、ウェル層1200の抵抗を大きくすると、温度
上昇に伴う抵抗の増分も大きくなる。この抵抗の増分が
ダイオードの正帰還による電流増加を抑制する効果を持
つため、ウェル層1200の抵抗が大きい程、この効果が顕
著となる。一般的なIGBTのウェル層の場合、不純物
濃度は約1×1018〜1×1020程度であり、この値を
考慮して、計算によりL3の値を求めると、L3≧20
μmとなる。これにより、チップ角部及び、電流集中箇
所での破壊を防止できる。
In this embodiment, L3 is set to 20 μm or more to increase the resistance in the well layer 1200 and suppress the positive feedback of the diode. More specifically, the resistance of the well layer 1200 increases as the temperature rises. Therefore, if the resistance of the well layer 1200 is increased, the increase in resistance accompanying the temperature rise also increases. This increase in resistance has the effect of suppressing an increase in current due to the positive feedback of the diode. Therefore, the larger the resistance of the well layer 1200, the more remarkable this effect is. In the case of a well layer of a general IGBT, the impurity concentration is about 1 × 10 18 to 1 × 10 20 , and when this value is taken into consideration and the value of L3 is calculated, L3 ≧ 20.
μm. As a result, it is possible to prevent breakage at the corners of the chip and the portion where the current is concentrated.

【0034】(実施例6)図15は本発明を適用した第
6の実施例を示す平面構成である。図17において、図
1から図14と共通の構成要素には同一の符号が付して
ある。図15において、チップの4つの角をそれぞれ角
A〜Dとし、チップの一辺の長さをL4,カソード電極
113を流れる電流をI1、そして、帰還ダイオードに
流れる電流をI2とする。
(Sixth Embodiment) FIG. 15 is a plan view showing a sixth embodiment to which the present invention is applied. 17, the same components as those in FIGS. 1 to 14 are designated by the same reference numerals. In FIG. 15, the four corners of the chip are defined as corners A to D, the length of one side of the chip is L4, the current flowing through the cathode electrode 113 is I1, and the current flowing through the feedback diode is I2.

