[go: up one dir, main page]

JPH09208502A - Selective production of p-xylene - Google Patents

Selective production of p-xylene

Info

Publication number
JPH09208502A
JPH09208502A JP8012795A JP1279596A JPH09208502A JP H09208502 A JPH09208502 A JP H09208502A JP 8012795 A JP8012795 A JP 8012795A JP 1279596 A JP1279596 A JP 1279596A JP H09208502 A JPH09208502 A JP H09208502A
Authority
JP
Japan
Prior art keywords
xylene
crystalline silicate
catalyst
solution
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8012795A
Other languages
Japanese (ja)
Inventor
Tetsuya Imai
哲也 今井
Satonobu Yasutake
聡信 安武
Iwao Tsukuda
岩夫 佃
Yukio Tanaka
幸男 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8012795A priority Critical patent/JPH09208502A/en
Publication of JPH09208502A publication Critical patent/JPH09208502A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/862Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
    • C07C2/864Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an alcohol
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain p-xylene which is useful as a raw material for polyester selectively in a higher concentration than that at the thermodynamic equilibrium with side reactions reduced. SOLUTION: PARA-xylene is amylbenzenelene is produced by alkylation of benzene or toluene obtained as by-products in reformation, thermal cracking and hydrocracking of petroleum with ethylene or methanol in the presence of a catalyst. As a catalyst to be used in this alkylation, a crystalline silicate having the following chemical composition is preferably cited: aR2 ObmoAl2 o3 ySiO2 (R is an alkali metal ion, H; M is one or more kinds of alkaline earth metal ions; 0.7<a<1.2; b>0; y>30) and the lattice spacing shown in the figure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は石油のリフォーミン
グ、熱分解、ハイドロクラッキングなどの副生物として
得られるベンゼンあるいはトルエンを、結晶性シリケー
トを触媒としてエチレンあるいはメタノールでアルキル
化することにより、ポリエステルの出発原料として重要
なp−キシレンを熱力学平衡以上の高濃度で選択的に製
造する方法に関する。
TECHNICAL FIELD The present invention relates to a polyester of benzene or toluene obtained as a by-product of petroleum reforming, thermal decomposition, hydrocracking and the like, which is alkylated with ethylene or methanol using a crystalline silicate as a catalyst. The present invention relates to a method for selectively producing p-xylene, which is important as a starting material, at a high concentration above thermodynamic equilibrium.

【0002】[0002]

【従来の技術】従来よりトルエンとメタノールからアル
キル化によりキシレンを合成する反応の場合、従来より
触媒として塩化アルミニウムなどを用いるフリーデル・
クラフツ触媒が用いられている。しかし、反応が触媒表
面で起こるためにキシレンの他にC6 〜C10程度の芳香
族炭化水素とアルカン、アルケンが副反応として生成
し、さらにC8 芳香族においてもP−キシレン、o−キ
シレン、m−キシレンの3種異性体とエチルベンゼンが
生成し、これらはそれぞれ熱力学的な平衡を形成して、
決まった組成になることが知られている。例えば327
℃におけるキシレンの3種異性体の組成はp−キシレ
ン:23.8%、m−キシレン:53.2%、o−キシ
レン:23.0%のようになる。
2. Description of the Related Art Conventionally, in the case of a reaction for synthesizing xylene from toluene and methanol by alkylation, Friedel.
Crafts catalysts are used. However, since the reaction takes place on the catalyst surface, in addition to xylene, aromatic hydrocarbons of about C 6 to C 10 and alkanes and alkenes are produced as side reactions, and also in C 8 aromatics, P-xylene and o-xylene. , M-xylene three isomers and ethylbenzene are formed, which form thermodynamic equilibrium,
It is known to have a fixed composition. For example, 327
The composition of three isomers of xylene at ° C is p-xylene: 23.8%, m-xylene: 53.2%, o-xylene: 23.0%.

