[go: up one dir, main page]

JPH09210740A - Submarine observation system - Google Patents

Submarine observation system

Info

Publication number
JPH09210740A
JPH09210740A JP1472996A JP1472996A JPH09210740A JP H09210740 A JPH09210740 A JP H09210740A JP 1472996 A JP1472996 A JP 1472996A JP 1472996 A JP1472996 A JP 1472996A JP H09210740 A JPH09210740 A JP H09210740A
Authority
JP
Japan
Prior art keywords
light
submarine
optical
observation
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1472996A
Other languages
Japanese (ja)
Other versions
JP2814976B2 (en
Inventor
Kiyoshi Sekikawa
潔 関川
Takeshi Yatagai
毅 谷田貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8014729A priority Critical patent/JP2814976B2/en
Publication of JPH09210740A publication Critical patent/JPH09210740A/en
Application granted granted Critical
Publication of JP2814976B2 publication Critical patent/JP2814976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a highly reliable system structure inexpensively in a submarine observation system which eliminates the need for a feeder path for a submarine cable and an observing device and, dispenses with an electric circuit by arranging a light wave demultiplexer and a light wave multiplexer employing a light device in the observing device. SOLUTION: Light λ1-λ3 with a plurality of wavelengths allocated to observed points is transmitted to a submarine cable 10 by WDM transmission and light signals thereof are demultiplexed or multiplexed in terms of wavelengths by a light wave demultiplexer or a light wave multiplexer provided for the observing devices A-C at the observed points. The demultiplexed light is supplied to fiber optics applied sensors 8A-8C and undergoes a phase modulation to be overlapped on the submarine cable 10 by the demultiplexer again (λ1A-3C). The light is turned back within an observing device C at the final stage and returned to a land station as intact through the devices A-C. The light with varied wavelengths λ1A-λ3C is demultiplexed by the land station and a light heterodyne detection is performed to obtain observation information at the observed points.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は海底観測システムに
関し、特に海底光ケーブルを使用して複数の被観測点で
の水圧、音響、磁界等の各種の海底観測を行う海底観測
システムに関するものであ。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seabed observation system, and more particularly to a seabed observation system for performing various seabed observations of water pressure, sound, magnetic field, etc. at a plurality of observation points by using a seabed optical cable.

【0002】[0002]

【従来の技術】従来のこの種の海底観測システムとして
は、例えば、津波計装置があり、この津波計装置は海底
テーブルを用いて圧力変化を水晶発振周波数の変化とし
て電気信号で捉え、それを同一の光波長で光信号へ変換
し光ファイバペアを使って陸上の観測端局へ送信してい
る。そのため、津波計装置は、津波計センサ部と、津波
計センサの電気信号を光信号へ変換するO/E変換部
と、その光信号を海底テーブルへ送出するための伝送部
と、それらの装置へ給電するための電源部等で構成され
ている。
2. Description of the Related Art As a conventional seafloor observation system of this type, there is, for example, a tsunami meter device. This tsunami meter device uses a seafloor table to detect a pressure change as a change in a crystal oscillation frequency as an electric signal, and to detect the change. The signal is converted to an optical signal at the same optical wavelength and transmitted to a land-based observation terminal using an optical fiber pair. Therefore, the tsunami meter device includes a tsunami meter sensor unit, an O / E conversion unit that converts an electric signal of the tsunami meter sensor into an optical signal, a transmission unit that sends the optical signal to a submarine table, and a device therefor. And a power supply unit for supplying power to the power supply.

【0003】また、同一の光波長で光信号としているた
め、複数の被観測地点がある場合には伝送路となる光フ
ァイバを複数本収容した海底ケーブルを用意する必要が
ある。
[0003] In addition, since the same optical wavelength is used as an optical signal, when there are a plurality of observation points, it is necessary to prepare a submarine cable containing a plurality of optical fibers serving as transmission paths.