【0035】本実施例の特徴は、カソード電極113の
断面積AとL4との関係が、 0.035(V)≧V1×2=ρ×(2×L5/A)×I1/2 …(2) を満たす点である。式(2)において、ρは電極の抵抗
率である。帰還ダイオードを内蔵したIGBTの場合、
カソード配線114とカソード電極113の接続箇所を
チップの角にする場合が多い。これは、チップの角はカ
ソード電極の面積が大きいためである。カソード配線は
各4角にそれぞれ接続することが望ましいが、パッケー
ジの制約により、図15のようにカソード配線1本の場
合も考慮する必要がある。この場合、カソード配線の接
続点がある角Cから最も遠い角Bでは、電流I1により
角Cよりも電位が高くなる。この角B―角C間の電圧
は、カソード配線が複数の角に接続されている場合には
小さいが図15のように配線が1本の場合には最大とな
る。このためこれ以降は、カソード配線一本の場合につ
いて検討する。図15において、角Bの電位は角Cの電
位より、V1×2だけ高くなる。この電位差は、帰還ダ
イオードの電流I2に分布を生じさせる。なぜなら、角
Bでは角Cよりも電位が高いために帰還ダイオードに印
加される電圧が最も小さくなって電流が流れにくく、ま
た角Cでは最も電流が流れやすい。この電位差が、ダイ
オードの順方向電圧降下0.7Vの5%、つまり0.03
5Vを越えると、電流集中箇所による正帰還が顕著とな
り、破壊に至る。この時の、L5,I1,V1,Aの関
係を求めると式(2)が得られる。10A級のIGBT
の場合について、計算の一例を示す。10A級のIGB
Tの場合、帰還ダイオードの電流も10Aとなり、I1
はこの半分であるので、5Aとなる。また、チップサイ
ズは一般的には1cm×1cm程度であり、L5=2cmとす
る。カソード電極をアルミで形成しているとし、この抵
抗率を5μΩ・cmとすると、式(2)から、断面積A=
7.5×10-3cm2 となる。
The feature of this embodiment is that the relationship between the cross-sectional area A of the cathode electrode 113 and L4 is 0.035 (V) ≧ V1 × 2 = ρ × (2 × L5 / A) × I1 / 2 (( It is a point that satisfies 2). In Expression (2), ρ is the resistivity of the electrode. In the case of IGBT with built-in feedback diode,
In many cases, the connection point between the cathode wiring 114 and the cathode electrode 113 is a corner of the chip. This is because the corner of the tip has a large area of the cathode electrode. Although it is desirable to connect the cathode wiring to each of the four corners, it is necessary to consider the case of one cathode wiring as shown in FIG. 15 due to package restrictions. In this case, at the corner B farthest from the corner C where the connection point of the cathode wiring is located, the electric potential becomes higher than the corner C due to the current I1. The voltage between the corner B and the corner C is small when the cathode wiring is connected to a plurality of corners, but is maximum when there is one wiring as shown in FIG. Therefore, hereinafter, the case of one cathode wiring will be examined. In FIG. 15, the potential of the corner B is higher than the potential of the corner C by V1 × 2. This potential difference causes a distribution in the current I2 of the feedback diode. This is because the corner B has a higher potential than the corner C, so that the voltage applied to the feedback diode becomes the smallest and the current hardly flows, and the corner C most easily flows the current. This potential difference is 5% of the forward voltage drop of the diode of 0.7V, that is, 0.03.
When it exceeds 5 V, the positive feedback due to the current concentration point becomes remarkable, and it causes destruction. Equation (2) is obtained by calculating the relationship between L5, I1, V1, and A at this time. 10A class IGBT
An example of calculation is shown for the case. 10A IGB
In case of T, the current of the feedback diode is also 10A, and I1
Is half this, so it becomes 5A. The chip size is generally about 1 cm × 1 cm, and L5 = 2 cm. Assuming that the cathode electrode is made of aluminum and the resistivity is 5 μΩ · cm, the cross-sectional area A =
It becomes 7.5 × 10 -3 cm 2 .

【0036】カソード配線を各角に設けた場合も同様に
考えられる。これを図16に示す。例えば、4角に設け
た場合には図16に示すように、I1が1/4となり、
また、I1が流れる経路L6もL5の1/4になるため
に、カソード配線1本の場合に比べてこの場合は発生す
る電圧は1/16と小さくなる。
The same can be considered when the cathode wiring is provided at each corner. This is shown in FIG. For example, when it is provided in four corners, I1 becomes 1/4 as shown in FIG.
Further, since the path L6 through which I1 flows is also ¼ of L5, the voltage generated in this case is 1/16, which is smaller than that in the case of one cathode wiring.

【0037】従って、カソード配線が1本の場合に式
(2)を満たせば、カソード配線が2本以上の場合も式
(2)の条件を満たす。
Therefore, if the formula (2) is satisfied when the number of cathode wirings is one, the condition of the formula (2) is satisfied even when the number of cathode wirings is two or more.

【0038】[0038]

【発明の効果】本発明によれば、耐圧保持領域における
FLR形成領域の幅を過電圧抑制ダイオードの両接合端
間距離の4/5とすることにより、電位分布の不整合を
解消し、素子耐圧の低下を防止する。
According to the present invention, the width of the FLR forming region in the breakdown voltage holding region is set to 4/5 of the distance between the two junction ends of the overvoltage suppressing diode, so that the potential distribution mismatch is eliminated and the device breakdown voltage is reduced. Prevent the decrease of.

【0039】また、本発明によれば、ウェル層の耐圧保
持領域側端部とエミッタ電極とのコンタクトとの距離を
20μm以上とすることにより、帰還ダイオードのチッ
プ内での電流不均一、特にチップ角部での電流集中によ
る破壊を防止できる。
According to the present invention, the distance between the end of the well layer on the breakdown voltage holding region side and the contact between the emitter electrode and the contact is set to 20 μm or more, so that the current non-uniformity in the chip of the feedback diode, especially the chip It is possible to prevent damage due to current concentration at the corners.

