JPH09232485A - Compound material for electric part and its manufacturing method - Google Patents
Compound material for electric part and its manufacturing methodInfo
- Publication number
- JPH09232485A JPH09232485A JP4010496A JP4010496A JPH09232485A JP H09232485 A JPH09232485 A JP H09232485A JP 4010496 A JP4010496 A JP 4010496A JP 4010496 A JP4010496 A JP 4010496A JP H09232485 A JPH09232485 A JP H09232485A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- alloy
- perforations
- composite material
- sintered layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000000463 material Substances 0.000 title abstract description 31
- 150000001875 compounds Chemical class 0.000 title abstract description 3
- 239000010949 copper Substances 0.000 claims abstract description 38
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 29
- 229910052802 copper Inorganic materials 0.000 claims abstract description 29
- 239000000956 alloy Substances 0.000 claims abstract description 28
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims abstract description 26
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 25
- 238000005245 sintering Methods 0.000 claims abstract description 15
- 238000005096 rolling process Methods 0.000 claims abstract description 11
- 239000002131 composite material Substances 0.000 claims description 30
- 239000000843 powder Substances 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000002245 particle Substances 0.000 abstract description 3
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 230000017525 heat dissipation Effects 0.000 description 17
- 238000000034 method Methods 0.000 description 7
- 238000007747 plating Methods 0.000 description 7
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 229910000990 Ni alloy Inorganic materials 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000005097 cold rolling Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000011295 pitch Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体素子等のヒートス
プレッダーあるいはヒートシンク等の伝熱基板に関し、
特に板厚方向の熱放散性を改良した電子部品用複合材料
およびその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer substrate such as a heat spreader for a semiconductor element or a heat sink,
In particular, the present invention relates to a composite material for electronic parts having improved heat dissipation in the plate thickness direction and a method for producing the same.
【0002】[0002]
【従来の技術】大型コンピュータ、ワークステーショ
ン、パーソナルコンピュータ(PC)等のCPU(中央
演算装置)には主としてPGA(Pin Grid A
rray)呼ばれるセラミックパッケージが適用されて
おり、Siチップから発生する熱は、SiチップとAl
ヒートシンクフィンとの間の伝熱基板(ヒートスプレッ
ダー)を介して放散されている。一方、最近のLSIは
高速化、高消費電力化によりSiチップから発生する熱
の放散が極めて重要な問題となってきており、特にマイ
コンあるいはロジックASIC(Applicatio
n Specific IC)用のLSI等ではSiチ
ップにヒートスプレッダーを接触させることにより熱の
放散を促進させるような工夫がなされている。2. Description of the Related Art PGAs (Pin Grid A) are mainly used in CPUs (Central Processing Units) of large computers, workstations, personal computers (PCs), etc.
A ceramic package called “ray” is applied, and the heat generated from the Si chip is generated by the Si chip and Al.
It is dissipated through a heat transfer substrate (heat spreader) between the heat sink fins. On the other hand, in recent LSIs, dissipation of heat generated from a Si chip has become an extremely important issue due to higher speed and higher power consumption. In particular, a microcomputer or a logic ASIC (Application).
In LSIs for n Specific ICs) and the like, a heat spreader is brought into contact with a Si chip to promote heat dissipation.
【0003】例えば、図3に示すBGA(Ball G
rid Array)パッケージの一例は、ヒートシン
ク1、シリコンチップ2、Cu配線3、絶縁のためのポ
リイミドフィルム4、端子5としての半田ボールで構成
される。この構造においてヒートシンクはシリコンチッ
プ2と接触しており、LSIから発生する熱を逃す熱放
散性はもちろん、シリコンチップとの熱膨張係数が整合
していることが重要である。こうした新しいタイプのパ
ッケージは今後ますます需要が増えてくることが予想さ
れる。こうした伝熱基板(ヒートスプレッダー)はSi
チップと接するために、その熱膨張がSiチップと整合
していることが必要であり、熱膨張係数として一般に1
〜11×10マイナス6乗/℃程度のものが望ましいと
されている。For example, a BGA (Ball G) shown in FIG.
An example of a "rid Array" package includes a heat sink 1, a silicon chip 2, Cu wiring 3, a polyimide film 4 for insulation, and solder balls as terminals 5. In this structure, the heat sink is in contact with the silicon chip 2, and it is important that the thermal expansion coefficient of the heat dissipation from the heat generated from the LSI and the thermal expansion coefficient of the silicon chip are matched. Demand for these new types of packages is expected to increase in the future. Such heat transfer substrate (heat spreader) is made of Si
In order to contact the chip, its thermal expansion must match that of the Si chip, and the coefficient of thermal expansion is generally 1
It is said that a material of about 11 × 10 -6 powers / ° C is desirable.