【0004】[0004]

【発明が解決しようとする課題】従来の海底観測システ
ムでは、センサ部,O/E変換部,伝送部等に電気信号
を必要とするため、陸上端局では、給電装置を必要と
し、また海底観測装置では、電源部等を必要としてい
る。このことから、海底観測装置では構成,構造におい
て複雑となり、また給電があるため、海底環境での長期
にわたる耐電圧特性が要求されている。また、各観測装
置では同一の光波長を使っているため、複数の観測地点
がある場合には、複数のファイバペアを必要とする。そ
のため、従来の海底観測システムには非常に高額の費用
を必要とするという欠点がある。
In the conventional seafloor observation system, since a sensor section, an O / E conversion section, a transmission section, and the like need an electric signal, the land terminal station needs a power supply device, The observation device requires a power supply unit and the like. For this reason, the seafloor observation device is complicated in structure and structure, and is required to have long-term withstand voltage characteristics in the seafloor environment because of power supply. In addition, since each observation device uses the same light wavelength, if there are a plurality of observation points, a plurality of fiber pairs are required. Therefore, the conventional seafloor observation system has a disadvantage that it requires a very high cost.

【0005】本発明の目的は、単一の光ファイバペアを
用いると共に、観測装置に対して給電の必要がない極め
て簡単な構造の海底観測システムを提供することであ
る。
It is an object of the present invention to provide a seafloor observation system having a very simple structure using a single optical fiber pair and requiring no power supply to the observation apparatus.

【0006】本発明の他の目的は、観測装置側では給電
の必要のない光デバイスのみを用いて構成することによ
り、高信頼性を有する海底観測システムを提供すること
である。
Another object of the present invention is to provide a highly reliable ocean bottom observation system by using only optical devices that do not require power supply on the observation apparatus side.

【0007】[0007]

【課題を解決するための手段】本発明によれば、海底光
ケーブルを使用して複数の被観測点での海底観測を行う
海底観測システムであって、前記被観測点の各々に対し
て夫々予め割当てられた互いに異なる波長光を波長多重
して前記海底光ケーブルへ送出する送出手段と、前記被
観測点の各々に設けられて前記海底光ケーブルの光信号
からその被観測点に割当てられている波長光を選択的に
分岐する分岐手段と、前記被観測点の各々に設けられて
前記分岐手段による分岐された波長光の位相情報を被観
測情報に従って変調するセンサ手段と、前記被観測点の
各々に設けられてこのセンサ情報を前記海底光ケーブル
の光信号へ合波する合波手段とを含むことを特徴とする
海底観測システムが得られる。
According to the present invention, there is provided a seafloor observation system for performing seafloor observation at a plurality of observation points by using a submarine optical cable, wherein each of the observation points is previously in advance. Transmitting means for wavelength-multiplexing allocated different wavelength lights to the submarine optical cable, and wavelength light allocated to the observed point from the optical signal of the submarine optical cable provided at each of the observed points Branching means for selectively branching, a sensor means provided at each of the observed points for modulating phase information of wavelength light branched by the branching means according to the observed information, and each of the observed points A submarine observation system is provided, which is provided and includes a combining unit that combines the sensor information with an optical signal of the submarine optical cable.

【0008】そして、前記センサ手段は光フィバ応用セ
ンサであり、また、前記海底光ケーブルは光ファイバペ
アであり、前記光ファイバペアの一方に対して前記送出
手段は前記波長光を送出し、前記合波手段の各々は前記
光ファイバペアの一方に対して合波を行い、最遠点にお
ける前記被観測点において前記光ファイバペアの一方を
他方へ折返して、この光ファイバペアの他方をスルーで
陸上局へ送出するように構成されていることを特徴とし
ている。
The sensor means is an optical fiber application sensor, the submarine optical cable is an optical fiber pair, and the sending means sends the wavelength light to one of the optical fiber pairs, Each of the wave means performs multiplexing on one of the optical fiber pairs, returns one of the optical fiber pairs to the other at the observed point at the farthest point, and passes the other of the optical fiber pairs through the land. It is characterized in that it is configured to send to a station.