【0003】現在、p−キシレンはこれらの副反応生成
物を蒸留あるいは深冷分離することにより分離している
が、分離装置が複雑で高価である。特に蒸留の場合は、
8芳香族異性体の沸点が近接しているため条件制御が
困難であり、装置面及び操作面に伴うコストが大きい。
また、p−キシレンは需要が拡大しており、今後工業的
価値に大きな影響を与えるためp−キシレンのコストの
低減が要望されている。
Currently, p-xylene is separated by distilling or deep-separating these side reaction products, but the separation device is complicated and expensive. Especially in the case of distillation,
Since the boiling points of the C 8 aromatic isomers are close to each other, it is difficult to control the conditions, and the costs associated with the equipment and the operation are large.
Further, the demand for p-xylene is expanding, and since it will greatly affect the industrial value in the future, it is desired to reduce the cost of p-xylene.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記技術水準
に鑑み、熱力学的平衡組成以上のp−キシレンを選択的
に得られる方法を提供しようとするものである。
In view of the above-mentioned state of the art, the present invention provides a method for selectively obtaining p-xylene having a thermodynamic equilibrium composition or more.

【0005】[0005]

【課題を解決するための手段】本発明は従来技術が有す
る上記課題を解決することを目的としたものであり、特
定の組成、結晶構造を有する結晶性シリケートにアルカ
リ土類金属を含有した触媒がベンゼンあるいはトルエン
のアルキル化反応において副反応が少なく、特にp−キ
シレンが熱力学的な平衡組成以上の割合で選択的に生成
していることを見い出し本発明を完成するに至った。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above problems of the prior art, and is a catalyst containing an alkaline earth metal in a crystalline silicate having a specific composition and crystal structure. However, the present inventors have completed the present invention by finding that there are few side reactions in the alkylation reaction of benzene or toluene, and in particular that p-xylene is selectively produced at a ratio higher than the thermodynamic equilibrium composition.

【0006】すなわち、本発明はベンゼンあるいはトル
エンをエチレンあるいはメタノールを用いてアルキル化
させることによりp−キシレンを製造する方法におい
て、酸化物のモル比で、aR2 O・bMO・Al2 3
・ySiO2 (式中、R:アルカリ金属イオン、水素イ
オン、M:一種以上のアルカリ土類金属イオン、0.7
<a<1.2,b>0,y>30)の化学組成を有し、
かつ下記表1に示す格子面間隔を有する結晶性シリケー
トを触媒として用いることを特徴とするp−キシレンの
選択的製造方法である。なお、本発明を実施するに際し
ては、上記触媒を粒状あるいはペレット状に成型したも
のを用いてもよいし、モノリス型に成形したものを用い
てもよい。
That is, according to the present invention, in a method for producing p-xylene by alkylating benzene or toluene with ethylene or methanol, the molar ratio of oxides is aR 2 O.bMO.Al 2 O 3
· YSiO 2 (wherein, R: alkali metal ion, hydrogen ion, M: one or more alkaline earth metal ions, 0.7
<A <1.2, b> 0, y> 30),
In addition, a crystalline silicate having a lattice spacing shown in Table 1 below is used as a catalyst, which is a method for selectively producing p-xylene. When carrying out the present invention, the above-mentioned catalyst may be used in the form of granules or pellets, or may be used in the form of a monolith.

【0007】[0007]

【表1】 VS:非常に強い M:中級 S:強い W:弱い[Table 1] VS: Very strong M: Intermediate S: Strong W: Weak

【0008】(作用)本発明で使用される触媒の作用に
ついては、直径約0.6nmの結晶性シリケートの細孔
にベンゼン環(分子直径約0.55nm)が入り込み、
細孔中の酸点でアルキル化が起こるが、ベンゼン環が結
晶性シリケートの細孔中で立体的に束縛されるためにp
−キシレンが選択的に生成するものと考えられる。
(Action) Regarding the action of the catalyst used in the present invention, the benzene ring (molecular diameter: about 0.55 nm) enters the pores of the crystalline silicate having a diameter of about 0.6 nm,
Alkylation occurs at the acid sites in the pores, but p is because the benzene ring is sterically constrained in the pores of the crystalline silicate.
-It is considered that xylene is selectively produced.

【0009】[0009]

【発明の実施の形態】以下、本発明で使用する触媒を詳
細に説明する。本発明で使用する結晶性シリケートはシ
リカの給源、アルカリ土類金属、アルミナの給源、アル
カリの給源、水及び有機窒素化合物を含有する反応混合
物を作り、この混合物を結晶性シリケートが生成するの
に至る時間及び温度で加熱することにより合成される。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the catalyst used in the present invention will be described in detail. The crystalline silicate used in the present invention forms a reaction mixture containing a source of silica, a source of alkaline earth metal, a source of alumina, a source of alkali, water and an organic nitrogen compound, which is used to form a crystalline silicate. It is synthesized by heating for the time and temperature.

