JPH0920976A - Material resistant to corrosion and oxidation - Google Patents
Material resistant to corrosion and oxidationInfo
- Publication number
- JPH0920976A JPH0920976A JP7167534A JP16753495A JPH0920976A JP H0920976 A JPH0920976 A JP H0920976A JP 7167534 A JP7167534 A JP 7167534A JP 16753495 A JP16753495 A JP 16753495A JP H0920976 A JPH0920976 A JP H0920976A
- Authority
- JP
- Japan
- Prior art keywords
- oxidation
- corrosion
- metal layer
- resistant
- atomic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/021—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
- C23C28/022—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer with at least one MCrAlX layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/021—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/073—Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/08—Metallic material containing only metal elements
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/18—After-treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Coating By Spraying Or Casting (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はガスタービンの動・
静翼やボイラのバーナ高温部品などに適用される耐食・
耐酸化性材料に関する。TECHNICAL FIELD The present invention relates to the operation of a gas turbine.
Corrosion resistance applied to high temperature components such as vanes and burner high temperature of boiler
It relates to oxidation resistant materials.
【0002】[0002]
【従来の技術】従来技術によるガスタービン動・静翼用
の耐食・耐酸化材料は図3及び図4に示すような構造と
なっている。すなわち、母材1の表面に金属層Aが形成
された構造あるいは母材1の表面に金属層Aが形成さ
れ、さらにその上に金属層Cが形成された構造である。
図3における符号2で示される金属層Aは一般にMCr
AlY(M:Ni、Co、Feのうちいずれか1種の単
独元素又は2種類の元素)よりなる組成の耐食・耐酸化
性に富み、かつ母材1との相安定性を考慮したコーティ
ング膜であり、低圧プラズマ溶射法により施工されてい
る。図4の材料では、図3の材料のコーティング膜の耐
食・耐酸化性を改善するため、金属層Aの上にさらに符
号4で示されるAl拡散浸透処理層である金属層Cが施
工されている。2. Description of the Related Art A conventional corrosion-resistant and oxidation-resistant material for a gas turbine moving / stator blade has a structure as shown in FIGS. That is, it has a structure in which the metal layer A is formed on the surface of the base material 1 or a structure in which the metal layer A is formed on the surface of the base material 1 and further the metal layer C is formed thereon.
The metal layer A designated by the reference numeral 2 in FIG. 3 is generally MCr.
A coating film having a composition consisting of AlY (M: any one of Ni, Co, and Fe, or two kinds of elements), which is rich in corrosion resistance and oxidation resistance, and in consideration of phase stability with the base material 1. And is constructed by the low pressure plasma spraying method. In the material of FIG. 4, in order to improve the corrosion resistance and the oxidation resistance of the coating film of the material of FIG. 3, a metal layer C, which is an Al diffusion permeation treatment layer indicated by reference numeral 4, is further applied on the metal layer A. There is.
【0003】[0003]
【発明が解決しようとする課題】近年、ガスタービンは
高効率化のためタービン入口ガス温度の高温化が進むと
ともに、一方では、よりよい経済性のため粗悪な燃料を
使用する傾向にある。また、ガスタービン特有の吸気と
しての大気からの腐食性成分が混入する。これらの要
因、すなわち高温化、粗悪燃料、大気からの腐食性成分
の混入により、動・静翼等の高温腐食と酸化が激しくな
っている。In recent years, the gas inlet temperature of the turbine has been increasing to improve the efficiency of the gas turbine, and on the other hand, there is a tendency to use poor fuel for better economy. In addition, corrosive components from the atmosphere as intake air peculiar to the gas turbine are mixed. Due to these factors, that is, high temperature, poor fuel, and the inclusion of corrosive components from the atmosphere, high temperature corrosion and oxidation of moving and stationary blades are becoming more severe.