【0009】更に、前記陸上局において、前記光ファイ
バペアの他方からの光信号の各波長光を分波する分波手
段と、これ等分波された各波長光を光検波する検波手段
とを設けたことを特徴としている。
Further, the land station includes a demultiplexing means for demultiplexing each wavelength light of the optical signal from the other of the optical fiber pair, and a detecting means for optically detecting each of the wavelength lights thus divided. It is characterized by having been provided.

【0010】[0010]

【発明の実施の形態】本発明の作用について述べる。各
被観測地点に対して予め割当てられた互いに異なる波長
光をWDM(波長多重分離;Wavelength D
ivision Multiplex)伝送方式で海底
ケーブルへ送出し、各被観測地点で自己に割当てられた
波長光を選択的に分岐して、海底観測センサとしての光
ファイバ応用センサへこれを供給する。このセンサによ
り波長光は被観測情報で位相変調されるから、この位相
変調光を再び海底ケーブルへ合波して重畳する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The operation of the present invention will be described. Wavelength-division demultiplexing (WDM: Wavelength D) is performed by using light of different wavelengths assigned in advance to each observation point.
The light is transmitted to the submarine cable by an multiplex transmission method, and the wavelength light assigned to itself at each observation point is selectively branched and supplied to an optical fiber application sensor as a submarine observation sensor. Since the wavelength light is phase-modulated by the information to be observed by this sensor, this phase-modulated light is multiplexed and superimposed again on the submarine cable.

【0011】そして、最遠点の海底観測装置内でファイ
バ折返しを行って各観測装置をスルーとして陸上局へ各
波長光が戻るようにする。
Then, the optical fiber is turned back inside the farthest point seabed observation device so that each wavelength light is returned to the land station through each observation device.

【0012】以下、本発明の実施例について図面を用い
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は本発明の実施例における地上局のブ
ロック図である。図1において、観測端局1は、海底の
被観測点の各観測装置A〜C(図2参照)に夫々対応し
て設けられた光検波器3A〜3Cを有する。
FIG. 1 is a block diagram of a ground station according to an embodiment of the present invention. In FIG. 1, the observation terminal station 1 has optical detectors 3A to 3C provided corresponding to the observation devices A to C (see FIG. 2) at the observation points on the sea floor, respectively.

【0014】これ等光検波器3A〜3Cの各々は、各被
観測点に対して予め割当てられている波長λ1,λ2,
λ3(互いに異なるものとする)を用いて海底光ケーブ
ル10から折返されてくる光信号λ1A,λ2B,λ3Cを夫
々ヘテロダイン光検波するものである。これ等各検波出
力が観測出力11A〜11Cとして示されている。
Each of these photodetectors 3A to 3C has a wavelength λ1, λ2,
The optical signals λ1A, λ2B, and λ3C returned from the submarine optical cable 10 are heterodyne-optically detected by using λ3 (which are different from each other). These detection outputs are shown as observation outputs 11A to 11C.

【0015】光検波器3A〜3Cは各波長信号λ1〜λ
3を直接導出して次段のWDM伝送端局2へ送出する。
WDM伝送端局2では、これ等各波長光信号λ1〜λ3
を合波して海底光ケーブル10へ送出する光合波器4
と、海底ケーブル10からの折返し波長光信号λ1A,λ
2B,λ3Cを分波する光分波器5とを有している。
The optical detectors 3A to 3C output the respective wavelength signals λ1 to λ.
3 is directly derived and sent to the next WDM transmission terminal station 2.
In the WDM transmission terminal 2, these wavelength optical signals λ1 to λ3
Optical multiplexer 4 for multiplexing and sending out to submarine optical cable 10
And the return wavelength optical signals λ1A and λ from the submarine cable 10.
And an optical demultiplexer 5 for demultiplexing 2B and λ3C.