【0004】こうした特性を満足するものとして、従来
からヒートスプレッダーにCu−WあるいはMoよりな
る0.5〜1mm厚さで、30mm角程度の板が使用さ
れてきた。しかしながら、これらの材料は高価であると
共に、比重が大きいためにパッケージの重量が大きくな
らざるを得ず、最近のLSIの動向であるダウンサイジ
ング化の点でも大きな欠点となってきている。In order to satisfy these characteristics, a plate of 0.5 to 1 mm thick and made of Cu-W or Mo and about 30 mm square has been conventionally used for a heat spreader. However, since these materials are expensive and have a large specific gravity, the weight of the package is inevitably large, which is a major drawback in terms of downsizing which is a recent trend of LSI.
【0005】LSIの中でもリードフレームを使用する
タイプのパッケージでは、リードフレーム自体を熱放散
性の良い銅および銅合金で構成する方法も採用されてい
るが、この場合には熱膨張係数がSiチップに比べて大
きいために、Siチップとリードフレーム界面での内部
応力が問題となり、工程中あるいは使用中の応力発生の
ためにSiチップにクラックが発生したりする恐れがあ
る。この点を解決する素材として本発明者等は低膨張の
Fe−Ni系合金薄板の少なくとも一方の面に銅または
銅合金を主体とする粉末の焼結層を形成した電子部品用
複合材料およびその製造方法に関する発明を特願平7−
59708号として出願している。In the package of the type that uses a lead frame among LSIs, a method of forming the lead frame itself from copper and a copper alloy having a good heat dissipation property is also adopted, but in this case, the coefficient of thermal expansion is a Si chip. Since it is larger than the above, internal stress at the interface between the Si chip and the lead frame becomes a problem, and cracks may occur in the Si chip due to stress generation during the process or during use. As a material for solving this point, the present inventors have made a composite material for electronic parts in which a sintered layer of a powder mainly composed of copper or a copper alloy is formed on at least one surface of a low-expansion Fe-Ni alloy thin plate, and a composite material thereof. Japanese Patent Application No. 7-
It has been filed as No. 59708.
【0006】しかし、リードフレームを使用しないタイ
プのパッケージでは、前述のリードフレームによる熱の
放散は適用できず、こうした点からCu−W,Mo板に
替わる安価で且つ小型、薄型、軽量化が可能なヒートス
プレッダーが必要となってきている。なお、リードフレ
ームを使用しないタイプのパッケージは、前述のPGA
をはじめとして、最近では図3に示すBGA(Ball
Grid Array),CSP(Chip Siz
e Package)が実用化されるようになってきて
おり、今後大きな需要が期待されるものである。However, in the package of the type which does not use the lead frame, the above-mentioned heat dissipation by the lead frame cannot be applied, and in this respect, it is possible to replace the Cu-W and Mo plates with inexpensive and small size, thin and lightweight. Heat spreader is needed. The type of package that does not use the lead frame is the PGA mentioned above.
Recently, the BGA (Ball) shown in FIG.
Grid Array), CSP (Chip Siz)
ePackage) has been put to practical use, and great demand is expected in the future.
【0007】[0007]
【発明が解決しようとする課題】Cu−W,Mo板に替
わる低膨張材料として、特開平3−179768号等に
はFe−Ni系合金と銅または銅合金との複合材料が挙
げられている。しかし、特開平3−179768号等に
記載された複合材料は溶製、熱間加工、冷間加工を施し
た素材を冷間圧延等により機械的に圧着したものであ
り、未圧着部が発生する場合があると共に、その製造工
数ならびに歩留の点から大幅にコストのかかるものであ
った。As a low-expansion material replacing the Cu-W and Mo plates, Japanese Patent Laid-Open No. 3-179768 discloses a composite material of Fe-Ni alloy and copper or copper alloy. . However, the composite material described in Japanese Patent Application Laid-Open No. 3-179768 and the like is a material that is subjected to melting, hot working, cold working and mechanically pressure-bonded by cold rolling or the like, and an unbonded portion is generated. However, the manufacturing cost and the production yield are considerably high.