【0040】更に、本発明によれば、カソード配線の断
面積とチップサイズとの関係を式(2)で表される関係
にすることにより帰還ダイオードの電流集中を低減し、
高破壊耐量の帰還ダイオードを実現できる。
Further, according to the present invention, the current concentration of the feedback diode is reduced by setting the relationship between the cross-sectional area of the cathode wiring and the chip size to be the relationship expressed by the equation (2),
A feedback diode with high breakdown strength can be realized.

【0041】これらの発明により、高破壊耐量の帰還ダ
イオードを内蔵したIGBTを実現でき、高破壊耐量
で、低コストのインバータシステムを実現できる。
According to these inventions, an IGBT having a built-in feedback diode having a high breakdown resistance can be realized, and a low-cost inverter system having a high breakdown resistance can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による第1の実施例を示す断面構造図で
ある。
FIG. 1 is a sectional structural view showing a first embodiment according to the present invention.

【図2】従来のインバータの回路図である。FIG. 2 is a circuit diagram of a conventional inverter.

【図3】従来の過電圧抑制ダイオード内蔵IGBTの回
路図である。
FIG. 3 is a circuit diagram of a conventional IGBT with a built-in overvoltage suppressing diode.

【図4】従来の過電圧抑制ダイオード内蔵IGBTの断
面図である。
FIG. 4 is a cross-sectional view of a conventional IGBT with a built-in overvoltage suppressing diode.

【図5】従来の帰還ダイオード内蔵IGBTの断面図で
ある。
FIG. 5 is a cross-sectional view of a conventional IGBT with a built-in feedback diode.

【図6】過電圧抑制ダイオード及び帰還ダイオードを内
蔵した従来のIGBTの断面図である。
FIG. 6 is a cross-sectional view of a conventional IGBT having a built-in overvoltage suppressing diode and a feedback diode.

【図7】従来の過電圧抑制ダイオード及びFLRの電位
分布を示す断面図である。
FIG. 7 is a cross-sectional view showing a potential distribution of a conventional overvoltage suppressing diode and FLR.

【図8】過電圧抑制ダイオード及び帰還ダイオードを内
蔵した従来のIGBTの電位分布を示す断面図である。
FIG. 8 is a sectional view showing a potential distribution of a conventional IGBT having a built-in overvoltage suppressing diode and a feedback diode.

【図9】従来の帰還ダイオードの問題を説明する平面図
である。
FIG. 9 is a plan view illustrating a problem of a conventional feedback diode.

【図10】本発明による第1の実施例を示す平面図であ
る。
FIG. 10 is a plan view showing a first embodiment according to the present invention.

【図11】本発明による第1の実施例による電位分布を
示す断面図である。
FIG. 11 is a sectional view showing a potential distribution according to the first embodiment of the present invention.

【図12】本発明による第1の実施例の補足説明図であ
る。
FIG. 12 is a supplementary explanatory diagram of the first embodiment according to the present invention.

【図13】本発明による第2の実施例を示す断面図であ
る。
FIG. 13 is a sectional view showing a second embodiment according to the present invention.

【図14】本発明による第3の実施例を示す平面図であ
る。
FIG. 14 is a plan view showing a third embodiment according to the present invention.

【図15】本発明による第3の実施例の補足説明図であ
る。
FIG. 15 is a supplementary explanatory diagram of the third embodiment according to the present invention.

【図16】本発明による第4の実施例を示す平面図であ
る。
FIG. 16 is a plan view showing a fourth embodiment according to the present invention.