【0016】海底光ケーブル10は一本の光ファイバペ
アであり、図2に示す海底の各被観測点の観測装置A〜
Cが夫々この光ファイバペアによりカスケード接続され
ている。
The submarine optical cable 10 is a single optical fiber pair, and the observation devices A to A of each observation point on the seabed shown in FIG.
C are cascade-connected by this optical fiber pair.

【0017】更に詳述すれば、光ファイバペア10の一
つ(下り線)は第1の観測装置Aの光分波器6A及び光
合波器7Aを介して次段の第2の観測装置Bへ導入され
ている。
More specifically, one of the optical fiber pairs 10 (down line) is connected to the second observation device B of the next stage via the optical demultiplexer 6A and the optical multiplexer 7A of the first observation device A. Has been introduced to.

【0018】光分波器6Aはこの観測装置Aに対して割
当てられている波長λ1の光信号を選択的に分岐抽出し
て、センサ8Aへ供給する。このセンサ8Aとしては、
光ファイバ応用センサを用いるもので、この光ファイバ
応用センサは、主に光ファイバの伸縮による光信号の位
相変化現象や、また光弾性効果を介した光ファイバのコ
アの屈折率変化による光信号の位相変化現象を利用した
ものである。
The optical demultiplexer 6A selectively branches and extracts the optical signal of the wavelength λ1 assigned to the observation device A and supplies it to the sensor 8A. As the sensor 8A,
This sensor uses an optical fiber applied sensor. This optical fiber applied sensor mainly involves a phase change phenomenon of an optical signal due to expansion and contraction of an optical fiber and an optical signal caused by a change in a refractive index of an optical fiber core through a photoelastic effect. This utilizes a phase change phenomenon.

【0019】このセンサ8Aを通して位相変化(位相変
調)された光信号を波長λ1Aとして光合波器7Aで合波
し次段の第2の観測装置Bへ送信する。
The optical signal whose phase has been changed (phase-modulated) through the sensor 8A is multiplexed by the optical multiplexer 7A as a wavelength λ1A and transmitted to the second observation device B at the next stage.

【0020】第2及び第3の各観測装置B及びCにおい
ても同一構成及び同一動作であるものとする。そして、
終段(陸上局から最遠点)の観測装置Cにおいて、光フ
ァイバペアは折返し部9にて折返されて上り線となり、
各装置A〜C内をそのままスルー状態として陸上局へ送
出されるのである。
It is assumed that the second and third observation apparatuses B and C have the same configuration and the same operation. And
In the observation device C at the last stage (farthest point from the land station), the optical fiber pair is turned up at the turn-up unit 9 to become an up line,
The inside of each of the devices A to C is transmitted as it is to the land station in a through state.

【0021】再び図1へ戻って、光ファイバペア10に
よる折返し光信号は(λ1A+λ2B+λ3C)となってお
り、よって光分波器5にて夫々分波されてλ1A,λ2B,
λ3Cに夫々分離される。これ等各光信号λ1A,λ2B,λ
3Cは各センサ8A,8B,8Cにより夫々位相変調を受
けている。よって光検波器3A,3B,3Cにおいて元
の光信号波長λ1,λ2,λ3と夫々を光ヘテロダイン
検波することにより、位相情報(位相差)が検出されて
各被観測点の観測出力11A,11B,11Cが得られ
るのである。
Returning to FIG. 1 again, the return optical signal from the optical fiber pair 10 is (λ1A + λ2B + λ3C), and is thus demultiplexed by the optical demultiplexer 5 to λ1A, λ2B,
Separated into λ3C. These optical signals λ1A, λ2B, λ
3C is subjected to phase modulation by the respective sensors 8A, 8B, 8C. Therefore, the optical detectors 3A, 3B, and 3C optically heterodyne detect the original optical signal wavelengths λ1, λ2, and λ3, respectively, thereby detecting phase information (phase difference) and observing the output 11A, 11B of each observed point. , 11C are obtained.