【0004】このため、より耐食・耐酸化性の優れたコ
ーティング膜が要求され、上述した図3及び図4に示す
コーティング膜が現状使用されている。図3に示されて
いる材料ではMCrAlY(M:Ni、Co、Feのう
ちいずれか1種の単独元素又は2種類の元素)よりなる
組成の合金粉体(金属層A)を低圧プラズマ溶射法によ
り動・静翼に用いられるNi基もしくはCo基超合金
(IN738LC等)の母材にコーティングしている。
MCrAlYの組成は母材との相安定性(MCrAlY
と母材との境界及びその母材側に脆弱な金属間化合物を
生成しにくい)等の観点から、Cr量は約30%以下、
Al量は約15%以下に抑えられているため、その耐食
・耐酸化性は十分ではない。一方、図4に示されている
材料では、より一層の耐食・耐酸化性の向上のために金
属層Aの上にAl拡散浸透処理層(金属層C)が施工さ
れており、著しく耐食・耐酸化性に優れるが、作業工程
が複雑なためコスト高となる。Therefore, a coating film having more excellent corrosion resistance and oxidation resistance is required, and the above-mentioned coating films shown in FIGS. 3 and 4 are currently used. In the material shown in FIG. 3, alloy powder (metal layer A) having a composition of MCrAlY (M: any one element of Ni, Co and Fe or two elements) is used for low pressure plasma spraying. Coating the base material of Ni-based or Co-based superalloy (IN738LC etc.) used for moving and stationary blades.
The composition of MCrAlY is phase stable with the base material (MCrAlY
(It is difficult to form a brittle intermetallic compound on the boundary between the base metal and the base metal and the base metal side), etc., the Cr content is about 30% or less,
Since the amount of Al is suppressed to about 15% or less, its corrosion resistance and oxidation resistance are not sufficient. On the other hand, in the material shown in FIG. 4, an Al diffusion and permeation treatment layer (metal layer C) is applied on the metal layer A for further improvement in corrosion resistance and oxidation resistance, and the corrosion resistance Although it has excellent oxidation resistance, the cost is high due to the complicated work process.
【0005】本発明は上記従来技術のMCrAlYのみ
のコーティング膜よりも耐食・耐酸化性に優れたコーテ
ィング膜を、また、MCrAlYのコーティング膜上に
Al拡散浸透処理層を施工したものより安価に製造する
ことができる耐食・耐酸化性に優れたコーティング膜を
有する耐食・耐酸化性材料を提供しようとするものであ
る。The present invention manufactures a coating film which is superior in corrosion resistance and oxidation resistance to the above-mentioned conventional coating film of MCrAlY only, and is cheaper than a coating film of MCrAlY coated with an Al diffusion permeation treatment layer. An object of the present invention is to provide a corrosion-resistant / oxidation-resistant material having a coating film having excellent corrosion resistance / oxidation resistance.
【0006】[0006]
【課題を解決するための手段】本発明は(1)母材表面
上に低圧プラズマ溶射法により44〜56原子%のAl
を含むCoAl単相合金又は34〜48原子%のAlを
含むFeAl単相合金の金属層を形成してなることを特
徴とする耐食・耐酸化性材料、(2)母材表面上に低圧
プラズマ溶射法によりMCrAlY(M:Ni、Co、
Feのうちいずれか1種の単独元素又は2種類の元素を
主成分とする)の金属層を形成し、さらにその表面に低
圧プラズマ溶射法により44〜56原子%のAlを含む
CoAl単相合金又は34〜48原子%のAlを含むF
eAl単相合金の金属層を形成してなることを特徴とす
る耐食・耐酸化性材料である。According to the present invention, (1) 44 to 56 atomic% of Al is formed on the surface of a base material by a low pressure plasma spraying method.
, A corrosion-resistant and oxidation-resistant material, characterized in that a metal layer of a CoAl single-phase alloy containing Al or a FeAl single-phase alloy containing 34 to 48 atomic% Al is formed, (2) low-pressure plasma on the surface of the base material. MCrAlY (M: Ni, Co,
CoAl single-phase alloy in which a metal layer of any one element of Fe (mainly consisting of one element or two elements) is formed, and 44 to 56 atomic% of Al is further formed on the surface thereof by low pressure plasma spraying. Or F containing 34 to 48 atomic% of Al
It is a corrosion-resistant and oxidation-resistant material characterized by forming a metal layer of an eAl single-phase alloy.