【0008】また、特開平2−231751号、特公平
7−80272号等では厚み方向に貫通孔を有する低熱
膨張金属板を銅または銅合金板の一方面あるいは両面に
圧接一体化し、貫通孔より銅または銅合金を露出させた
リードフレーム用材料あるいは熱伝導複合材料が提案さ
れている。この方法では、前述の特開平3−17976
8号等の場合と同様に、製造工数ならびに歩留等の点か
らどうしてもコストが高くならざるを得ず、また低膨張
金属板に貫通孔部の銅または銅合金が露出しているため
に、めっきを行なう場合には、前処理時に貫通孔部境界
で酸液により浸食されたり、異種金属が露出しているた
めにめっき後の表面状態が不均一となる場合があった。
本発明はコスト的に有利であり、且つ熱放散性特に板厚
方向の熱放散性に優れ、LSI等の伝熱基板(ヒートプ
レッダー)の小型、薄型、軽量化を可能にする電子部品
用複合材料およびその製造方法を提供するものである。Further, in Japanese Patent Laid-Open No. 2-231751 and Japanese Patent Publication No. 7-80272, a low thermal expansion metal plate having a through hole in the thickness direction is pressure-welded and integrated with one or both surfaces of a copper or copper alloy plate. A lead frame material or a heat conductive composite material in which copper or a copper alloy is exposed has been proposed. In this method, the above-mentioned JP-A-3-17976 is used.
As in the case of No. 8 etc., the cost is inevitably high in terms of manufacturing man-hours and yield, and copper or copper alloy in the through hole is exposed in the low expansion metal plate, When plating is performed, the surface state after plating may be non-uniform due to corrosion of the acid solution at the boundary of the through holes during the pretreatment or the exposure of different metals.
INDUSTRIAL APPLICABILITY The present invention is advantageous in cost and has excellent heat dissipation properties, particularly in the plate thickness direction, and is for electronic components that enables miniaturization, thinning, and weight reduction of heat transfer substrates (heat spreaders) such as LSIs. A composite material and a method for manufacturing the same are provided.
【0009】[0009]
【課題を解決するための手段】本発明者は、安価で且つ
熱放散性、特に板厚方向の熱放散性に優れ、まためっき
処理時に表面に不均一性を有しない材料を開発する目的
で、複数の穿孔を有する低膨張Fe−Ni系合金薄板の
少なくとも一方の面ならびに穿孔内に熱放散性に優れた
銅または銅合金を主体とする層を形成する方法を検討
し、銅または銅合金を主体とする粉末を複数の穿孔を有
するFe−Ni系合金に粉末冶金的に結合することによ
り、安価で優れた熱放散性を有する複合材料を開発する
ことに成功した。DISCLOSURE OF THE INVENTION The inventor of the present invention aims to develop a material that is inexpensive and has excellent heat dissipation properties, particularly heat dissipation properties in the plate thickness direction, and that does not have unevenness on the surface during plating treatment. , A method of forming a layer mainly composed of copper or a copper alloy excellent in heat dissipation in at least one surface of a low expansion Fe-Ni alloy thin plate having a plurality of perforations and in the perforations, and copper or a copper alloy The present inventors have succeeded in developing an inexpensive composite material having excellent heat dissipation properties by powder-metallurgically bonding a powder mainly composed of Fe to a Fe-Ni alloy having a plurality of perforations.
【0010】すなわち、本発明は複数の穿孔を有する低
膨張Fe−Ni系合金薄板の少なくとも一方の面ならび
に穿孔内に銅または銅合金を主体とする粉末の焼結層を
形成した電子部品用複合材料である。好ましくは、焼結
層は、前記穿孔内を充填しており、かつ前記Fe−Ni
系合金の穿孔部および非穿孔部を覆い平坦面を形成して
いることを特徴とする電子部品用複合材料である。本発
明の電子部品用複合材料は、複数の穿孔を有する低膨張
のFe−Ni系合金薄板の少なくとも一方の面ならびに
穿孔内に銅または銅合金を主体とする粉末を塗布した
後、加熱焼結するかあるいはさらに加熱焼結後圧延を施
す本発明の電子部品用複合材料の製造方法により得るこ
とができる。That is, the present invention is a composite for electronic parts in which a sintered layer of a powder mainly composed of copper or copper alloy is formed in at least one surface of a low expansion Fe-Ni alloy thin plate having a plurality of perforations and in the perforations. It is a material. Preferably, a sintered layer fills the perforations and the Fe-Ni
A composite material for electronic parts, characterized in that a flat surface is formed by covering a perforated portion and a non-perforated portion of a system alloy. The composite material for electronic parts of the present invention is obtained by applying a powder containing copper or a copper alloy as a main component to at least one surface of a low expansion Fe-Ni alloy thin plate having a plurality of perforations and the perforations, and then heating and sintering. Alternatively, it can be obtained by the method for producing a composite material for electronic parts according to the present invention, in which heating and sintering are followed by rolling.