【0022】尚、被観測点として図2では3ケ所のみを
示しているが、これは簡単化のためであって、4ケ所以
上であっても良いことは勿論である。
Although only three observation points are shown in FIG. 2, this is for the sake of simplicity, and it goes without saying that four or more observation points may be used.

【0023】[0023]

【発明の効果】本発明によれば、陸上に設置された端局
からの送出光信号が単に折返してきているだけで観測で
きることから、海底ケーブル及び観測装置には給電路の
必要がなく、また観測装置内の構成としては、光デバイ
スを用いた光分波器,光合波器で構成することにより電
気回路が不要なことから、信頼性の高いシステム構成が
安価に実現できるという効果がある。
According to the present invention, since the transmitted light signal from the terminal station installed on land can be observed simply by turning back, the submarine cable and the observation device do not need a power supply line. As the configuration in the observation device, since an electric circuit is unnecessary by using an optical demultiplexer and an optical multiplexer using an optical device, there is an effect that a highly reliable system configuration can be realized at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における陸上局のブロック図で
ある。
FIG. 1 is a block diagram of a land station according to an embodiment of the present invention.

【図2】本発明の実施例における海底の被観測点におけ
るブロック図である。
FIG. 2 is a block diagram of an observation point on the seabed according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

A〜C 観測装置 1 観測端局 2 WDM伝送端局 3A〜3C 光検波器 4 光合波器 5 光分波器 6A〜6C 光分波器 7A〜7C 光合波器 8A〜8C センサ 9 折返し部 10 海底ケーブル AC observation apparatus 1 observation terminal station 2 WDM transmission terminal station 3A-3C optical detector 4 optical multiplexer 5 optical demultiplexer 6A-6C optical demultiplexer 7A-7C optical multiplexer 8A-8C sensor 9 folding unit 10 Submarine cable

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 海底光ケーブルを使用して複数の被観測
点での海底観測を行う海底観測システムであって、前記
被観測点の各々に対して夫々予め割当てられた互いに異
なる波長光を波長多重して前記海底光ケーブルへ送出す
る送出手段と、前記被観測点の各々に設けられて前記海
底光ケーブルの光信号からその被観測点に割当てられて
いる波長光を選択的に分岐する分岐手段と、前記被観測
点の各々に設けられて前記分岐手段による分岐された波
長光の位相情報を被観測情報に従って変調するセンサ手
段と、前記被観測点の各々に設けられてこのセンサ情報
を前記海底光ケーブルの光信号へ合波する合波手段とを
含むことを特徴とする海底観測システム。
1. A submarine observation system for performing submarine observation at a plurality of observation points by using a submarine optical cable, wherein wavelengths of different wavelengths pre-assigned to each of the observation points are wavelength-multiplexed. Then, sending means for sending to the submarine optical cable, branching means provided at each of the observed points, for selectively branching the wavelength light assigned to the observed point from the optical signal of the submarine optical cable, Sensor means provided at each of the observed points to modulate the phase information of the wavelength light branched by the branching means according to the observed information, and the sensor information provided at each of the observed points, the submarine optical cable The submarine observation system comprising: a multiplexing unit that multiplexes into the optical signal of.
【請求項2】 前記センサ手段は光フィバ応用センサで
あることを特徴とする請求項1記載の海底観測システ
ム。
2. The seabed observation system according to claim 1, wherein the sensor means is an optical fiber application sensor.
【請求項3】 前記海底光ケーブルは光ファイバペアで
あり、前記光ファイバペアの一方に対して前記送出手段
は前記波長光を送出し、前記合波手段の各々は前記光フ
ァイバペアの一方に対して合波を行い、最遠点における
前記被観測点において前記光ファイバペアの一方を他方
へ折返して、この光ファイバペアの他方をスルーで陸上
局へ送出するように構成されていることを特徴とする請
求項1または2記載の海底観測システム。
3. The submarine optical cable is an optical fiber pair, the sending means sends the wavelength light to one of the optical fiber pairs, and each of the multiplexing means connects to one of the optical fiber pairs. The optical fiber pair is folded back to the other at the observed point at the farthest point, and the other of the optical fiber pair is sent through to the land station through. The seabed observation system according to claim 1 or 2.
【請求項4】 前記陸上局において、前記光ファイバペ
アの他方からの光信号の各波長光を分波する分波手段
と、これ等分波された各波長光を光検波する検波手段と
を設けたことを特徴とする請求項3記載の海底観測シス
テム。
4. In the land station, a demultiplexing unit that demultiplexes each wavelength light of the optical signal from the other of the optical fiber pair, and a detection unit that photodetects each wavelength light that has been demultiplexed. The seabed observation system according to claim 3, wherein the seabed observation system is provided.
JP8014729A 1996-01-31 1996-01-31 Ocean floor observation system Expired - Fee Related JP2814976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8014729A JP2814976B2 (en) 1996-01-31 1996-01-31 Ocean floor observation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8014729A JP2814976B2 (en) 1996-01-31 1996-01-31 Ocean floor observation system