【0007】[0007]
【発明の実施の形態】本発明の第1では、母材上に直接
44〜56原子%のAlを含むCoAl単相合金又は3
4〜48原子%のAlを含むFeAl単相合金の金属層
Bのコーティング膜を形成させる。このコーティング層
と母材との密着及び均一性を良好にするため、母材の材
質回復を兼ねた後熱処理を行う。BEST MODE FOR CARRYING OUT THE INVENTION In the first aspect of the present invention, a CoAl single phase alloy or 3 containing 44 to 56 atomic% of Al directly on a base material.
A coating film of a metal layer B of a FeAl single phase alloy containing 4 to 48 atomic% of Al is formed. In order to improve the adhesion and uniformity between the coating layer and the base material, heat treatment is performed after the material also serves as the base material recovery.
【0008】また、本発明の第2においては、母材に接
する面には従来どおりのMCrAlY(M:Ni、C
o、Feのうちいずれか1種の単独元素又は2種類の元
素)のコーティング膜である金属層Aを形成させ、その
上に44〜56原子%のAlを含むCoAl単相合金又
は34〜48原子%のAlを含むFeAl単相合金の金
属層Bのコーティング膜を形成させる。このコーティン
グ層と母材との密着及び均一性を良好にするため、母材
の材質回復を兼ねた後熱処理を行う。高濃度のAlを含
有する金属層Bでは、酸素との接触により容易に緻密な
Al2 O3 膜が形成され、優れた耐食・耐酸化性が得ら
れる。According to the second aspect of the present invention, the conventional MCrAlY (M: Ni, C) is formed on the surface in contact with the base material.
o, a CoAl single-phase alloy containing a metal layer A which is a coating film of any one element of Fe and two elements) and which contains 44 to 56 atomic% of Al, or 34 to 48 A coating film of a metal layer B of a FeAl single-phase alloy containing atomic% Al is formed. In order to improve the adhesion and uniformity between the coating layer and the base material, heat treatment is performed after the material also serves as the base material recovery. In the metal layer B containing a high concentration of Al, a dense Al 2 O 3 film is easily formed by contact with oxygen, and excellent corrosion resistance and oxidation resistance are obtained.
【0009】本発明の耐食・耐酸化性材料においてCo
Al単相合金又はFeAl単相合金を直接成膜する母材
としてはNi基超合金(IN738LC,Udimet
520,IN939等)あるいはCo基超合金(E−C
Y738,X−45等)が好適である。また、中間にM
CrAlYの金属層を形成させる場合には、MCrAl
Yの成膜が可能な材料であれば支障なく使用することが
できる。In the corrosion-resistant and oxidation-resistant material of the present invention, Co
A Ni-base superalloy (IN738LC, Udimet) is used as a base material for directly forming an Al single phase alloy or a FeAl single phase alloy.
520, IN939, etc.) or Co-based superalloy (EC)
(Y738, X-45, etc.) are preferable. In the middle, M
When forming a metal layer of CrAlY, MCrAl
Any material capable of forming a Y film can be used without any trouble.
【0010】また、金属層A及びBの2層を形成させる
場合でも、金属層Bのコーティング方法は、金属層Aと
同じ低圧プラズマ溶射法であるため、金属層Aのコーテ
ィングに引き続いて実施することができるので、コーテ
ィング膜の均一化、母材との密着性向上をはかることが
できる。さらに後熱処理(概ね800〜1200℃で数
時間から30時間程度保持する)も引き続き行うことが
できるので、Al拡散浸透処理法に比べると著しい工程
の簡素化、短縮化となる。Further, even when two layers of the metal layers A and B are formed, the coating method of the metal layer B is the same low-pressure plasma spraying method as that of the metal layer A, and therefore the coating of the metal layer A is performed subsequently. Therefore, the coating film can be made uniform and the adhesion with the base material can be improved. Further, a post-heat treatment (maintaining at about 800 to 1200 ° C. for several hours to 30 hours) can be continuously performed, so that the process is remarkably simplified and shortened as compared with the Al diffusion permeation treatment method.