【0011】[0011]
【発明の実施の形態】本発明の特徴の一つは穿孔を有す
る低膨張Fe−Ni系合金薄板を用いて銅または銅合金
を主体とする焼結層を形成したことである。焼結層とす
ることにより、従来の圧着法に比べ製造工数も少なくて
済み、歩留も高いことから安価に製造することが可能で
ある。また、焼結層とすることにより熱放散性に優れた
銅または銅合金を主体とする焼結層とし、低膨張特性を
有するFe−Ni系合金とが穿孔を介して十分に一体の
ものとなり、優れた熱放散性特に板厚方向の優れた熱放
散性を有するものとなる。BEST MODE FOR CARRYING OUT THE INVENTION One of the features of the present invention is that a low-expansion Fe-Ni alloy thin plate having perforations is used to form a sintered layer mainly composed of copper or a copper alloy. By using a sintered layer, the number of manufacturing steps can be reduced compared to the conventional pressure bonding method, and the yield is high, so that it can be manufactured at low cost. Further, by forming a sintered layer, it is a sintered layer mainly composed of copper or a copper alloy excellent in heat dissipation, and the Fe-Ni alloy having a low expansion property is sufficiently integrated through the holes. Excellent heat dissipation, particularly excellent heat dissipation in the plate thickness direction.
【0012】本発明において、複数の穿孔の形成は、板
厚方向への熱拡散を行なう上で重要である。すなわち、
穿孔内に充填された銅または銅合金により、板厚方向の
熱伝導率を穿孔を設けない場合に比べ、著しく高いもの
とすることができるのである。また、さらに焼結後に圧
延を施すことにより、焼結まま状態で存在する空孔ある
いはボイドを減らし、且つFe−Ni系合金と焼結層と
を強固に一体化することができる。また、圧延は材料の
板厚精度を高いものにできると同時に表面状態をより滑
らかで且つ均一にすることが可能であり、前述のような
めっき処理における良好な表面肌を得るのに効果があ
る。また、この圧延は複合材料の機械的強度を向上させ
る。In the present invention, the formation of a plurality of perforations is important for performing heat diffusion in the plate thickness direction. That is,
Due to the copper or copper alloy filled in the perforations, the thermal conductivity in the plate thickness direction can be made significantly higher than in the case where no perforations are provided. Further, by performing rolling after sintering, it is possible to reduce voids or voids existing in the as-sintered state, and to firmly integrate the Fe—Ni-based alloy and the sintered layer. In addition, rolling can increase the plate thickness accuracy of the material and at the same time make the surface condition smoother and more uniform, which is effective in obtaining a good surface texture in the plating treatment as described above. . This rolling also improves the mechanical strength of the composite material.
【0013】本発明の複合材料は、Fe−Ni系合金素
材に銅または銅合金を主体とする層を形成、乾燥後圧延
を行ない、その後焼結を行なっても得られる。この場合
には、前述のように圧延により空孔あるいはボイドの減
少に一層の効果がある。また、焼結後にさらに圧延を施
してもよい。この場合には、前述のように空孔あるいは
ボイドの減少に加え、板厚精度の向上、表面状態の向上
および機械的強度の向上効果がある。本発明の銅または
銅合金を主体とする焼結層(以下Cu焼結層)を低膨張
Fe−Ni系合金に形成した複合材料の基本構成を示す
と図1に示すようになる。図1(a)は焼結層形成後の
本発明の複合材料であり、1例としてFe−Ni系合金
薄板6の穿孔7内ならびに両方の表面に銅または銅合金
を主体とするCu焼結層8を有する場合を示したもので
あり、また図1(b)はFe−Ni系合金薄板6の穿孔
7内ならびに片方の表面に銅または銅合金を主体とする
Cu焼結層8を有する場合を示したものである。なお図
3は本発明の複合材料における焼結層形成前の多数の穿
孔を有するFe−Ni系合金薄板6を示したものであ
る。The composite material of the present invention can also be obtained by forming a layer containing copper or a copper alloy as a main component on an Fe-Ni alloy material, rolling it after drying, and then sintering it. In this case, rolling is more effective in reducing voids or voids as described above. Further, rolling may be further performed after sintering. In this case, in addition to the reduction of voids or voids as described above, there are the effects of improving the plate thickness accuracy, improving the surface condition, and improving the mechanical strength. FIG. 1 shows the basic structure of a composite material of the present invention in which a sintered layer mainly composed of copper or a copper alloy (hereinafter referred to as Cu sintered layer) is formed of a low expansion Fe—Ni-based alloy. FIG. 1A shows a composite material of the present invention after formation of a sintered layer, and as an example, Cu sintering mainly composed of copper or copper alloy in the perforations 7 of the Fe—Ni alloy thin plate 6 and on both surfaces. FIG. 1 (b) shows a case where the layer 8 is provided, and FIG. 1 (b) shows a Cu sintered layer 8 mainly composed of copper or copper alloy in the perforations 7 of the Fe—Ni alloy thin plate 6 and on one surface. This is the case. 3 shows a Fe—Ni alloy thin plate 6 having a large number of perforations before forming a sintered layer in the composite material of the present invention.