【0010】シリカの給源はゼオライトの合成において
普通に使用されるシリカの化合物であれば、何れのシリ
カの給源であってもよく、例えば固形シリカ粉末、コロ
イド状シリカ、または水ガラスなどの珪酸塩が用いられ
る。アルカリ土類元素としては、マグネシウム、カルシ
ウム、バリウムの硫酸塩あるいは硝酸塩が用いられる。
また、アルミナの給源は、アルミン酸ソーダが最も適し
ているが、塩化物、硝酸塩、硫酸塩、酸化物または水酸
化物等の化合物が用いられる。アルカリの給源はナトリ
ウムなどのアルカリ金属の水酸化物またはアルミン酸、
珪酸との化合物などが用いられる。結晶性シリケートの
水熱合成原料の1つである有機窒素含有化合物として
は、n−プロプルアミンなどの第1級アミン、ジプロピ
ルアミンなどの第2級アミン、トリプロピルアミンなど
の第3級アミンやテトラプロピルアンモニウム塩等の第
4級アンモニウム塩等が用いられる。
The silica source can be any silica source commonly used in the synthesis of zeolites, such as solid silica powder, colloidal silica, or silicates such as water glass. Is used. As the alkaline earth element, sulfates or nitrates of magnesium, calcium and barium are used.
The most suitable source of alumina is sodium aluminate, but compounds such as chlorides, nitrates, sulfates, oxides or hydroxides are used. The source of alkali is hydroxide of alkali metal such as sodium or aluminate,
A compound with silicic acid is used. Examples of the organic nitrogen-containing compound, which is one of the raw materials for hydrothermal synthesis of crystalline silicate, include primary amines such as n-propramine, secondary amines such as dipropylamine, and tertiary amines such as tripropylamine. A quaternary ammonium salt such as tetrapropylammonium salt is used.

【0011】本発明で使用する結晶性シリケートは上記
原料混合物を結晶性シリケートが生成するに十分な温度
と時間加熱することにより合成されるが、水熱合成温度
は80〜300℃で好ましくは130〜200℃の範囲
であり、また水熱合成時間は0.5〜14日好ましくは
1〜10日である。圧力は特に制限を受けないが、自圧
で実施するのが望ましい。本発明で使用する結晶性シリ
ケートは一定の結晶構造を有する規則正しい多孔性結晶
性物質であり、一般に前記表1に示すX線回析パターン
を示す。
The crystalline silicate used in the present invention is synthesized by heating the above raw material mixture at a temperature and for a time sufficient for producing the crystalline silicate, and the hydrothermal synthesis temperature is 80 to 300 ° C., preferably 130. To 200 ° C., and the hydrothermal synthesis time is 0.5 to 14 days, preferably 1 to 10 days. The pressure is not particularly limited, but it is preferable to carry out the operation under its own pressure. The crystalline silicate used in the present invention is a regular porous crystalline substance having a certain crystal structure, and generally exhibits the X-ray diffraction pattern shown in Table 1 above.

【0012】上記の水熱合成で得られる結晶性シリケー
トは、Na+ などのアルカリ金属イオン、(C3 7
4 + などの有機窒素含有化合物イオンを含有してい
る。これらのイオンの一部または全部を水素イオンに置
換するためには、空気中で400〜700℃の範囲で2
〜48時間焼成することにより有機化合物を除去した
後、塩酸などの強酸に浸漬して直接H型にする方法など
がある。以上の方法により本発明に使用される触媒が得
られる。
The crystalline silicate obtained by the above hydrothermal synthesis is an alkali metal ion such as Na + , (C 3 H 7 )
It contains organic nitrogen-containing compound ions such as 4 N + . In order to replace a part or all of these ions with hydrogen ions, 2 in the range of 400 to 700 ° C. in air.
After removing the organic compound by baking for 48 hours, it may be directly immersed in a strong acid such as hydrochloric acid to form the H type. The catalyst used in the present invention can be obtained by the above method.

【0013】[0013]

【実施例】以下、本発明の実施例及び比較例をあげ、本
発明の効果を明らかにする。
EXAMPLES Hereinafter, the effects of the present invention will be clarified by giving examples and comparative examples of the present invention.