【0011】金属層B中のAl含有量を、CoAl合金
の場合で44〜56原子%、FeAl合金の場合で34
〜48原子%の範囲に規定するのは、この組成範囲でC
oAl及びFeAlの単相合金が得られるためである。
Al含有量がこれより多くなるとCoAl+Al又はF
eAl+Alの2相合金となり、逆にAlの含有量が少
ないとCoAl+Co又はFeAl+Feの2相合金と
なる。このような2相合金の形になると高温での組織安
定性に問題が生じてくる。また、Al含有量が少ないと
延性が増し、施工性の面では有利であるが、耐酸化性を
考えると多い方が優れているので、これらの点からも前
記の範囲が好ましい。The Al content in the metal layer B is 44 to 56 atom% in the case of CoAl alloy and 34 in the case of FeAl alloy.
It is C within this composition range that is specified in the range of up to 48 atom%.
This is because a single phase alloy of oAl and FeAl can be obtained.
If the Al content is higher than this, CoAl + Al or F
It becomes a two-phase alloy of eAl + Al. Conversely, when the content of Al is small, it becomes a two-phase alloy of CoAl + Co or FeAl + Fe. In the case of such a two-phase alloy, there arises a problem in structural stability at high temperature. Further, when the Al content is low, the ductility is increased, which is advantageous in terms of workability, but when considering the oxidation resistance, the higher the Al content, the better. Therefore, the above range is preferable also from these points.
【0012】[0012]
【実施例】以下実施例により本発明をさらに具体的に説
明する。 (実施例1)直径10mm、長さ50mmの円柱状の母
材(材質IN738LC Ni基合金)の表面に、Co
Al合金からなる金属層B又は金属層A+Bを形成さ
せ、図1又は図2の構成の本発明材料の試験片(資料N
o.1〜4)を作製した。原料として表1の組成の粉末
(粒径150μm以下)を使用し、表5に示す溶射条件
にて低圧プラズマ溶射法(LPPS)により、表1に示
した厚みのコーティング膜を形成させた。なお、金属層
A(MCrAlY:この例ではCoNiCrAlY)の
化学組成は31〜33Ni−20〜22Cr−7〜9A
l−0.25〜0.65Y−残りCo(重量%)であ
る。その後、1120℃±15℃で2時間保持し、一旦
窒素ガスで冷却した後、再度843℃±15℃に加熱し
24時間保持した後窒素ガス冷却することによって後熱
処理を実施し、コーティング膜の母材との密着性及び均
一化をはかると共に所要の材料強度を有する試験片とし
た。なお、今回の試験では1120℃±15℃×2時間
と843℃±15℃×24時間の処理を行ったが、母材
が溶体化熱処理を必要としない場合は前者は省略しても
よい。The present invention will be described more specifically with reference to the following examples. (Example 1) Co on the surface of a cylindrical base material (material IN738LC Ni-based alloy) having a diameter of 10 mm and a length of 50 mm, Co
A metal layer B or a metal layer A + B made of an Al alloy is formed, and a test piece of the material of the present invention having the configuration of FIG.
o. 1-4) were prepared. A powder having a composition shown in Table 1 (particle size: 150 μm or less) was used as a raw material, and a coating film having a thickness shown in Table 1 was formed by a low pressure plasma spraying method (LPPS) under the spraying conditions shown in Table 5. The chemical composition of the metal layer A (MCrAlY: CoNiCrAlY in this example) is 31 to 33Ni-20 to 22Cr-7 to 9A.
1-0.25 to 0.65Y-remaining Co (% by weight). After that, the temperature is maintained at 1120 ° C. ± 15 ° C. for 2 hours, once cooled with nitrogen gas, again heated to 843 ° C. ± 15 ° C., and held for 24 hours, and then cooled with nitrogen gas to perform a post heat treatment, thereby performing a post-heat treatment. A test piece having the required material strength was obtained while ensuring adhesion and uniformity with the base material. In this test, the treatment was performed at 1120 ° C. ± 15 ° C. × 2 hours and 843 ° C. ± 15 ° C. × 24 hours, but the former may be omitted if the base material does not require solution heat treatment.