Publications (2)

Publication Number Publication Date
JPH09210740A true JPH09210740A (en) 1997-08-15
JP2814976B2 JP2814976B2 (en) 1998-10-27

Family

ID=11869227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8014729A Expired - Fee Related JP2814976B2 (en) 1996-01-31 1996-01-31 Ocean floor observation system

Country Status (1)

Country Link
JP (1) JP2814976B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541575A (en) * 1999-04-09 2002-12-03 キネティック リミテッド Optical fiber detector assembly
JP2003075238A (en) * 2001-09-04 2003-03-12 Nohken:Kk Liquid level switch and liquid level sensor using the same
JP2007121008A (en) * 2005-10-26 2007-05-17 Ntt Infranet Co Ltd Seismic / tsunami meter, seismic / tsunami observation system using optical fiber
JP2011209200A (en) * 2010-03-30 2011-10-20 Occ Corp Seabed observation system
JP2020527236A (en) * 2017-07-18 2020-09-03 エングルンド、 マーク アンドリュー Distributed Acoustic Sensing Methods and Systems in the Marine Environment
JPWO2021111691A1 (en) * 2019-12-03 2021-06-10
JPWO2021157345A1 (en) * 2020-02-06 2021-08-12

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1040505C2 (en) * 2013-11-19 2015-05-26 Beethoven Marine Systems B V Sensor for detecting pressure waves in a fluid, provided with static pressure compensation.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240533A (en) * 1989-03-14 1990-09-25 Furuno Electric Co Ltd Method for measuring underwater temperature
JPH03263299A (en) * 1990-03-14 1991-11-22 Fujikura Ltd Wavelength dividing and multiplexing type optical fiber sensor
JPH0422819A (en) * 1990-05-17 1992-01-27 Nec Corp Seabottom observation device
JPH06337225A (en) * 1993-05-28 1994-12-06 Oki Electric Ind Co Ltd Acousto-optic sensor array device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240533A (en) * 1989-03-14 1990-09-25 Furuno Electric Co Ltd Method for measuring underwater temperature
JPH03263299A (en) * 1990-03-14 1991-11-22 Fujikura Ltd Wavelength dividing and multiplexing type optical fiber sensor
JPH0422819A (en) * 1990-05-17 1992-01-27 Nec Corp Seabottom observation device
JPH06337225A (en) * 1993-05-28 1994-12-06 Oki Electric Ind Co Ltd Acousto-optic sensor array device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8705902B2 (en) 1999-04-09 2014-04-22 Optasense Holdings Limited Optical fibre sensor assembly
JP2002541575A (en) * 1999-04-09 2002-12-03 キネティック リミテッド Optical fiber detector assembly
US8369660B1 (en) 1999-04-09 2013-02-05 Qinetiq Limited Optical fibre sensor assembly
US8666203B2 (en) 1999-04-09 2014-03-04 Optasense Holdings Limited Optical fibre sensor assembly
JP2003075238A (en) * 2001-09-04 2003-03-12 Nohken:Kk Liquid level switch and liquid level sensor using the same
JP2007121008A (en) * 2005-10-26 2007-05-17 Ntt Infranet Co Ltd Seismic / tsunami meter, seismic / tsunami observation system using optical fiber
JP2011209200A (en) * 2010-03-30 2011-10-20 Occ Corp Seabed observation system
JP2020527236A (en) * 2017-07-18 2020-09-03 エングルンド、 マーク アンドリュー Distributed Acoustic Sensing Methods and Systems in the Marine Environment
JP2023078151A (en) * 2017-07-18 2023-06-06 ファイバー センス リミテッド Method and system for distributed acoustic sensing in marine environment