【0014】本発明においては、Cu焼結層を銅または
銅合金を主体とすると規定した。純銅は熱伝導性の点で
は非常に優れており、熱伝導性を重視するヒートスプレ
ッダー用としては有効であるが、場合によっては機械的
強度、ハンダ付性、銀ろう付性、耐熱性等用途に応じた
特性改善のために、合金元素を添加することが可能であ
る。合金元素の添加は予め合金化した銅合金粉末を使用
しても良いし、純銅粉と添加元素粉を混合した粉末を使
用しても良い。例えば、SnやNiは銅または銅合金中
に固溶して機械的強度を向上させることができる。ま
た、TiはNiと複合で添加すると、銅マトリックス中
にNiとTi化合物として析出し、機械強度および耐熱
性を向上する。また、Zrはハンダ耐候性を向上する。
Al,Si,Mn,Mgはレジンとの密着性を改善する
ことが知られている。In the present invention, the Cu sintered layer is defined to be mainly composed of copper or a copper alloy. Pure copper is extremely superior in terms of thermal conductivity and is effective as a heat spreader for which thermal conductivity is important, but in some cases mechanical strength, solderability, silver brazing, heat resistance, etc. It is possible to add an alloying element in order to improve the characteristics according to the above. For the addition of the alloying element, a copper alloy powder which has been alloyed in advance may be used, or a powder obtained by mixing pure copper powder and additive element powder may be used. For example, Sn or Ni can form a solid solution in copper or a copper alloy to improve the mechanical strength. Further, when Ti is added in combination with Ni, it precipitates as a Ni and Ti compound in the copper matrix and improves mechanical strength and heat resistance. Zr also improves solder weather resistance.
Al, Si, Mn, and Mg are known to improve the adhesiveness with the resin.
【0015】なお、本発明の焼結層の目的は熱放散性で
あるため、熱放散性を低下させる上記の添加元素は好ま
しくは10重量%以下とする。また、本発明の低膨張F
e−Ni系合金は、重量%で30〜90重量%のNiと
残部Fe組成を基本として、オーステナイト組織の範囲
内でNiに置換する添加元素を含むことができるもので
ある。添加元素としては、Coであれば30重量%以
下、Crであれば15重量%以下を単独または複合で含
有させることが望ましい。また、添加元素については熱
膨張特性、機械的強度、表面酸化膜の形成特性等様々な
要求に合わせた選択が可能であり、Co,Crに限定さ
れるものではない。例えば、強度を改善する元素とし
て、5重量%以下のNb,Ti,Zr,W,Mo,C
u、熱間加工性を改善する元素として、Si,Mnある
いは0.1重量%以下のCa,B,Mgが使用できる。Since the purpose of the sintered layer of the present invention is to dissipate heat, the above-mentioned additional element that reduces the heat dissipation is preferably 10% by weight or less. Further, the low expansion F of the present invention
The e-Ni alloy is based on the balance of 30 to 90% by weight of Ni and the balance Fe composition, and can contain an additive element substituting for Ni within the range of the austenite structure. As additive elements, it is desirable to contain Co in an amount of 30% by weight or less and Cr in an amount of 15% by weight or less alone or in combination. The additive element can be selected according to various requirements such as thermal expansion characteristics, mechanical strength, and surface oxide film forming characteristics, and is not limited to Co and Cr. For example, as an element for improving strength, Nb, Ti, Zr, W, Mo, C of 5% by weight or less is used.
As elements for improving u and hot workability, Si, Mn or 0.1% by weight or less of Ca, B, Mg can be used.