【0013】表1に示した比較材の試料No.6は前記
試料No.1〜4の本発明材と同じ要領で作製した。た
だし、金属層Bは施工せず、図3に示すように金属層A
のみとした。また、比較材の試料No.5については、
前記のようにして金属層Aをコーティングした後、この
試験片をAl粉末とアルミナ及び塩化アンモニウムの混
合物(粒径0.5〜2mmのAl:15%、塩化アンモ
ニウム:1%、残部:粒径0.5〜2mmのアルミナ)
よりなる粉末中に埋没し、塩化アンモニウムガスを流し
ながら1100±15℃で10時間処理し、Al拡散浸
透処理を行った。その後母材の材料強度を確保するため
に1120℃±15℃×2hr/窒素ガス冷却、次いで
843℃±15℃×24hr/窒素ガス冷却なる後熱処
理を実施し、試験試料とした。なお、Al拡散浸透処理
後は、Al拡散浸透処理温度からの冷却速度が非常に遅
いため、材質を回復させる必要がある。したがって、前
記の後熱処理が必須である。Sample No. of the comparative material shown in Table 1 No. 6 is the sample No. It was produced in the same manner as the materials of the present invention 1 to 4. However, the metal layer B was not applied, and the metal layer A was used as shown in FIG.
Only. In addition, the sample No. of the comparative material. For 5,
After coating the metal layer A as described above, this test piece was mixed with Al powder and alumina and ammonium chloride (Al: 15% of particle size 0.5-2 mm, ammonium chloride: 1%, balance: particle size). 0.5-2 mm alumina)
It was embedded in a powder consisting of the above and was treated at 1100 ± 15 ° C. for 10 hours while flowing an ammonium chloride gas to perform Al diffusion permeation treatment. Then, in order to secure the material strength of the base material, 1120 ° C. ± 15 ° C. × 2 hr / nitrogen gas cooling, and then 843 ° C. ± 15 ° C. × 24 hr / nitrogen gas cooling were carried out, and a heat treatment was performed to obtain a test sample. Note that, after the Al diffusion / permeation treatment, the cooling rate from the Al diffusion / permeation treatment temperature is very slow, so it is necessary to recover the material. Therefore, the post heat treatment is essential.
【0014】[0014]
【表1】 [Table 1]
【0015】前記のようにして作製した試験片を用い
て、電気炉中で大気雰囲気下で1100±15℃で10
00時間加熱することによる酸化試験を行った。加熱後
の試験片の重量を測定し、加熱前との差により酸化物生
成による重量増加量を求めた。そして、比較材である試
料No.6の重量増加量を1とし、これに対する各試験
片の重量増加量の比を表2に示した。表2の結果から、
本発明材は比較材である試料No.6に比べて著しく耐
酸化性に優れていることがわかる。Using the test piece prepared as described above, the temperature was 1100 ± 15 ° C. in an electric furnace in an air atmosphere at 10 ° C.
An oxidation test was performed by heating for 00 hours. The weight of the test piece after heating was measured, and the weight increase due to oxide formation was determined from the difference from that before heating. Then, the sample No. The weight increase amount of 6 was set to 1, and the ratio of the weight increase amount of each test piece to this was shown in Table 2. From the results in Table 2,
The material of the present invention is sample No. It can be seen that the oxidation resistance is remarkably superior to that of No. 6.
【0016】次に、同じく前記の試験片を用いて高温腐
食試験を行った。試験方法としては、腐食灰(V
2 O5 :Na2 SO4 =80:20,重量比)を20m
g/cm2の割合で試験片全面に塗布し、大気中で85
0±15℃で100時間加熱した(20時間ごとに腐食
灰を塗布し、5サイクル計100時間)。試験後、湯で
スケールを洗浄後重量を測定し、腐食試験前との差によ
り重量減量を求めた。そして、比較材である試料No.
6の重量減量を1とし、これに対する各試験片の重量減
量の比を表2に示した。表2の結果から、本発明材は比
較材である試料No.6に比べて著しく耐食性に優れて
いることがわかる。特に試料No.4は、試料No.5
の比較材と同等の耐食性を有することは注目してよい。Next, a high temperature corrosion test was conducted using the above test piece. As a test method, corrosive ash (V
2 O 5 : Na 2 SO 4 = 80: 20, weight ratio) 20 m
It is applied to the entire surface of the test piece at a rate of g / cm 2 and is 85 in the air.