【符号の説明】[Explanation of symbols]

100…コレクタ層、101…バッファ層、102…ド
リフト層、103…ベース層、104…ソース層、10
5…FLR層、106…カソード層、110…ゲート電
極、111…エミッタ電極、112…過電圧抑制ダイオ
ードゲート側電極、113…過電圧抑制ダイオードコレ
クタ側電極、114…カソード配線、115…コレクタ
電極、120…層間絶縁膜、121…酸化膜、130…
過電圧抑制ダイオード、200,300…IGBT、2
01…帰還ダイオード、210,211…直流端子、2
12,213,214…交流端子、301…ゲート−エ
ミッタ間抵抗、400…帰還ダイオード電流経路、40
1…帰還ダイオード記号、500…過電圧抑制ダイオー
ドによる等電位線、501…FLRによる等電位線、7
00…帰還ダイオードの電流線、900…ゲートパッ
ド、901…エミッタパッド、902…ゲート配線、1
000…ゲートパッドに隣接した過電圧抑制ダイオー
ド、1200…ウェル層。
100 ... Collector layer, 101 ... Buffer layer, 102 ... Drift layer, 103 ... Base layer, 104 ... Source layer, 10
5 ... FLR layer, 106 ... Cathode layer, 110 ... Gate electrode, 111 ... Emitter electrode, 112 ... Overvoltage suppressing diode gate side electrode, 113 ... Overvoltage suppressing diode collector side electrode, 114 ... Cathode wiring, 115 ... Collector electrode, 120 ... Interlayer insulating film, 121 ... Oxide film, 130 ...
Overvoltage suppression diode, 200, 300 ... IGBT, 2
01 ... Feedback diode, 210, 211 ... DC terminal, 2
12, 213, 214 ... AC terminal, 301 ... Gate-emitter resistance, 400 ... Feedback diode current path, 40
1 ... Feedback diode symbol, 500 ... Equipotential line by overvoltage suppressing diode, 501 ... Equipotential line by FLR, 7
00 ... Current line of feedback diode, 900 ... Gate pad, 901 ... Emitter pad, 902 ... Gate wiring, 1
000 ... Overvoltage suppressing diode adjacent to the gate pad, 1200 ... Well layer.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】一対の主表面を有し、一方の主表面に接す
る第1導電型の第1の層と、第1の層と他方の主表面と
に隣接する第2の導電型の第2の層と、一方の主表面に
形成された第1の電極とからなる半導体基体と、 第2の層内に他方の主表面に隣接して選択的に形成され
た第1導電型の第3の層と、第3の層内に他方の主表面
に隣接して選択的に形成された第2導電型の第4の層
と、第3の層の他方の主表面の露出部分に絶縁膜を介し
て形成された第2の電極と、第3の層と第4の層とに接
触形成された第3の電極とからなるIGBTが繰り返し配置
されたIGBT領域と、 前記IGBT領域を包囲して、 前記第2の層内に前記他方の主表面に隣接して選択的に
形成された第1導電型の複数の第5の層と、第2の層内
に前記他方の主表面と前記半導体基体端面とに隣接して
選択的に形成された第2導電型の第6の層と、第6の層
に接触して形成され、前記第1の電極に電気的に接続さ
れた第4の電極と、前記第6の層を除く他方の主表面に
形成された酸化膜と、一方の端部が第2の電極に他方の
端部が第4の電極に接続され、両端部間に繰り返し配列
された複数の第1導電型と第2導電型の層から成り、前
記酸化膜上に形成された多結晶シリコンダイオードとを
有する耐圧保持領域とからなる半導体素子において、 最もIGBT領域に近い前記第5の層から、最もIGB
T領域より遠い第5の層までの距離L1が、前記多結晶
シリコンダイオードの最もIGBT領域に近い接合か
ら、最もIGBTより遠い接合までの距離L2の4/5
以下であることを特徴とする半導体装置。
1. A first layer of a first conductivity type having a pair of main surfaces, which is in contact with one of the main surfaces, and a second layer of a second conductivity type, which is adjacent to the first layer and the other main surface. Second layer, a semiconductor substrate including a first electrode formed on one main surface, and a first conductivity type first selectively formed in the second layer adjacent to the other main surface. 3 layer, a fourth layer of the second conductivity type selectively formed in the third layer adjacent to the other main surface, and an insulating portion on the exposed portion of the other main surface of the third layer An IGBT region in which an IGBT composed of a second electrode formed through a film and a third electrode formed in contact with the third layer and the fourth layer is repeatedly arranged, and surrounding the IGBT region. Then, a plurality of fifth layers of the first conductivity type selectively formed adjacent to the other main surface in the second layer, and the other main surface in the second layer. The above A sixth layer of the second conductivity type selectively formed adjacent to the end face of the semiconductor substrate, and a fourth layer formed in contact with the sixth layer and electrically connected to the first electrode. Electrode, an oxide film formed on the other main surface excluding the sixth layer, one end connected to the second electrode and the other end connected to the fourth electrode, and between the two ends. In a semiconductor element that is composed of a plurality of layers of the first conductivity type and a second conductivity type that are repeatedly arranged and that has a breakdown voltage holding region having a polycrystalline silicon diode formed on the oxide film, the semiconductor device is closest to the IGBT region. From the fifth layer, the most IGB
The distance L1 from the T region to the fifth layer is 4/5 of the distance L2 from the junction closest to the IGBT region of the polycrystalline silicon diode to the junction farthest from the IGBT.
A semiconductor device characterized by the following.
【請求項2】一対の主表面を有し、一方の主表面に接す
る第1導電型の第1の層と、第1の層と他方の主表面と
に隣接する第2の導電型の第2の層と、一方の主表面に
形成された第1の電極とからなる半導体基体と、 第2の層内に他方の主表面に隣接して選択的に形成され