【0016】また、本発明においては少なくとも一方の
面に銅または銅合金を主体とする粉末の焼結層を形成す
ると規定した。しかし、両面にめっきを施すような場合
には、前述のめっき処理時に貫通孔部境界で酸液により
侵食されたり、異種金属が露出しているためにめっき後
の表面状態が不均一になるので、両方の面に焼結層を形
成し、表面に異種金属が露出しないようにした方が望ま
しい。Further, in the present invention, it is defined that a sintered layer of powder containing copper or copper alloy as a main component is formed on at least one surface. However, in the case of plating on both sides, the surface condition after plating will be uneven because the acid solution is eroded at the boundary of the through hole during the plating process and the dissimilar metal is exposed. It is desirable to form sintered layers on both surfaces so that the dissimilar metals are not exposed on the surfaces.
【0017】[0017]
【実施例】低膨張Fe−Ni系合金素材としてFe−3
6重量%Ni合金、Fe−42重量%Ni合金、Fe−
29重量%Ni−17重量%Co合金およびFe−42
重量%Ni−6重量%Cr合金を選び、冷間圧延および
焼鈍を施し、厚さ0.5mmのFe−Ni系合金薄板を
得た。この薄板に図2に示すようにφ1mmの孔を1m
mピッチとするか、あるいはφ3mmの孔を3mmピッ
チでプレスにより形成し、複数の穿孔を有する低膨張F
e−Ni系合金素材を作製した。[Example] Fe-3 as a low expansion Fe-Ni alloy material
6 wt% Ni alloy, Fe-42 wt% Ni alloy, Fe-
29 wt% Ni-17 wt% Co alloy and Fe-42
A wt% Ni-6 wt% Cr alloy was selected, cold rolled and annealed to obtain an Fe—Ni alloy thin plate having a thickness of 0.5 mm. As shown in Fig. 2, a hole with a diameter of 1 mm is formed on this thin plate for 1 m.
Low expansion F with a plurality of perforations, with m pitches or φ3 mm holes formed by pressing at 3 mm pitch
An e-Ni alloy material was produced.
【0018】次に、この穿孔を有する薄板に平均粒径1
5μmの純銅粉(JIS KE21相当)および表1に
示す組成の銅合金(粒径150μm以下)をポリビニル
アルコールをバインダーとして純水を添加してスラリー
状にし、スプレーによりこの素材の片面あるいは両面に
種々の厚さに塗布して、銅および銅合金層を形成した。
その後80℃にて2時間乾燥し、次に水素中において9
50℃で1時間焼結を行ない、本発明の電子部品用複合
材料を得た。また、乾燥後厚さ0.3mmまで冷間圧延
を施し、その後に950℃で1時間焼結を行なったもの
も作製した。また、得られた焼結材にさらに最終冷間圧
延を行ない、0.15mmの薄板とした本発明の電子部
品用複合材料も作製した。このようにして得られた本発
明材料を表1にまとめて示す。Next, the thin plate having the perforations has an average grain size of 1
Pure copper powder of 5 μm (corresponding to JIS KE21) and copper alloy of composition shown in Table 1 (particle size 150 μm or less) are added to pure water using polyvinyl alcohol as a binder to make a slurry, and various one or both sides of this material are sprayed. To form copper and copper alloy layers.
It is then dried at 80 ° C. for 2 hours and then in hydrogen for 9 hours.
Sintering was performed at 50 ° C. for 1 hour to obtain the composite material for electronic parts of the present invention. Further, a product which was dried, cold-rolled to a thickness of 0.3 mm, and then sintered at 950 ° C. for 1 hour was also manufactured. Further, the obtained sintered material was further subjected to final cold rolling to prepare a composite material for electronic parts of the present invention which was a thin plate of 0.15 mm. The materials of the present invention thus obtained are summarized in Table 1.
【0019】また、得られた本発明の電子部品材料は図
1(a)に示すCu焼結層を両面に有する構成と、図1
(b)に示すCu焼結層を片面に有する構成である。ま
た、本発明材料は焼結状態のもの(焼結材)およびその
後さらに冷間圧延を施した状態のもの(冷間圧延材)を
有している。また、焼結材および冷間圧延材のいずれに
も乾燥後に冷間圧延を施し、その後に加熱焼結を行なっ
た(圧延−焼結)材が含まれている。また、比較例とし
て前述の低膨張Fe−Ni系合金のプレスにより穿孔を
形成しない状態の素材を用いて同様に焼結層を形成させ
た複合材料を得た。これらの複合材料について、それぞ
れの板厚方向の熱伝導率を測定するとともに、熱膨張
(α30-300℃)の測定を行なった。これらの結果を表1
にまとめて示す。なお、比較例として代表的なヒートス
プレッターあるいはヒートシンク材であるCu−Wの特
性も表1に記載した。Further, the obtained electronic component material of the present invention has a structure having a Cu sintered layer shown in FIG.