It was heated at 0 ± 15 ° C. for 100 hours (corrosion ash was applied every 20 hours, and 5 cycles in total for 100 hours). After the test, the scale was washed with hot water and the weight was measured, and the weight loss was determined by the difference from that before the corrosion test. Then, the sample No.
The weight loss of No. 6 was set to 1, and the ratio of the weight loss of each test piece to this was shown in Table 2. From the results in Table 2, the material of the present invention is a comparative material, Sample No. It can be seen that the corrosion resistance is remarkably superior to that of No. 6. In particular, the sample No. No. 4 is sample No. 4. 5
It may be noted that it has the same corrosion resistance as that of the comparative material.
【0017】なお、試料No.1〜6のコーティングを
施工するに当たって、コストを試算した結果は表2に示
すとおりで、本発明材の試料No.1〜4では、比較材
の試料No.6に比べ1.5〜1.7倍となった。これ
は原料のCoAl粉末が高価であることによるコストア
ップであるが、その性能向上による製品の寿命延長を加
味するとなお余りあるものがある。一方、比較材の試料
No.5はAl拡散浸透処理を実施するため、著しいコ
ストアップとなっている。Sample No. The results of trial calculation of costs for applying the coatings 1 to 6 are shown in Table 2. In Nos. 1 to 4, sample No. of the comparative material. It was 1.5 to 1.7 times that of No. 6. This is a cost increase due to the high cost of the CoAl powder as a raw material, but there are still some things when the life extension of the product is taken into consideration due to the performance improvement. On the other hand, sample No. of the comparative material. In No. 5, the Al diffusion diffusion treatment is carried out, resulting in a significant increase in cost.
【0018】[0018]
【表2】 [Table 2]
【0019】(実施例2)実施例1で使用したのと同じ
円柱状の母材(材質IN738LC Ni基合金)の表
面に、FeAl合金からなる金属層B又は金属層A+B
を形成させ、図1又は図2の構成の本発明材料の試験片
(資料No.7〜10)を作製した。原料として表3の
組成の粉末(粒径150μm以下)を使用し、表5に示
す溶射条件にて低圧プラズマ溶射法(LPPS)によ
り、表3に示した厚みのコーティング膜を形成させた。
なお、金属層A(MCrAlY:この例ではCoNiC
rAlY)の化学組成も実施例1と同じで31〜33N
i−20〜22Cr−7〜9Al−0.25〜0.65
Y−残りCo(重量%)である。また、その後の後熱処
理も実施例1と同様に行った。(Embodiment 2) A metal layer B or a metal layer A + B made of FeAl alloy is formed on the surface of the same cylindrical base material (material IN738LC Ni-based alloy) used in Embodiment 1.
Was formed to prepare test pieces (Material Nos. 7 to 10) of the material of the present invention having the configuration of FIG. 1 or 2. A powder having a composition shown in Table 3 (particle size: 150 μm or less) was used as a raw material, and a coating film having a thickness shown in Table 3 was formed by a low pressure plasma spraying method (LPPS) under the spraying conditions shown in Table 5.
The metal layer A (MCrAlY: CoNiC in this example)
The chemical composition of rAlY) is the same as in Example 1 and is 31 to 33N.
i-20 to 22Cr-7 to 9Al-0.25 to 0.65
Y-remaining Co (% by weight). Further, the subsequent heat treatment was performed in the same manner as in Example 1.
【0020】表3に示した比較材の試料No.11は前
記試料No.7〜10の本発明材と同じ要領で作製し
た。ただし、金属層Bは施工せず、図3に示すように金
属層Aのみとした。また、比較材の試料No.12につ
いては、前記のようにして金属層Aをコーティングした
後、実施例1の比較材6と同様にAl拡散浸透処理及び
後熱処理を実施し、試験試料とした。Sample No. of the comparative material shown in Table 3 No. 11 is the sample No. It was produced in the same manner as 7 to 10 materials of the present invention. However, the metal layer B was not applied and only the metal layer A was used as shown in FIG. In addition, the sample No. of the comparative material. For No. 12, after coating the metal layer A as described above, Al diffusion permeation treatment and post heat treatment were performed in the same manner as the comparative material 6 of Example 1 to obtain test samples.