た第1導電型の第3の層と、第3の層内に他方の主表面
に隣接して選択的に形成された第2導電型の第4の層
と、第3の層の他方の主表面の露出部分に絶縁膜を介し
て形成された第2の電極と、第3の層と第4の層とに接
触形成された第3の電極とからなるIGBTが繰り返し配置
されたIGBT領域と、 前記IGBT領域を包囲して、 前記第2の層内に前記他方の主表面と前記半導体基体端
面とに隣接して選択的に形成された第2導電型の第5の
層と、第5の層に接触して形成され、前記第1の電極に
電気的に接続された第4の電極と、前記第5の層を除く
他方の主表面に形成された酸化膜と、一方の端部が第2
の電極に他方の端部が第4の電極に接続され、両端部間
に繰り返し配列された複数の第1導電型と第2導電型の
層から成り、前記酸化膜上に形成された多結晶シリコン
ダイオードとを有する耐圧保持領域とからなる半導体素
子において、 前記多結晶シリコンダイオードの第1導電型と第2導電
型の繰り返し配列の間隔が、第2の電極側では広く、第
4の電極側では狭くなっていることを特徴とする半導体
装置。
2. A first conductive type first layer having a pair of main surfaces and being in contact with one main surface, and a second conductive type first layer adjacent to the first layer and the other main surface. Second layer, a semiconductor substrate including a first electrode formed on one main surface, and a first conductivity type first selectively formed in the second layer adjacent to the other main surface. 3 layer, a fourth layer of the second conductivity type selectively formed in the third layer adjacent to the other main surface, and an insulating portion on the exposed portion of the other main surface of the third layer An IGBT region in which an IGBT composed of a second electrode formed through a film and a third electrode formed in contact with the third layer and the fourth layer is repeatedly arranged, and surrounding the IGBT region. Then, a fifth layer of the second conductivity type selectively formed in the second layer adjacent to the other main surface and the end surface of the semiconductor substrate, and in contact with the fifth layer. A fourth electrode formed and electrically connected to the first electrode, an oxide film formed on the other main surface except the fifth layer, and one end portion of the second electrode
The other end of the electrode is connected to the fourth electrode, and is composed of a plurality of first-conductivity-type and second-conductivity-type layers repeatedly arranged between both ends, and is formed on the oxide film. In a semiconductor element comprising a breakdown voltage holding region having a silicon diode, the interval between the first conductive type and the second conductive type repeating arrangement of the polycrystalline silicon diode is wide on the second electrode side and on the fourth electrode side. The semiconductor device is characterized by narrowing.
【請求項3】前記IGBT領域の端部に位置する第4の
層に接触し、前記他方の主表面に隣接して選択的に形成
された第1導電型の第7の層を有し、 第7の層が、前記多結晶シリコンダイオードのIGBT
領域側端部から最も近い接合よりも、IGBT領域側に
形成されていることを特徴とする請求項1乃至2の半導
体装置。
3. A seventh layer of the first conductivity type, which is in contact with a fourth layer located at an end of the IGBT region and is selectively formed adjacent to the other main surface, The seventh layer is the IGBT of the polycrystalline silicon diode.
3. The semiconductor device according to claim 1, wherein the semiconductor device is formed on the IGBT region side with respect to the junction closest to the region side end portion.
【請求項4】前記IGBT領域端部に位置する前記第3
の電極と前記第4の層との接触位置から、前記第7の層
の耐圧保持領域側の端部までの距離L3が20μm以上
有ることを特徴とする請求項1乃至3の半導体装置。
4. The third portion located at the end of the IGBT region.
4. The semiconductor device according to claim 1, wherein the distance L3 from the contact position between the electrode of FIG. 4 and the fourth layer to the end of the seventh layer on the breakdown voltage holding region side is 20 μm or more.
【請求項5】前記第4の電極に接続された少なくとも1
本以上の第1の配線を有し、前記第1の配線の任意の1
本から最も遠い第4の電極上の第1の点があり、この第
1の点と前記第1の配線の任意の1本との距離L4と、 前記第4の電極の断面積Aと、前記第4の電極を流れる
電流Iと、第4の電極の抵抗率ρとが、 0.035≧ρ×(L4/A)×I/2 を満たすことを特徴とする請求項1乃至4の半導体装
置。
5. At least one connected to the fourth electrode.
1 or more first wirings, and any one of the first wirings
There is a first point on the fourth electrode farthest from the book, a distance L4 between the first point and any one of the first wirings, a cross-sectional area A of the fourth electrode, The current I flowing through the fourth electrode and the resistivity ρ of the fourth electrode satisfy 0.035 ≧ ρ × (L4 / A) × I / 2. Semiconductor device.
JP34207195A 1995-12-28 1995-12-28 Semiconductor device Expired - Fee Related JP3331846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34207195A JP3331846B2 (en) 1995-12-28 1995-12-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34207195A JP3331846B2 (en) 1995-12-28 1995-12-28 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH09186315A true JPH09186315A (en) 1997-07-15
JP3331846B2 JP3331846B2 (en) 2002-10-07