This is a structure having the Cu sintered layer shown in (b) on one side. Further, the material of the present invention has a sintered state (sintered material) and a state further cold-rolled thereafter (cold rolled material). Further, both the sintered material and the cold-rolled material include a material obtained by performing cold rolling after drying and then performing heat sintering (rolling-sintering). In addition, as a comparative example, a composite material in which a sintered layer was similarly formed using a material in which no perforation was formed by pressing the above-described low expansion Fe-Ni alloy was obtained. Regarding these composite materials, the thermal conductivity in the plate thickness direction was measured, and the thermal expansion (α 30-300 ° C ) was also measured. These results are shown in Table 1.
Are shown together. As a comparative example, Table 1 also shows the characteristics of Cu-W which is a typical heat spreader or heat sink material.
【0020】[0020]
【表1】 [Table 1]
【0021】表1に示すように、本発明の電子部品用複
合材料は、板厚方向の優れた熱伝導率が得られており、
放熱性に優れた材料になっていることがわかる。また、
本発明材料は現行のCu−W,Mo等のヒートスプレッ
ダーあるいはヒートシンク材料に比べ大幅な低コスト化
が可能であり、また小型、薄型、軽量化の点でも大きな
効果が期待できるものである。As shown in Table 1, the composite material for electronic parts of the present invention has excellent thermal conductivity in the plate thickness direction,
It can be seen that the material has excellent heat dissipation. Also,
The material of the present invention can be significantly reduced in cost as compared with the current heat spreader or heat sink materials such as Cu-W and Mo, and can also be expected to have great effects in terms of size reduction, thinness, and weight reduction.
【0022】[0022]
【発明の効果】本発明の電子部品用複合材料は、低膨張
Fe−Ni系合金に穿孔を形成し、この素材に銅または
銅合金を主体とする焼結層を形成させることにより、低
コストで且つ熱放散性特に板厚方向の熱放散性に優れた
材料となる。したがって、半導体素子用のヒートスプレ
ッダあるいはヒートシンク用材料として極めて有効であ
り、半導体素子の高速化、高消費電力化に伴う熱放散の
問題を解消する効果的な電子部品材料となり得るもので
ある。EFFECTS OF THE INVENTION The composite material for electronic parts of the present invention has low cost by forming perforations in a low expansion Fe-Ni alloy and forming a sintered layer mainly composed of copper or copper alloy in this material. In addition, the material is excellent in heat dissipation, especially in the thickness direction. Therefore, it is extremely effective as a material for a heat spreader or a heat sink for a semiconductor element, and can be an effective electronic component material that solves the problem of heat dissipation due to higher speed and higher power consumption of the semiconductor element.
【図1】本発明の複合材料の一例を示す図である。FIG. 1 is a diagram showing an example of a composite material of the present invention.
【図2】多数の穿孔を有するFe−Ni系合金薄板の一
例を示す図である。FIG. 2 is a diagram showing an example of an Fe—Ni-based alloy thin plate having a large number of perforations.
【図3】ヒートシンクを用いたLSIパッケージの構造
例を示す図である。FIG. 3 is a diagram showing a structure example of an LSI package using a heat sink.
1 ヒートシンク、2 LSIチップ、3 Cu配線、
4 ポリイシドフィルム、5 半田ボール、6 Fe−
Ni系合金薄板、7 穿孔、8 Cu焼結層1 heat sink, 2 LSI chip, 3 Cu wiring,
4 Polyiside film, 5 Solder balls, 6 Fe-
Ni-based alloy thin plate, 7 perforated, 8 Cu sintered layer
Claims (6)
板の少なくとも一方の面ならびに前記穿孔内に銅または
銅合金を主体とする粉末の焼結層を具備することを特徴
とする電子部品用複合材料。1. An electronic component, comprising a sintered layer of a powder mainly composed of copper or copper alloy in at least one surface of a Fe—Ni alloy thin plate having a plurality of perforations and in the perforations. Composite material.
り、かつ前記Fe−Ni系合金の穿孔部および非穿孔部
を覆い平坦面を形成していることを特徴とする電子部品
用複合材料。2. The electronic component, wherein the sintered layer fills the inside of the perforations and covers the perforated portions and non-perforated portions of the Fe—Ni alloy to form a flat surface. For composite materials.