【0021】[0021]
【表3】 [Table 3]
【0022】前記のようにして作製した試験片を用い
て、実施例1と同様に酸化試験、高温腐食試験及びコス
トの試算を行った。結果を表4に示す。Using the test piece prepared as described above, an oxidation test, a high temperature corrosion test and a trial calculation of the cost were carried out in the same manner as in Example 1. The results are shown in Table 4.
【0023】表4の結果は、いずれも実施例1とほぼ同
等の数値と傾向を示している。すなわち、本発明材はい
ずれも比較材である試料No.12に比べて著しく耐食
性に優れており、特に試料No.7,10の材料は、試
料No.11の比較材と同等の耐食性を有している。コ
スト試算の結果も、本発明材の試料No.7〜10で
は、比較材の試料No.12に比べ0.9〜1.5倍と
なったが、その性能向上による製品の寿命延長を加味す
るとその効果はなお余りあるものがある。一方、比較材
の試料No.11はAl拡散浸透処理を実施するため、
著しいコストアップとなっている。The results in Table 4 all show numerical values and trends that are almost the same as in Example 1. That is, all of the materials of the present invention are sample Nos. 12 has a significantly higher corrosion resistance than Sample No. 12, and especially Sample No. The materials of Nos. 7 and 10 are sample No. It has the same corrosion resistance as the comparative material of No. 11. The results of the cost estimation also show that the sample No. In Nos. 7 to 10, sample No. of the comparative material. Although it is 0.9 to 1.5 times as large as that of No. 12, when the life extension of the product due to the performance improvement is taken into consideration, the effect still remains. On the other hand, sample No. of the comparative material. No. 11 carries out Al diffusion infiltration treatment,
The cost has increased significantly.
【0024】[0024]
【表4】 [Table 4]
【0025】[0025]
【表5】 [Table 5]
【0026】[0026]
【発明の効果】本発明の耐食・耐酸化性材料におけるコ
ーティング膜は、従来最も優れているとみられているA
l拡散浸透処理層と同等もしくはそれ以上の耐酸化及び
耐食性を有しており、15〜55%程度のコスト低減が
可能となった。The coating film of the corrosion-resistant / oxidation-resistant material of the present invention has been considered to be the best in the past.
It has oxidation resistance and corrosion resistance equal to or higher than that of the 1-diffusion permeation treatment layer, and the cost can be reduced by about 15 to 55%.
【図1】本発明の第1に係る耐食・耐酸化性材料の構成
図。FIG. 1 is a configuration diagram of a corrosion-resistant / oxidation-resistant material according to the first aspect of the present invention.
【図2】本発明の第2に係る耐食・耐酸化性材料の構成
図。FIG. 2 is a configuration diagram of a corrosion-resistant / oxidation-resistant material according to the second aspect of the present invention.
【図3】従来の耐食・耐酸化性材料の1例を示す構成
図。FIG. 3 is a configuration diagram showing an example of a conventional corrosion-resistant / oxidation-resistant material.
【図4】従来の耐食・耐酸化性材料の他の1例を示す構
成図。FIG. 4 is a configuration diagram showing another example of a conventional corrosion-resistant / oxidation-resistant material.
Claims (2)
44〜56原子%のAlを含むCoAl単相合金又は3
4〜48原子%のAlを含むFeAl単相合金の金属層
を形成してなることを特徴とする耐食・耐酸化性材料。1. A CoAl single phase alloy containing 44 to 56 atomic% of Al on the surface of a base material by low pressure plasma spraying or 3
A corrosion-resistant / oxidation-resistant material, characterized in that a metal layer of a FeAl single-phase alloy containing 4 to 48 atomic% of Al is formed.