【0014】(実施例1)本発明に使用する結晶性シリ
ケートを一例として、次に示す方法で合成した。198
gの水に140gの水ガラス(Na2 O・3.4SiO
2 ・24H2 O)を溶解して溶液Aを作った。次に、3
16gの水と11.8gの硫酸の混合物中に10.8g
の硫酸アルミニウム{Al2 (SO4 3 ・16H
2 O}及び0.43gの硫酸カルシウム(CaSO4
2H2 O)を溶解させて溶液Bを作った。上記酸は存在
する過剰アルカリを中和することにより反応混合組成物
を所要のNa2 O/SiO2 範囲にするものである。
Example 1 The crystalline silicate used in the present invention was synthesized as an example by the following method. 198
140g of water glass (Na 2 O ・ 3.4SiO)
2 · 24H 2 O) was dissolved to form solution A. Then 3
10.8 g in a mixture of 16 g water and 11.8 g sulfuric acid
Aluminum sulphate of {Al 2 (SO 4 ) 3・ 16H
2 O} and 0.43 g of calcium sulfate (CaSO 4.
2H 2 O) was dissolved to form solution B. The acid is to neutralize excess alkali present to bring the reaction mixture composition to the required Na 2 O / SiO 2 range.

【0015】溶液Bを溶液A中に攪拌混合し(30分
間)、更に12.7gのテトラプロピルアンモニウムブ
ロマイドを加えた後、1リットルのテフロン内張りステ
ンレス鋼オートクレーブ内で180℃、2日間激しくか
き混ぜながら反応させた。冷却固形分をろ過し、十分洗
浄した後、120℃で12時間乾燥してカルシウム含有
結晶性シリケートを得た。この生成物の結晶粒径は5μ
m程度であり、有機化合物を除外した組成は0.8Na
2 O・0.67CaO・Al2 3 ・40SiO 2 であ
りSi/Al比:80、Si/Ca比:約60であっ
た。
Solution B was mixed with solution A by stirring (30 minutes).
Between) and 12.7 g of tetrapropylammonium broth
After adding romide, 1 liter Teflon lined
In a stainless steel autoclave at 180 ° C for 2 days
Reacted while stirring. Filter the cooled solids and wash thoroughly
After cleaning, dried at 120 ° C for 12 hours to contain calcium
A crystalline silicate was obtained. The crystal grain size of this product is 5μ
m and the composition excluding organic compounds is 0.8 Na
TwoO ・ 0.67CaO ・ AlTwoOThree・ 40 SiO TwoIn
Si / Al ratio: 80, Si / Ca ratio: about 60
Was.

【0016】上記のように合成した結晶性シリケートを
1Nの塩酸に浸漬し、80℃で3日間処理し、前記公知
の慣用法によりナトリウムイオンを水素イオンに置換し
た(水素イオン置換量:約70%)。これを洗浄ろ過し
た後、120℃で12時間乾燥、更に550℃で5時間
焼成し、圧縮成型したものを下記に示す反応条件でメタ
ノール及びトルエンの混合溶液と接触させ表2のような
結果を得た。
The crystalline silicate synthesized as described above was immersed in 1N hydrochloric acid, treated at 80 ° C. for 3 days, and sodium ions were replaced by hydrogen ions by the above-mentioned conventional method (hydrogen ion substitution amount: about 70). %). This was washed and filtered, dried at 120 ° C. for 12 hours, further baked at 550 ° C. for 5 hours, and compression-molded and brought into contact with a mixed solution of methanol and toluene under the reaction conditions shown below, and the results shown in Table 2 were obtained. Obtained.

【0017】[0017]

【表2】 ※p-キシレン選択率(%)=生成p-キシレン分率/生成全キシレン分率×100[Table 2] * P-xylene selectivity (%) = p-xylene fraction produced / total xylene fraction produced x 100

【0018】表2のようにカルシウムを含有した結晶性
シリケートを触媒に用いた場合、温度300〜600℃
の範囲でp−キシレンの選択率が40%以上になり、熱
力学的な平衡組成以上になった。
When a crystalline silicate containing calcium as shown in Table 2 is used as a catalyst, the temperature is 300 to 600 ° C.
Within the range, the selectivity of p-xylene was 40% or more, which was higher than the thermodynamic equilibrium composition.