板の少なくとも一方の面ならびに前記穿孔内に銅または
銅合金を主体とする粉末を塗布した後、加熱焼結するこ
とを特徴とする電子部品用複合材料の製造方法。3. An electronic device characterized in that a powder containing copper or a copper alloy as a main component is applied to at least one surface of a Fe—Ni-based alloy thin plate having a plurality of perforations and the perforations, followed by heating and sintering. Manufacturing method of composite material for parts.
る請求項3に記載の電子部品用複合材料の製造方法。4. The method for producing a composite material for electronic parts according to claim 3, wherein rolling is performed after the heating and sintering.
板の少なくとも一方の面ならびに前記穿孔内に銅または
銅合金を主体とする粉末層を形成した後、圧延を行な
い、次いで加熱焼結することを特徴とする電子部品用複
合材料の製造方法。5. A powder layer containing copper or a copper alloy as a main component is formed on at least one surface of the Fe—Ni alloy thin plate having a plurality of perforations and in the perforations, followed by rolling and then heat sintering. A method of manufacturing a composite material for electronic parts, comprising:
る請求項5に記載の電子部品用複合材料の製造方法。6. The method for producing a composite material for electronic parts according to claim 5, wherein rolling is performed after the heating and sintering.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP4010496A JPH09232485A (en) | 1996-02-27 | 1996-02-27 | Compound material for electric part and its manufacturing method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP4010496A JPH09232485A (en) | 1996-02-27 | 1996-02-27 | Compound material for electric part and its manufacturing method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH09232485A true JPH09232485A (en) | 1997-09-05 |
Family
ID=12571562
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP4010496A Pending JPH09232485A (en) | 1996-02-27 | 1996-02-27 | Compound material for electric part and its manufacturing method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH09232485A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6917638B2 (en) | 2000-10-16 | 2005-07-12 | Yamaha Corporation | Heat radiator for electronic device and method of making it |
| JP2007150289A (en) * | 2005-11-04 | 2007-06-14 | Mitsubishi Materials Corp | Heat sink, heat radiation device, substrate for power module and power module |
-
1996
- 1996-02-27 JP JP4010496A patent/JPH09232485A/en active Pending
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6917638B2 (en) | 2000-10-16 | 2005-07-12 | Yamaha Corporation | Heat radiator for electronic device and method of making it |
| JP2007150289A (en) * | 2005-11-04 | 2007-06-14 | Mitsubishi Materials Corp | Heat sink, heat radiation device, substrate for power module and power module |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6965768B2 (en) | Copper / Ceramics Joint, Insulated Circuit Board, Copper / Ceramics Joint Manufacturing Method, Insulated Circuit Board Manufacturing Method | |
| JP3493844B2 (en) | Semiconductor substrate material, method of manufacturing the same, and semiconductor device using the substrate | |
| US8921996B2 (en) | Power module substrate, power module, and method for manufacturing power module substrate | |
| EP3041042B1 (en) | Method of producing bonded body and method of producing power module substrate | |
| KR930009314B1 (en) | Heat-conductive composite material | |
| CN109315061A (en) | The manufacturing method of ceramic circuit board and ceramic circuit board | |
| JP6018297B2 (en) | Composite laminate and electronic device | |
| JPH0261539B2 (en) | ||
| JPWO2006077755A1 (en) | Semiconductor device member and manufacturing method thereof | |
| US6485816B2 (en) | Laminated radiation member, power semiconductor apparatus, and method for producing the same | |
| JP4893095B2 (en) | Circuit board and semiconductor module using the same | |
| JPH11150135A (en) | Conductive paste of superior thermal conductivity and electronic device | |
| JP2000323618A (en) | Copper circuit bonding substrate and method of manufacturing the same | |
| JP5370460B2 (en) | Semiconductor module | |
| JP2008198706A (en) | Circuit board, method for manufacturing the same, and semiconductor module using the same | |
| JPH02275657A (en) | Composite material, thermal diffusion member in circuit system employing the material, circuit system and their manufacture | |
| JPH06268117A (en) | Heat radiating substrate for semiconductor device and its manufacture | |
| US6529379B1 (en) | Article exhibiting enhanced adhesion between a dielectric substrate and heat spreader and method | |
| JPH09232485A (en) | Compound material for electric part and its manufacturing method | |
| JP3482580B2 (en) | High heat dissipation metal composite plate and high heat dissipation metal substrate using the same | |
| JPH07302866A (en) | Semiconductor device and heat spreader for the device | |
| JP3537320B2 (en) | Circuit board | |
| JP3552587B2 (en) | Composite materials and semiconductor devices | |
| JPH09312364A (en) | Composite material for electronic component and its manufacture | |
| JP3222348B2 (en) | Manufacturing method of ceramic package |