Family

ID=18350939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34207195A Expired - Fee Related JP3331846B2 (en) 1995-12-28 1995-12-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3331846B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6229180B1 (en) 1998-01-27 2001-05-08 Fuji Electric Co., Ltd. MOS type semiconductor apparatus
US6246092B1 (en) 1997-03-17 2001-06-12 Fuji Electric Co., Ltd. High breakdown voltage MOS semiconductor apparatus
JP2001352064A (en) * 2000-06-07 2001-12-21 Fuji Electric Co Ltd Semiconductor device having high breakdown voltage
US6407413B1 (en) 2000-02-01 2002-06-18 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with guard ring and Zener diode layer thereover
US6492689B2 (en) 2000-04-28 2002-12-10 Hitachi, Ltd. Semiconductor device switching regulator used as a DC regulated power supply
JP2004158868A (en) * 2004-01-05 2004-06-03 Toshiba Corp Semiconductor device and method of manufacturing semiconductor device
US6888206B2 (en) 2002-05-27 2005-05-03 Mitsubishi Denki Kabushiki Kaisha Power semiconductor device and method of manufacturing the same
JP2005236224A (en) * 2004-02-23 2005-09-02 Sanken Electric Co Ltd Semiconductor device
KR100641864B1 (en) * 2004-01-29 2006-11-03 미쓰비시덴키 가부시키가이샤 Semiconductor device
JP2007142087A (en) * 2005-11-17 2007-06-07 Nec Electronics Corp Semiconductor device
JP2007240904A (en) * 2006-03-09 2007-09-20 Hitachi Ltd Plasma display device
JP2010118548A (en) * 2008-11-13 2010-05-27 Mitsubishi Electric Corp Semiconductor device
CN102104039A (en) * 2009-12-16 2011-06-22 三菱电机株式会社 High voltage semiconductor device
KR101137308B1 (en) * 2009-10-30 2012-04-19 (주)파워벨리 Power mos transistor and manufacturing method for reducing power consumption with surge protection means
JP2013201451A (en) * 2013-06-03 2013-10-03 Renesas Electronics Corp Semiconductor device
WO2014073656A1 (en) 2012-11-08 2014-05-15 富士電機株式会社 Semiconductor device and semiconductor device fabrication method
WO2014142331A1 (en) 2013-03-14 2014-09-18 富士電機株式会社 Semiconductor device
JP2015065217A (en) * 2013-09-24 2015-04-09 サンケン電気株式会社 Semiconductor device
JP2015126070A (en) * 2013-12-26 2015-07-06 サンケン電気株式会社 Semiconductor device
WO2016104825A1 (en) * 2014-12-24 2016-06-30 극동대학교 산학협력단 Power semiconductor device having over-voltage protection diode element embedded therein and manufacturing method therefor
JP2017050452A (en) * 2015-09-03 2017-03-09 サンケン電気株式会社 Semiconductor device
CN118737778A (en) * 2024-06-04 2024-10-01 西北核技术研究所 A reflux diode inhibiting method using an elliptical chamfered variable-diameter cathode lead rod structure and a diode reflux inhibiting method
JP2025038901A (en) * 2021-06-21 2025-03-19 良孝 菅原 High performance power integrated circuit semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146273B (en) * 2019-12-27 2021-08-24 西安电子科技大学 Junction terminal extended terminal structure with regulated intermediate layer covering and preparation method thereof

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246092B1 (en) 1997-03-17 2001-06-12 Fuji Electric Co., Ltd. High breakdown voltage MOS semiconductor apparatus
US6548865B2 (en) 1997-03-17 2003-04-15 Fuji Electric Co., Ltd. High breakdown voltage MOS type semiconductor apparatus