【0019】(実施例2)120gの水に81gの水ガ
ラス(Na2 O・3.4SiO2 ・24H2 O)を溶解
して溶液Cを作った。次に、142gの水と6.4gの
硫酸の混合物中に0.78gの硫酸アルミニウム{Al
2 (SO4 3 ・16H2 O}及び3.06gの硫酸バ
リウム(BaSO4 )を溶解して溶液Dを作った。次に
溶液Dを溶液C中に攪拌混合し(20分間)、更に7.
0gのn−プロピルアミンを加えた後、1リットルのテ
フロン内張りステンレス鋼オートクレーブ内で200
℃、2日間激しくかき混ぜながら反応させた。冷却固形
分をろ過し、十分洗浄した後、110℃で12時間乾燥
して、バリウム含有結晶性シリケートを得た。この結晶
性シリケートの組成は1.2Na2 O・5.3BaO・
Al2 3 ・160SiO2 であり、Si/Al比:3
20、Si/Ba比:約30、結晶粒径は5μmであっ
た。
[0019] Make a solution C (Example 2) was dissolved water 81g of water glass of 120g (Na 2 O · 3.4SiO 2 · 24H 2 O). Next, 0.78 g of aluminum sulfate {Al was added to a mixture of 142 g of water and 6.4 g of sulfuric acid.
2 (SO 4 ) 3 · 16H 2 O} and 3.06 g of barium sulfate (BaSO 4 ) were dissolved to form a solution D. Then, the solution D was mixed with the solution C by stirring (20 minutes), and 7.
After adding 0 g of n-propylamine, 200 in a 1 liter Teflon lined stainless steel autoclave.
The reaction was carried out at ℃ for 2 days with vigorous stirring. The cooled solid content was filtered, thoroughly washed, and then dried at 110 ° C. for 12 hours to obtain a barium-containing crystalline silicate. The composition of this crystalline silicate is 1.2Na 2 O.5.3BaO.
Al 2 O 3 · 160SiO 2 , Si / Al ratio: 3
20, Si / Ba ratio: about 30, and the crystal grain size was 5 μm.

【0020】上記のように合成した結晶性シリケートを
1Nの塩酸に浸漬し、80℃で3日間処理し、ナトリウ
ムイオンを水素イオンに置換した(水素イオン置換量:
約80%)。これを洗浄ろ過した後、乾燥、更に550
℃で5時間焼成し、圧縮成型したものを下記に示す反応
条件でベンゼンを一定割合のエチレンと接触させ下記表
3の結果を得た。
The crystalline silicate synthesized as described above was immersed in 1N hydrochloric acid and treated at 80 ° C. for 3 days to replace sodium ion with hydrogen ion (hydrogen ion substitution amount:
About 80%). This is washed and filtered, dried, and further 550
Calcination at 5 ° C. for 5 hours and compression molding were carried out by bringing benzene into contact with a fixed proportion of ethylene under the reaction conditions shown below to obtain the results shown in Table 3 below.

【0021】[0021]

【表3】 ※p-キシレン選択率(%)=生成p-キシレン分率/生成全キシレン分率×100[Table 3] * P-xylene selectivity (%) = p-xylene fraction produced / total xylene fraction produced x 100

【0022】(比較例)120gの水に81gの水ガラ
ス(Na2 O・3.4SiO2 ・24H2 O)を溶解し
て溶液Cを作った。次に、150gの水と5.2gの硫
酸の混合物中に3.1gの硫酸アルミニウム{Al
2 (SO4 3 ・16H2 O}を溶解して溶液Dを作っ
た。次に溶液Dを溶液C中に攪拌混合し(20分間)、
更に7.8gのn−プロピルアミンを加えた後、11の
テフロン内張りステンレス鋼オートクレーブ内で200
℃、2日間激しくかき混ぜながら反応させた。冷却固形
分をろ過し、十分洗浄した後、110℃で12時間乾燥
して、バリウム含有結晶性シリケートを得た。この結晶
性シリケートの組成は1.2Na2 O・Al2 3 ・4
0SiO2 であり、Si/Al比:80、結晶粒径は
0.7μmであった。
Comparative Example 81 g of water glass (Na 2 O.3.4SiO 2 .24H 2 O) was dissolved in 120 g of water to prepare a solution C. Next, 3.1 g of aluminum sulfate {Al was added to a mixture of 150 g of water and 5.2 g of sulfuric acid.
2 (SO 4 ) 3 · 16H 2 O} was dissolved to prepare a solution D. Solution D is then stirred into solution C (20 minutes),
After adding an additional 7.8 g of n-propylamine, 200 in an 11 Teflon lined stainless steel autoclave.
The reaction was carried out at ℃ for 2 days with vigorous stirring. The cooled solid content was filtered, thoroughly washed, and then dried at 110 ° C. for 12 hours to obtain a barium-containing crystalline silicate. The composition of this crystalline silicate is 1.2 Na 2 O · Al 2 O 3 · 4.
The SiO 2 content was 0 SiO 2 , the Si / Al ratio was 80, and the crystal grain size was 0.7 μm.