JPWO2021111691A1 (en) * 2019-12-03 2021-06-10
US12298177B2 (en) 2019-12-03 2025-05-13 Nec Corporation Optical fiber sensing system, measuring device, and measuring method
JPWO2021157345A1 (en) * 2020-02-06 2021-08-12
WO2021157345A1 (en) * 2020-02-06 2021-08-12 日本電気株式会社 Water pressure fluctuation measuring system and water pressure fluctuation measuring method
US20230073833A1 (en) * 2020-02-06 2023-03-09 Nec Corporation Water pressure fluctuation measuring system and water pressure fluctuation measuring method
US12422316B2 (en) 2020-02-06 2025-09-23 Nec Corporation Water pressure fluctuation measuring system and water pressure fluctuation measuring method

Also Published As

Publication number Publication date
JP2814976B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
US7596315B2 (en) Wavelength division multiplexing optical transmission system and transmission wavelength control method therefor
NO341473B1 (en) Seismic streaming array of optical sensors that share a common wavelength
EP2171862B1 (en) System and method for suppressing beat noise in line monitoring equipment
CN108964775A (en) Deplexing method is combined based on the dislocation of time-division/wavelength-division hybrid multiplex system
JP2814976B2 (en) Ocean floor observation system
JP4543210B2 (en) Submarine observation device and submarine observation system
CN111385052A (en) Optical switching device, system and power calculation method
US20120318965A1 (en) Optical transmission system and optical transmission method
JP2006340208A (en) Optical cross-connect system connection status monitoring device
US8699884B2 (en) Optical transmission system and optical transmission method
JP4996587B2 (en) Optical transceiver and optical transmission system using the same
JP4006210B2 (en) Optical wavelength division multiplexing network group
JP4150193B2 (en) Wavelength control apparatus and wavelength control method
JP4829332B2 (en) Optical cross-connect system connection status monitoring device
JP4076928B2 (en) Automatic dispersion compensator
JP3683791B2 (en) Optical network system
JPH0991583A (en) Wavelength division multiplexing optical fiber sensor array system
JP5139137B2 (en) Wavelength error detection circuit, wavelength error detection method, and multiplexed optical communication system
JP2679666B2 (en) Optical add / drop transmission system
JP5336624B2 (en) Wavelength error detector and wavelength error detection method
JP2005142747A (en) Optical fiber information collecting apparatus
JPH10224829A (en) Wavelength multiplexing / demultiplexing equipment
JPH10200482A (en) Optical control signal transmission device
JP2001007767A (en) Optical communication system, optical receiver, and optical communication method
JPS63110828A (en) Wavelength divided multiplex optical communication equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070814

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080814

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080814

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090814

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090814

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100814

LAPS Cancellation because of no payment of annual fees