MCrAlY(M:Ni、Co、Feのうちいずれか1
種の単独元素又は2種類の元素を主成分とする)の金属
層を形成し、さらにその表面に低圧プラズマ溶射法によ
り44〜56原子%のAlを含むCoAl単相合金又は
34〜48原子%のAlを含むFeAl単相合金の金属
層を形成してなることを特徴とする耐食・耐酸化性材
料。2. A MCrAlY (M: Ni, Co, Fe selected from the group consisting of one of the following:
CoA single phase alloy containing 34 to 56 atomic% of Al by a low pressure plasma spraying method, or a metal layer of 34 to 48 atomic%. 2. A corrosion-resistant and oxidation-resistant material, characterized in that a metal layer of a FeAl single-phase alloy containing Al is formed.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7167534A JPH0920976A (en) | 1995-07-03 | 1995-07-03 | Material resistant to corrosion and oxidation |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7167534A JPH0920976A (en) | 1995-07-03 | 1995-07-03 | Material resistant to corrosion and oxidation |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH0920976A true JPH0920976A (en) | 1997-01-21 |
Family
ID=15851483
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP7167534A Withdrawn JPH0920976A (en) | 1995-07-03 | 1995-07-03 | Material resistant to corrosion and oxidation |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0920976A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19926818B4 (en) * | 1999-06-12 | 2007-06-14 | Alstom | Protective layer for turbine blades |
| WO2018116856A1 (en) * | 2016-12-21 | 2018-06-28 | 旭硝子株式会社 | Method for forming sprayed film of intermetallic compound film, sprayed film, method for producing metal product having sprayed film, and glass conveying roll |
-
1995
- 1995-07-03 JP JP7167534A patent/JPH0920976A/en not_active Withdrawn
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19926818B4 (en) * | 1999-06-12 | 2007-06-14 | Alstom | Protective layer for turbine blades |
| WO2018116856A1 (en) * | 2016-12-21 | 2018-06-28 | 旭硝子株式会社 | Method for forming sprayed film of intermetallic compound film, sprayed film, method for producing metal product having sprayed film, and glass conveying roll |
| JPWO2018116856A1 (en) * | 2016-12-21 | 2019-10-24 | Agc株式会社 | Method for forming intermetallic compound sprayed coating, sprayed coating, method for producing metal product having sprayed coating, and roll for glass conveyance |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5427866A (en) | Platinum, rhodium, or palladium protective coatings in thermal barrier coating systems | |
| US5658614A (en) | Platinum aluminide CVD coating method | |
| US4145481A (en) | Process for producing elevated temperature corrosion resistant metal articles | |
| US6255001B1 (en) | Bond coat for a thermal barrier coating system and method therefor | |
| US6129991A (en) | Aluminide/MCrAlY coating system for superalloys | |
| US8262812B2 (en) | Process for forming a chromium diffusion portion and articles made therefrom | |
| US8916005B2 (en) | Slurry diffusion aluminide coating composition and process | |
| EP1111091B1 (en) | Method of forming an active-element containing aluminide as stand alone coating and as bond coat and coated article | |
| USRE31339E (en) | Process for producing elevated temperature corrosion resistant metal articles | |
| US6998151B2 (en) | Method for applying a NiAl based coating by an electroplating technique | |
| US4714624A (en) | High temperature oxidation/corrosion resistant coatings | |
| US3955935A (en) | Ductile corrosion resistant chromium-aluminum coating on superalloy substrate and method of forming | |
| CA2292370C (en) | Improved coating and method for minimizing consumption of base material during high temperature service | |
| WO2006071507A1 (en) | Low cost inovative diffused mcraly coatings | |
| JP7174811B2 (en) | high temperature parts | |
| CA2205052C (en) | Method of producing reactive element modified-aluminide diffusion coatings | |
| JPH0613749B2 (en) | Oxidation-resistant and high-temperature corrosion-resistant nickel-base alloy coating material and composite product using the same | |
| US4485148A (en) | Chromium boron surfaced nickel-iron base alloys | |
| US20120213928A1 (en) | Forming reactive element modified aluminide coatings with low reactive element content using vapor phase techniques | |
| US6863925B1 (en) | Method for vapor phase aluminiding including a modifying element | |
| JP2934599B2 (en) | High temperature corrosion resistant composite surface treatment method | |
| JPH0920976A (en) | Material resistant to corrosion and oxidation | |
| JPS5963303A (en) | Coated hard alloy gas turbine parts | |
| US6844086B2 (en) | Nickel-base superalloy article substrate having aluminide coating thereon, and its fabrication | |
| JPH09157866A (en) | Corrosion resistant and oxidation resistant coating film |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020903 |