【0023】上記のように合成した結晶性シリケートを
1Nの塩酸に浸漬し、80℃で3日間処理し、ナトリウ
ムイオンを水素イオンに置換した(水素イオン置換量:
約70%)。これを洗浄ろ過した後、乾燥、更に550
℃で5時間焼成し、圧縮成型してアルカリ土類金属を含
有していない結晶性シリケート触媒を合成した。この触
媒をベンゼンとエチレンとの反応及びトルエンとメタノ
ールとの反応について下記に示す反応条件で試験を行い
下記表4及び表5の結果を得た。
The crystalline silicate synthesized as described above was immersed in 1N hydrochloric acid and treated at 80 ° C. for 3 days to replace sodium ion with hydrogen ion (hydrogen ion substitution amount:
About 70%). This is washed and filtered, dried, and further 550
The mixture was calcined at 5 ° C. for 5 hours and compression molded to synthesize a crystalline silicate catalyst containing no alkaline earth metal. The catalyst was tested for the reaction between benzene and ethylene and the reaction between toluene and methanol under the reaction conditions shown below, and the results shown in Tables 4 and 5 below were obtained.

【0024】[0024]

【表4】 [Table 4]

【0025】[0025]

【表5】 [Table 5]

【0026】上記結果より、アルカリ土類金属を含有し
ない結晶性シリケート触媒を用いた場合、p−キシレン
選択率が熱力学的平衡組成付近になる。
From the above results, when the crystalline silicate catalyst containing no alkaline earth metal is used, the p-xylene selectivity is near the thermodynamic equilibrium composition.

【0027】[0027]

【発明の効果】以上、実施例に示したように、ベンゼン
とエチレンあるいはトルエンとメタノールとの反応にお
いて、従来熱力学的平衡組成であったものが本発明の結
晶性シリケートにアルカリ土類金属を含有させた触媒を
用いることにより、熱力学的平衡組成以上のp−キシレ
ンを得ることが可能となった。
As described above, in the reaction of benzene and ethylene or toluene and methanol, the conventional thermodynamic equilibrium composition was added to the crystalline silicate of the present invention with an alkaline earth metal, as shown in the examples. By using the contained catalyst, it became possible to obtain p-xylene having a thermodynamic equilibrium composition or more.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 幸男 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yukio Tanaka 4-6-22 Kannonshinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Inside Mitsubishi Heavy Industries, Ltd. Hiroshima Research Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ベンゼンあるいはトルエンをエチレンあ
るいはメタノールを用いてアルキル化させることにより
p−キシレンを製造する方法において、酸化物のモル比
で、aR2 O・bMO・Al2 3 ・ySiO2 (式
中、R:アルカリ金属イオン、水素イオン、M:一種以
上のアルカリ土類金属イオン、0.7<a<1.2,b
>0,y>30)の化学組成を有し、かつ本文に詳記す
る表1に示す格子面間隔を有する結晶性シリケートを触
媒として用いることを特徴とするp−キシレンの選択的
製造方法。
1. A method for producing p-xylene by alkylating benzene or toluene with ethylene or methanol, wherein the molar ratio of oxides is aR 2 O.bMO.Al 2 O 3 .ySiO 2 ( In the formula, R: alkali metal ion, hydrogen ion, M: one or more alkaline earth metal ions, 0.7 <a <1.2, b
> 0, y> 30) and a crystalline silicate having a lattice spacing shown in Table 1 described in detail herein is used as a catalyst for the selective production of p-xylene.
JP8012795A 1996-01-29 1996-01-29 Selective production of p-xylene Withdrawn JPH09208502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8012795A JPH09208502A (en) 1996-01-29 1996-01-29 Selective production of p-xylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8012795A JPH09208502A (en) 1996-01-29 1996-01-29 Selective production of p-xylene

Publications (1)

Publication Number Publication Date
JPH09208502A true JPH09208502A (en) 1997-08-12

Family

ID=11815340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8012795A Withdrawn JPH09208502A (en) 1996-01-29 1996-01-29 Selective production of p-xylene

Country Status (1)

Country Link
JP (1) JPH09208502A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126535A (en) * 2000-10-30 2002-05-08 Mitsubishi Heavy Ind Ltd Catalyst for selective oxidation of carbon monoxide and production method of the same
WO2004000767A1 (en) * 2002-06-19 2003-12-31 Exxonmobil Chemical Patents Inc. Manufacture of xylenes from reformate
US7119239B2 (en) 2002-06-19 2006-10-10 Exxonmobil Chemical Patents Inc. Manufacture of xylenes using reformate
US7176339B2 (en) 2002-06-19 2007-02-13 Exxonmobil Chemical Patents Inc. Manufacture of xylenes using reformate
WO2010151346A1 (en) * 2009-06-26 2010-12-29 Uop Llc Carbohydrate route to para-xylene and terephthalic acid

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126535A (en) * 2000-10-30 2002-05-08 Mitsubishi Heavy Ind Ltd Catalyst for selective oxidation of carbon monoxide and production method of the same
WO2004000767A1 (en) * 2002-06-19 2003-12-31 Exxonmobil Chemical Patents Inc. Manufacture of xylenes from reformate
US7119239B2 (en) 2002-06-19 2006-10-10 Exxonmobil Chemical Patents Inc. Manufacture of xylenes using reformate
US7176339B2 (en) 2002-06-19 2007-02-13 Exxonmobil Chemical Patents Inc. Manufacture of xylenes using reformate
US7396967B2 (en) 2002-06-19 2008-07-08 Exxonmobil Chemical Patents Inc. Manufacture of xylenes using reformate
US7655823B2 (en) 2002-06-19 2010-02-02 Exxonmobil Chemical Patents Inc. Manufacture of xylenes from reformate
WO2010151346A1 (en) * 2009-06-26 2010-12-29 Uop Llc Carbohydrate route to para-xylene and terephthalic acid
CN102482177A (en) * 2009-06-26 2012-05-30 环球油品公司 Carbohydrate route to para-xylene and terephthalic acid

Similar Documents

Publication Publication Date Title
JP5571950B2 (en) Molecular sieve composition (EMM-10), production method thereof, and hydrocarbon conversion method using the composition
JPH0153205B2 (en)
CN108928830B (en) Molecular sieve SCM-17, its synthesis method and use
JP6005878B2 (en) Aromatic transalkylation reaction using UZM-39 aluminosilicate zeolite
US4954326A (en) Preparation of crystalline aluminosilicate zeolite, and its product
JPS62501275A (en) Crystalline magnesia-silica catalyst and its production method
JPS6241574B2 (en)
JPH09208502A (en) Selective production of p-xylene
WO1984003452A1 (en) Binder-free zeolite catalyst, process for its preparation, and catalytic reaction using same
JPH09316011A (en) Selective production of p-xylene
CN109694091B (en) Preparation method of IWR/CDO cocrystallized zeolite molecular sieve
JPH0336814B2 (en)
JPH0229608B2 (en)
JP3937637B2 (en) Isomerization catalyst composition and isomerization method of halogenated aromatic compound
JPH10324649A (en) Selective production of p-xylene and crystalline silicate
JP3785815B2 (en) Aromatic hydrocarbon conversion process
JPS63150231A (en) Method for producing alkylated aromatic compounds
JP2904373B2 (en) Method for alkylating aromatic hydrocarbons
JPS59227830A (en) Oligomerization of isobutene
JPS6248649B2 (en)
JP2005213180A (en) Method for producing ethylxylene
JPH03137013A (en) Mordenite type zeolite and method of its preparation
JPS6169738A (en) Isomerization of aromatic hydrocarbons of 8 carbon atoms
KR19980071943A (en) Synthesis Method and Synthesis Device of FM Eye Type Gallosilicate by Atmospheric Pressure Sequence
JPH0193545A (en) Production of lower olefin

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030401