US6462382B2 (en) 1998-01-27 2002-10-08 Fuji Electric Co., Ltd. MOS type semiconductor apparatus
US6229180B1 (en) 1998-01-27 2001-05-08 Fuji Electric Co., Ltd. MOS type semiconductor apparatus
US6407413B1 (en) 2000-02-01 2002-06-18 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with guard ring and Zener diode layer thereover
KR100383371B1 (en) * 2000-02-01 2003-05-12 미쓰비시덴키 가부시키가이샤 Semiconductor device
US6492689B2 (en) 2000-04-28 2002-12-10 Hitachi, Ltd. Semiconductor device switching regulator used as a DC regulated power supply
JP2001352064A (en) * 2000-06-07 2001-12-21 Fuji Electric Co Ltd Semiconductor device having high breakdown voltage
DE10362232B4 (en) * 2002-05-27 2011-06-30 Mitsubishi Denki K.K. Power semiconductor device
US6888206B2 (en) 2002-05-27 2005-05-03 Mitsubishi Denki Kabushiki Kaisha Power semiconductor device and method of manufacturing the same
DE10362232B8 (en) * 2002-05-27 2011-11-10 Mitsubishi Denki K.K. Power semiconductor device
JP2004158868A (en) * 2004-01-05 2004-06-03 Toshiba Corp Semiconductor device and method of manufacturing semiconductor device
KR100641864B1 (en) * 2004-01-29 2006-11-03 미쓰비시덴키 가부시키가이샤 Semiconductor device
JP2005236224A (en) * 2004-02-23 2005-09-02 Sanken Electric Co Ltd Semiconductor device
JP2007142087A (en) * 2005-11-17 2007-06-07 Nec Electronics Corp Semiconductor device
JP2007240904A (en) * 2006-03-09 2007-09-20 Hitachi Ltd Plasma display device
JP2010118548A (en) * 2008-11-13 2010-05-27 Mitsubishi Electric Corp Semiconductor device
KR101137308B1 (en) * 2009-10-30 2012-04-19 (주)파워벨리 Power mos transistor and manufacturing method for reducing power consumption with surge protection means
CN102104039A (en) * 2009-12-16 2011-06-22 三菱电机株式会社 High voltage semiconductor device
JP2011129622A (en) * 2009-12-16 2011-06-30 Mitsubishi Electric Corp High breakdown voltage semiconductor device
US8253163B2 (en) 2009-12-16 2012-08-28 Mitsubishi Electric Corporation High voltage semiconductor device including a free wheel diode
WO2014073656A1 (en) 2012-11-08 2014-05-15 富士電機株式会社 Semiconductor device and semiconductor device fabrication method
US9368613B2 (en) 2012-11-08 2016-06-14 Fuji Electric Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
WO2014142331A1 (en) 2013-03-14 2014-09-18 富士電機株式会社 Semiconductor device
US9406666B2 (en) 2013-03-14 2016-08-02 Fuji Electric Co., Ltd. Semiconductor device
JPWO2014142331A1 (en) * 2013-03-14 2017-02-16 富士電機株式会社 Semiconductor device
JP2013201451A (en) * 2013-06-03 2013-10-03 Renesas Electronics Corp Semiconductor device
JP2015065217A (en) * 2013-09-24 2015-04-09 サンケン電気株式会社 Semiconductor device
JP2015126070A (en) * 2013-12-26 2015-07-06 サンケン電気株式会社 Semiconductor device
WO2016104825A1 (en) * 2014-12-24 2016-06-30 극동대학교 산학협력단 Power semiconductor device having over-voltage protection diode element embedded therein and manufacturing method therefor
JP2017050452A (en) * 2015-09-03 2017-03-09 サンケン電気株式会社 Semiconductor device
JP2025038901A (en) * 2021-06-21 2025-03-19 良孝 菅原 High performance power integrated circuit semiconductor device
CN118737778A (en) * 2024-06-04 2024-10-01 西北核技术研究所 A reflux diode inhibiting method using an elliptical chamfered variable-diameter cathode lead rod structure and a diode reflux inhibiting method

Also Published As

Publication number Publication date
JP3331846B2 (en) 2002-10-07

Similar Documents

Publication Publication Date Title
JPH09186315A (en) Semiconductor device
JP6407455B2 (en) Semiconductor device
CN111418071B (en) Semiconductor device and power conversion device
JP2020053466A (en) Semiconductor device
CN112420633B (en) Semiconductor device and inverter
US20230106654A1 (en) Semiconductor device and method of manufacturing semiconductor device
TWI847529B (en) Semiconductor device and power conversion device
JP2002532885A (en) Output semiconductor circuit
US11973132B2 (en) Semiconductor device comprising insulated gate bipolar transistor (IGBT), diode, and well region
US20230147438A1 (en) Semiconductor device, power conversion apparatus, and method for driving semiconductor device
US9048107B2 (en) Semiconductor device
WO2021049090A1 (en) Semiconductor device and power conversion device
JP7527256B2 (en) Semiconductor device and method for controlling the semiconductor device
US6448587B1 (en) Circuit incorporated IGBT and power conversion device using the same
US20210193651A1 (en) Electronic circuit, semiconductor module, and semiconductor apparatus
JP2022167435A (en) SEMICONDUCTOR DEVICE, POWER CONVERSION DEVICE USING THE SAME, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
US20200388613A1 (en) Semiconductor device
US20150340965A1 (en) Semiconductor device and power converter using the same
JP6024177B2 (en) Power semiconductor module
WO2023153027A1 (en) Semiconductor device and power conversion device using same
JP6360191B2 (en) Power converter
WO2014054162A1 (en) Semiconductor device and electric power converter in which same is used
CN115380388A (en) Power semiconductor device including thyristor and bipolar junction transistor
JP7679761B2 (en) Semiconductor device and power conversion device
US12334427B2 (en) Semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070726

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130726

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees