JPH09241837A - Rolled product for target and its production - Google Patents
Rolled product for target and its productionInfo
- Publication number
- JPH09241837A JPH09241837A JP11523996A JP11523996A JPH09241837A JP H09241837 A JPH09241837 A JP H09241837A JP 11523996 A JP11523996 A JP 11523996A JP 11523996 A JP11523996 A JP 11523996A JP H09241837 A JPH09241837 A JP H09241837A
- Authority
- JP
- Japan
- Prior art keywords
- blank
- manufacturing
- target
- less
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 45
- 239000001257 hydrogen Substances 0.000 claims abstract description 31
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 31
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 27
- 238000005096 rolling process Methods 0.000 claims abstract description 25
- 238000010438 heat treatment Methods 0.000 claims abstract description 24
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 19
- 239000000956 alloy Substances 0.000 claims abstract description 19
- 239000000047 product Substances 0.000 claims abstract description 18
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 17
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000002244 precipitate Substances 0.000 claims abstract description 11
- 238000000605 extraction Methods 0.000 claims abstract description 5
- 230000009467 reduction Effects 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 30
- 229910052751 metal Inorganic materials 0.000 claims description 26
- 239000002184 metal Substances 0.000 claims description 26
- 238000005266 casting Methods 0.000 claims description 21
- 229910000838 Al alloy Inorganic materials 0.000 claims description 13
- 239000007789 gas Substances 0.000 claims description 12
- 238000000265 homogenisation Methods 0.000 claims description 9
- 230000001590 oxidative effect Effects 0.000 claims description 8
- 229910052793 cadmium Inorganic materials 0.000 claims description 7
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- 239000010409 thin film Substances 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 4
- 230000005496 eutectics Effects 0.000 claims description 4
- 229910001338 liquidmetal Inorganic materials 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 238000001953 recrystallisation Methods 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 238000009835 boiling Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 238000005275 alloying Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- 238000002844 melting Methods 0.000 claims description 2
- 230000007935 neutral effect Effects 0.000 claims description 2
- 230000000087 stabilizing effect Effects 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 230000001112 coagulating effect Effects 0.000 claims 1
- 238000010924 continuous production Methods 0.000 claims 1
- 230000003381 solubilizing effect Effects 0.000 claims 1
- 239000010953 base metal Substances 0.000 abstract 1
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 230000007547 defect Effects 0.000 description 27
- 230000008569 process Effects 0.000 description 13
- 238000007711 solidification Methods 0.000 description 10
- 230000008023 solidification Effects 0.000 description 10
- 239000002245 particle Substances 0.000 description 9
- 238000001465 metallisation Methods 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 238000007872 degassing Methods 0.000 description 7
- 238000005530 etching Methods 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 229910003460 diamond Inorganic materials 0.000 description 4
- 239000010432 diamond Substances 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910017945 Cu—Ti Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- YKYOUMDCQGMQQO-UHFFFAOYSA-L cadmium dichloride Chemical compound Cl[Cd]Cl YKYOUMDCQGMQQO-UHFFFAOYSA-L 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 description 1
- 229910018182 Al—Cu Inorganic materials 0.000 description 1
- 206010038563 Reocclusion Diseases 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000013020 final formulation Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/02—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【0002】本発明は、標的のための圧延製品及びその
製造方法に関し、詳細には、陰極スパッタ標的を形成す
るためのアルミニウムまたはアルミニウム合金製の製品
の製造法に関するものである。これらの標的は、集積回
路の製造を始めとする、各種の基盤の金属化に使用され
る。The present invention relates to a rolled product for a target and a method for manufacturing the same, and more particularly to a method for manufacturing a product made of aluminum or an aluminum alloy for forming a cathode sputter target. These targets are used in the metallization of various substrates, including the manufacture of integrated circuits.
【0003】[0003]
【0004】陰極スパッタの標的を製造するためのいく
つかの技術がすでに知られている。例えば、本願出願人
によるフランス特許 FR-B1-2 664 618(=EP 0466617、=US
5160388)に記載の製造方法は、微粒子の標的を得るた
めに、純度の高いアルミニウムと、必要に応じて他の
添加元素から、重量で0.05から2%のSiを含有す
るAlSi合金を準備する過程と、それをビレットま
たは円盤に鋳造する過程と、次いで発明に固有の均質
化処理を実施する過程と、ビレットの場合はビレット
を円盤に打ち抜く過程と、製品厚みを減らす変形を実
施する過程と、再結晶化処理を実施する過程とから成
る。好適には、鋳込みの間に、鋳造粒子を微細にするた
めにビレット池を電磁撹拌する。Several techniques are already known for producing targets for cathodic sputtering. For example, French patent FR-B1-2 664 618 (= EP 0466617, = US
5160388), an AlSi alloy containing 0.05 to 2% by weight of Si is prepared from highly pure aluminum and, if necessary, other additive elements in order to obtain a target of fine particles. Process, the process of casting it into a billet or a disc, the process of carrying out the homogenization process peculiar to the invention, the process of punching the billet into a disc in the case of billet, and the process of performing deformation to reduce the product thickness And a step of performing a recrystallization treatment. Preferably, the billet pond is magnetically agitated during casting to refine the cast particles.
【0005】さらに、欧州出願EP−A1−57300
2に記載の標的の製造方法は、重量で0.01から3
%のSiと、Cu、Ti、Pd、Zr、Hfと稀土類か
ら成る群から選択した重量で0.01から3%の少なく
とも1つの元素を含むアルミニウム合金を形成する過程
と、ビレットに鋳込む過程と、少なくとも30分間
500から600℃で第1の溶融化熱処理を実施する過
程と、好適には1分以内に、環境温度までビレットを
急速冷却する過程と、標的を形成するために、圧延ま
たは鍛造などによって、ビレットを圧縮する過程と、
添加元素の固体溶液の比率を好適には50から90%の
間の値に調節するために標的を5から30分の間100
から500℃の第2の熱処理にかける過程とから成る。Furthermore, European application EP-A1-57300
The manufacturing method of the target described in 2 is 0.01 to 3 by weight.
%, Si, Cu, Ti, Pd, Zr, Hf and a process of forming an aluminum alloy containing 0.01 to 3% by weight of at least one element selected from the group consisting of rare earths and casting into a billet. A step of performing a first melt heat treatment at 500 to 600 ° C. for at least 30 minutes, a step of rapidly cooling the billet to ambient temperature, preferably within 1 minute, and rolling to form a target. Or the process of compressing the billet by forging, etc.,
The target was adjusted to 100 for 5 to 30 minutes in order to adjust the proportion of the solid solution of the added element to a value preferably between 50 and 90%.
To a second heat treatment at 500 ° C.
【0006】この欧州出願において、当業者には自明の
如く、このようにして得られた50%を超える比率の固
体溶液は不安定で、陰極スパッタ作業による加熱のため
に、少なくともこの作業を受ける区域内で、固体溶液の
添加要素が50%未満のもっと安定した状態に必然的に
遷移するだろう。In this European application, it will be obvious to a person skilled in the art that the solid solution with a proportion of more than 50% thus obtained is unstable and will undergo at least this work due to heating by the cathodic sputter operation. Within the zone, the solid solution add-on element will necessarily transition to a more stable state below 50%.
【0007】[0007]
【0008】専門技術文献にその原理が豊富に記述され
ている陰極スパッタは、耐火性(耐熱性)であるか否
か、合金であるか否か、伝導性か誘電性かを問わずあら
ゆる種類の材料を、真空をかけ、軽く加熱することが可
能なあらゆる種類の基盤に蒸着させることができる。こ
の蒸着技術はシリコン板のアルミニウム合金による被覆
や集積回路の製造に特に大きな用途分野を見いだした。
例えば、容量が4メガバイトを越えるダイナミックメモ
リDRAMなどの超高集積回路の製造には極めて薄い
(およそ1ミクロン)の相互連結金属層の蒸着が必要で
あり、次いでこの層をエッチングによって極めて細い
(幅0.5ミクロン未満)線路を形成して、メモリのそ
れぞれの位置への個別アクセスを可能にする。[0008] Cathode sputtering, whose principle is described abundantly in specialized technical literature, is of any kind regardless of whether it is refractory (heat resistant), whether it is an alloy, or whether it is conductive or dielectric. The material can be deposited on any type of substrate that can be vacuumed and lightly heated. This deposition technique has found a particularly large field of application for the coating of aluminum alloys on silicon plates and the production of integrated circuits.
For example, the fabrication of ultra-high integrated circuits, such as dynamic memory DRAMs with capacities in excess of 4 megabytes, requires the deposition of a very thin (approximately 1 micron) interconnect metal layer, which is then etched to a very thin (width) width. Lines (less than 0.5 microns) are formed to allow individual access to each location in memory.
【0009】このような条件の下に、相互連結線路の幅
に近い大きさの、金属化層のあらゆる傷が、相互連結回
路のエッチングの際に重大な欠陥となり、集積回路を廃
棄しなければならないことになることが理解できる。Under these conditions, any damage to the metallization layer, which is close to the width of the interconnect line, becomes a serious defect during the etching of the interconnect circuit and must be discarded. I understand that it will not happen.
【0010】金属標的からの真空陰極スパッタによって
得られた金属化層の欠陥の中でもっとも頻繁に見られる
ものの1つが標的表面の微粒子が剥がれ、固体または液
体のこの微粒子が金属化中の半導体基盤の上に再付着す
ることである。これらの粒子の大きさは一般的に10分
の数ミクロンから数ミクロンの間、たいていの場合は1
から5μmの間である。One of the most frequently found defects in metallization layers obtained by vacuum cathode sputtering from a metal target is the removal of fine particles on the target surface, which solid or liquid fine particles form a semiconductor substrate during metallization. Is to redeposit on. The size of these particles is generally between a few tenths of a micron and a few microns, most often 1
To 5 μm.
【0011】エッチング幅が数ミクロンであった前世代
の集積回路の場合、基盤の金属化層にこのように再付着
した粒子の大半は重大なエッチング欠陥を招かず、この
理由によるエッチング欠陥で廃棄される金属化基盤の不
良率は許容できるものであった。In the case of previous generations of integrated circuits, where the etching width was a few microns, most of the particles thus redeposited on the underlying metallization do not lead to significant etching defects and are discarded for this reason. The failure rate of the metallized substrate produced was acceptable.
【0012】反対に、現在および将来の世代の超集積回
路、例えば16メガバイト以上のDRAMメモリについ
てはエッチングの幅が極めて細くなり、線路の幅は10
分の数ミクロンになった(現在は0.2から0.5ミク
ロン程度)。このような条件の下で、標的から剥がれ、
半導体基盤に再付着した極めて細かい粒子は集積回路の
不良の大きな原因となり、この欠陥は世界の電子産業に
毎年多額の損害を生じている。On the contrary, in the present and future generations of ultra-integrated circuits, for example, in the DRAM memory of 16 megabytes or more, the etching width becomes extremely narrow, and the line width becomes 10.
It became a few microns (currently about 0.2 to 0.5 microns). Under these conditions, it peels off the target,
The extremely fine particles redeposited on the semiconductor substrate are a major cause of defects in integrated circuits, and this defect causes a great deal of damage to the global electronics industry every year.
【0013】もちろん、この欠陥を失くすこと、あるい
は少なくともそれを押さえることは電子産業にとって大
きな課題であり、この欠陥の原因を究明し、その対策を
図るために電子産業界が研究開発に多大な努力を払って
いるのは当然なことである。Of course, it is a great problem for the electronic industry to lose this defect, or at least to suppress it, so that the electronic industry needs a great deal of research and development to investigate the cause of this defect and take countermeasures against it. It goes without saying that we are working hard.
【0014】他方、既知の標的製造方法、特に先に述べ
た方法は、この問題を解決することができず従来の技術
で製造された標的は性能がかなり不安定で、許容できる
品質のものもあればできないものもあり、標的の物理化
学的特性とその使用性能の間の明確な相関関係は確立さ
れていない。On the other hand, the known target manufacturing methods, in particular the methods mentioned above, cannot solve this problem and the targets manufactured by the prior art have a rather unstable performance and are also of acceptable quality. Some cannot, and no clear correlation has been established between the physicochemical properties of the target and its performance of use.
【0015】本発明の第1の目的は、標的製造の信頼性
を大幅に高めることである。従って、原因不明の製造の
不安定性を克服することを目指す。A first object of the present invention is to significantly increase the reliability of target manufacturing. Therefore, we aim to overcome unexplained manufacturing instability.
【0016】この方法は、粒子の発射率と、活性部分
が、超高純度のアルミニウムまたは超高純度のアルミニ
ウム系合金で形成された標的の金属内の欠陥の数と大き
さ(収縮巣から生じた凝集不良、微小ひび割れ、微小
孔、など)の間に相関関係が存在するという出願人が偶
然発見した事実に基づいている。This method is based on the particle firing rate and the number and size of defects (generated from shrinkage cavities) in a target metal in which the active portion is formed of ultra-high purity aluminum or ultra-high purity aluminum-based alloy. There is a correlation between poor cohesion, microcracks, micropores, etc.) and is based on the fact that the Applicant accidentally discovered.
【0017】本発明による製造方法は、最も一般的で、
通常はこの分野において最も経済的な技術しか使用せず
に課された問題を解決しようとするものである。The manufacturing method according to the invention is the most general,
It usually seeks to solve the problems imposed by using only the most economical techniques in this field.
【0018】さらに本発明は、dm3 当たりの欠陥(凝
集不良)の数が少ないことを特徴とする標的をも目的と
する。A further object of the invention is also a target which is characterized by a low number of defects (defective aggregation) per dm 3 .
【0019】[0019]
【0020】本発明の製造方法は、アルミニウムまたは
アルミニウム合金に対応する組成の液体金属を鋳込んで
形成したブランクから陰極スパッタ標的を形成するため
のアルミニウムまたはアルミニウム合金製の製品の製造
方法において、凝集不良が100未満で、大きさがdm
3 当たり0.1mmに等しく、溶解または包含水素が
0.03ppm未満の標的を得るために、下記の連続す
る過程を特徴とする製造方法である: 1)前記ブランクを被覆する酸化物層を除去し、その再形
成を防止する手段を実施する過程と; 2)非酸化性雰囲気を有する炉内で、前記製品の表面を酸
化するおそれのない条件の下で、アルミニウム母材内に
存在する合金元素を含む沈殿物を均質化および溶液化す
る熱処理を実施する過程と; 3)最初から前記製品内に含まれる水素の大部分を抽出す
ることを可能にする条件の下で、水素含有率が0.05
ppm未満、好適には0.03ppm未満に成るまで、
前記均質化熱処理を延長する過程と; 4)前記ブランクを少なくとも10%の厚みまたは断面の
減少に対応する圧延にかける過程。The production method of the present invention is a method for producing a product made of aluminum or an aluminum alloy for forming a cathode sputter target from a blank formed by casting a liquid metal having a composition corresponding to aluminum or an aluminum alloy. Defect is less than 100, size is dm
In order to obtain a target equal to 0.1 mm per 3 and having less than 0.03 ppm of dissolved or included hydrogen, the manufacturing method is characterized by the following successive steps: 1) removing the oxide layer coating the blank And a step of carrying out a means for preventing its re-formation; 2) an alloy existing in the aluminum base material under the condition that the surface of the product is not oxidized in a furnace having a non-oxidizing atmosphere. Performing a heat treatment to homogenize and solubilize the precipitate containing the element; and 3) from the beginning, under the conditions that make it possible to extract most of the hydrogen contained in the product, the hydrogen content is 0.05
until less than ppm, preferably less than 0.03 ppm,
Prolonging the homogenizing heat treatment; 4) subjecting the blank to rolling corresponding to a thickness or cross-section reduction of at least 10%.
【0021】この主要な手段は出願人が重要であること
を発見した基準に合致し、十分な応用物性と相関する特
性を示す標的を得ることを可能にする。This main measure makes it possible to obtain a target which meets the criteria which the applicant has found to be important and which exhibits properties which correlate with sufficient application properties.
【0022】過程1)において、酸化物層の再形成を防止
する手段は厳密に理解されるものではなく、特にこの方
法のガス抜きの過程3)において、水素の拡散を除去の大
きな障害となる酸化物層の、即ち厚い酸化物層の有意の
再形成を防止する手段を実施することを意味する。In the step 1), the means for preventing the reformation of the oxide layer is not strictly understood, and especially in the step 3) of degassing of this method, the diffusion of hydrogen becomes a major obstacle to the removal. It is meant to implement measures to prevent the significant reformation of the oxide layer, ie the thick oxide layer.
【0023】過程4)の圧延もガス抜きの過程3)で気体の
中身をなくした孔を再充填することを目的とする。The rolling in step 4) is also aimed at refilling the holes that have lost gas contents in step 3) of degassing.
【0024】好適には、前記ブランクはそれ自体周知の
仕方で得られた鋳込み粗ビレットである(一般に長さ数
メートルの円筒状の半製品)。Preferably, the blank is a cast rough billet obtained in a manner known per se (cylindrical semi-finished product, generally a few meters in length).
【0025】過程3)の後、好適には圧延の過程4)の直前
に、前記ビレットは薄片に切断され(ほぼ円盤状の薄片
を形成するために前記ビレットに対して鉛直に切断)、
それぞれの薄片が過程4)で圧延にかけられる標的のブラ
ンクを構成する。After step 3), preferably immediately before the rolling step 4), the billet is cut into thin pieces (cut perpendicularly to the billet to form a generally disc-shaped thin piece),
Each slice constitutes a target blank which is subjected to rolling in step 4).
【0026】本発明によるビレットは、一般的に断面が
円形であるが、例えば長方形などの、他の幾何の断面の
ビレットを排除するものではない。Although the billet according to the invention is generally circular in cross section, it does not exclude billets of other geometric cross sections, eg rectangular.
【0027】本発明によれば、過程1)の始めに使用する
ブランクは、粗鋳造品、あるいは同じ鋳造品を、必要な
らば均質化処理の後に、冷間または熱間圧延で、部分的
に圧延されたブランクに加工したもので構成される。According to the invention, the blank used at the beginning of step 1) is a rough casting, or the same casting, partially after cold- or hot-rolling, optionally after homogenization treatment. It is composed of rolled blanks.
【0028】この場合、前記部分的に圧延したブランク
は、部分的に圧延し、前記粗鋳造品を形成するこのビレ
ットを、前記標的の目標仕上げ厚みの1.1倍以上の最
終厚みに押しつぶすか圧延して得られた、断面が円形ま
たは長方形のビレットの輪切りとすることができる。In this case, the partially rolled blank may be partially rolled to crush the billet forming the rough casting to a final thickness of at least 1.1 times the target finish thickness of the target. It can be cut into billets having a circular or rectangular cross section obtained by rolling.
【0029】このような変型の主たる利点は、ガス抜き
するブランクの厚みがあらかじめ減少しているために短
くなったガス抜きの過程3)の短縮および/またはガス抜
き効率の向上にある。The main advantage of such a modification lies in the shortening of the degassing process 3) and / or the improvement of the degassing efficiency, which has been shortened because the thickness of the degassing blank has been previously reduced.
【0030】本発明の変型によれば、過程4)の圧延の後
に粒度を安定させるための再結晶化熱処理過程と、前記
標的に最終的寸法を与える過程を続けることができる
が、このどちらの過程も周知である。According to a modification of the present invention, after the rolling of step 4), a recrystallization heat treatment step for stabilizing the grain size and a step of giving the target a final dimension can be continued. The process is also well known.
【0031】この方法の過程1)によれば、前記ブランク
から気密な酸化物の自然な層を除去することが重要であ
る。According to step 1) of this method, it is important to remove the natural layer of hermetic oxide from the blank.
【0032】酸化物の層の除去は前記ブランクの表面を
乾式加工し、その直後に前記熱処理炉に移すことによっ
て行われる。The removal of the oxide layer is carried out by dry working the surface of the blank and immediately afterwards transferring it to the heat treatment furnace.
【0033】好適には、pHが3.5未満の酸の水溶液
内に酸化物を溶解して除去することもできる、このよう
にして処理した表面は次に低沸点の金属の薄膜によって
覆われ、前記ブランク表面の酸化物層の再形成が防止さ
れる。Preferably, the oxide can also be removed by dissolving it in an aqueous solution of an acid having a pH of less than 3.5. The surface thus treated is then covered with a thin film of a low boiling metal. The reformation of the oxide layer on the blank surface is prevented.
【0034】前記金属の薄膜を形成するために、好適に
は、酸の水溶液中のカドミウムまたは亜鉛を、pH3.
5未満で、好適には、前記アルミニウムまたは合金のブ
ランクに陰極電位をかけた電解によって、付着させる。To form the metal thin film, preferably, cadmium or zinc in an aqueous solution of an acid is added at pH 3.
Less than 5, preferably deposited by electrolysis with a cathodic potential applied to the aluminum or alloy blank.
【0035】このようにして、前記金属の薄膜に覆われ
た前記ブランクをリスクなしに一時的に保管したり、取
り扱うことができる。In this way, the blank covered with the metal thin film can be temporarily stored and handled without risk.
【0036】前記熱処理の間、方法の過程2)と3)におい
て、前記ブランクは450℃を越える温度で非酸化雰囲
気の下で処理される。好適には、前記雰囲気内の酸化気
体の残留圧力は0.13Pa未満である。酸化気体と
は、一般的に酸素O2 、水蒸気H2Oまたは炭酸ガスC
O2 を意味するが、窒素N2 などの微反応性の他の気体
も含まれる。好適には、前記熱処理は真空中で、または
酸化気体の残有含有率が低い中性気体の雰囲気の下で、
好適には精製アルゴンの下で実施される。During the heat treatment, in steps 2) and 3) of the method, the blank is treated in a non-oxidizing atmosphere at a temperature above 450.degree. Suitably, the residual pressure of the oxidizing gas in said atmosphere is less than 0.13 Pa. Oxidizing gas is generally oxygen O 2 , water vapor H 2 O or carbon dioxide C
By O 2 , other slightly reactive gases such as nitrogen N 2 are also included. Preferably, the heat treatment is performed in vacuum or under an atmosphere of a neutral gas having a low residual content of oxidizing gas,
It is preferably carried out under purified argon.
【0037】前記ブランクが低沸点金属層で覆われてい
る場合、好適には前記熱処理炉は、前記ブランクの表面
に付着し、前記ブランクの温度上昇の際に蒸発した、前
記薄膜の金属の金属蒸気を凝集させることのできる、温
度200℃未満に維持された低温トラップが備えられて
いる。When the blank is covered with a low boiling metal layer, preferably the heat treatment furnace adheres to the surface of the blank and evaporates when the temperature of the blank rises, the metal of the thin film metal. A cold trap maintained below 200 ° C. is provided which is capable of condensing vapor.
【0038】一般的に、過程2)の均質化は、前記アルミ
ニウム合金の共融温度未満の温度で実施され、過程3)の
水素抽出は、この共融温度を超えるが、前記均質な合金
の固相線温度より低い温度で実施されるので、均質化と
ガス抜きの作業合計時間が短縮される。しかし、このよ
うな作業の仕方は、望ましくはあるが、所期の目的を達
成するには、即ち化学組成の均質化と金属沈殿物の再溶
解、および金属の中に含まれる水素のその後の抽出には
必ずしも必要ではない。Generally, the homogenization of step 2) is carried out at a temperature below the eutectic temperature of the aluminum alloy and the hydrogen extraction of step 3) above this eutectic temperature but of the homogeneous alloy Since it is carried out at a temperature lower than the solidus temperature, the total work time for homogenization and degassing is shortened. However, this method of working, although desirable, achieves the intended purpose: homogenization of the chemical composition and redissolution of the metal precipitate, and subsequent hydrogen content of the metal. It is not necessary for extraction.
【0039】過程3)の前記ブランクの熱処理とガス抜き
の後、ブランクは最終的に過程4)で圧延して、本発明に
よる一般的処理に対応する、ビレットの鋳造によってブ
ランクが形成された場合、前記ブランクを円盤の形状を
有する薄片に切断する前に圧延するか後にするかによっ
て、厚みまたは断面を縮小する。After the blank is heat-treated and degassed in step 3), the blank is finally rolled in step 4) to form a blank by billet casting, which corresponds to the general treatment according to the invention. Reducing the thickness or cross section by rolling the blank before or after cutting it into flakes having the shape of a disc.
【0040】前記圧延は円盤の形状(ビレットの薄片)
を始めとする<<平坦な>>製品の鍛造、圧搾、圧延、
あるいはビレットの押し出し、押し出し後の薄板または
円盤への切断などを含めることができる。The above-mentioned rolling is in the shape of a disk (a thin piece of billet)
Forging, squeezing, rolling of << flat >> products, including
Alternatively, it can include extruding the billet, cutting into thin plates or discs after extrusion, and the like.
【0041】出願人が最終的製法を保証するのに必要な
標的の特性を明らかにできた後でも、解決すべき問題の
困難さは少しも小さくならない。なぜなら、空気連続鋳
造では、微小孔や微小収縮巣が完全になくなった鋳造品
を得ることは極めて困難であり、固化間隔が長い、即ち
合金の固化開始温度と固化の終わりのその有効温度の間
の差が大きいアルミニウム合金の場合は特に困難である
が、特定の標的の通常の種類に使用されるシリコン合金
がこれに当てはまる。Even after the applicant has been able to characterize the target necessary to guarantee the final formulation, the difficulty of the problem to be solved does not diminish. Because, in continuous air casting, it is extremely difficult to obtain a cast product in which micropores and microshrinkage voids are completely eliminated, and the solidification interval is long, that is, between the solidification start temperature of the alloy and its effective temperature at the end of solidification. This is especially the case for aluminum alloys with a large difference between, but this applies to the silicon alloys used for the usual types of specific targets.
【0042】連続または半連続鋳造において、固化速度
が速いので、この固化によって実際には金属の組成がそ
れぞれの樹脂状結晶の核とその周縁の間での、樹脂状結
晶の成長の間に連続的に変化する。In the continuous or semi-continuous casting, since the solidification rate is high, this solidification actually causes the composition of the metal to continue during the growth of the resinous crystals between the nucleus of each resinous crystal and its periphery. Change.
【0043】固化の終わりに、合金元素が濃縮された残
留液体は、既に固化した合金の樹脂状結晶の間に閉じこ
められる。固化の最終的収縮によって今度は、特に樹脂
状結晶の間の空間の中に、空隙または微小収縮巣が残
る。At the end of solidification, the residual liquid enriched with alloying elements is trapped between the resinous crystals of the alloy which has already solidified. The final shrinkage of the solidification in turn leaves voids or microshrinks, especially in the spaces between the resinous crystals.
【0044】他方、液体金属内に存在する水素、または
液体金属と大気中の水分の間の反応によって鋳造の際に
吸収された水素は、固体アルミニウムにほとんど溶けな
いので、この残留空洞内に分子ガスの形で放出される傾
向があり、そのために空洞内の圧力は大気圧に達し、さ
らにはそれを越えることがあるので、この収縮巣が包含
気体を含む微小孔に変化する。On the other hand, the hydrogen present in the liquid metal or the hydrogen absorbed during the casting by the reaction between the liquid metal and the moisture in the atmosphere is almost insoluble in the solid aluminum, so that the molecules in this residual cavity are This contraction is transformed into micropores containing the entrapped gas as it tends to be released in the form of a gas, which causes the pressure in the cavity to reach and even exceed atmospheric pressure.
【0045】その後の合金の均質化処理の際に、特に圧
延の前に、これらの微小空洞内にまだ拡散せずに、原子
の状態で金属内に溶解した水素は、特に粒子の結合によ
って、この欠陥に向かって拡散し、そこで凝集する。During the subsequent homogenization treatment of the alloy, especially before rolling, the hydrogen, which has not yet diffused into these microcavities, has been dissolved in the metal in atomic form in the metal, especially by the bonding of the particles, Diffuse towards this defect, where it agglomerates.
【0046】従って、先に「凝集不良」と呼んだ、大気
圧を大幅に越えることのある圧力を有する水素で満たさ
れたこの微小空洞(微小収縮巣または微小孔)は、その
後の圧延過程で再充填するのが困難であり、金属の変形
方向に平行な向きの、横断寸法が(潰れのために)初期
欠陥よりも大きな潰れた欠陥を発生させる。Therefore, the hydrogen-filled microcavities (microconstriction cavities or micropores), which have been referred to as "cohesion failure" and have a pressure that can significantly exceed the atmospheric pressure, are formed in the subsequent rolling process. It is difficult to refill and produces crush defects with transverse dimensions (due to crushing) greater than the initial defects, oriented parallel to the direction of deformation of the metal.
【0047】さらに、一部の合金、特に珪素を0.5%
を越えて含有する合金については、連続鋳造の粗製品の
構造が固化の終わりに形成された、粗金属間沈殿物を含
有し、これらの沈殿物はたいていの場合、アルミニウム
母材よりもはるかに堅く、固化の終わりに形成された微
小収縮巣と微小孔が多い区域に特に集中する。In addition, some alloys, especially 0.5% silicon.
For alloys containing more than, the structure of the continuously cast crude product formed at the end of solidification, contains crude intermetallic precipitates, which are often much more than the aluminum matrix. It is particularly concentrated in areas that are stiff and have many micro-shrinks and micro-pores formed at the end of solidification.
【0048】堅くて、大抵の場合はもろいこれらの沈殿
物は、微小収縮巣または微小孔と結合して、製品の圧延
の際のこれらの欠陥の再溶接の形成も妨げ、さらにはこ
の圧延の際にひび割れの伝播を助長して、これらの機械
的変形の際にそれらを増幅させるおそれさえある。These precipitates, which are hard and often brittle, combine with micro-shrinkage cavities or micro-holes and also prevent the formation of re-welds of these defects during the rolling of the product, and also of this rolling. It may even promote crack propagation and even amplify them during these mechanical deformations.
【0049】最終的に、本発明はアルミニウムおよびア
ルミニウム合金か工業界の標準的かつ経済的機器の使用
を可能にし、しかも同じく標準作業条件での使用を可能
にする。Finally, the present invention allows the use of aluminum and aluminum alloys or industry standard and economical equipment, as well as use under standard operating conditions.
【0050】このように、本発明の製造方法によれば、
鋳造によって、また場合によってはそれに続く予備圧延
によって形成された前記ブランクはdm3 当たり100
を明らかに越える内部凝集不良、100ミクロンを越え
る大きさの凝集不良を含み、さらに0.03ppmを明
らかに越える溶融または包含水素を含むことがあり、本
発明はこの段階では特に手段を必要としないことを示し
ている。他方、本発明の手段の実施はdm3 当たり10
0未満の、大抵の場合は10未満の凝集欠陥をを含み
(始めのブランクが、一般的にはkg当たり5ミリグラ
ム以上の、耐火包含物を大量に含む場合を除く)、0.
03ppm未満の水素を含む圧延製品を得ることを可能
にする。Thus, according to the manufacturing method of the present invention,
The blank formed by casting, and optionally by subsequent pre-rolling, is 100 per dm 3.
The present invention does not require any special means at this stage, which includes internal cohesion failure significantly exceeding 10000 nm, cohesion failure having a size exceeding 100 μm, and may further include melted or contained hydrogen significantly exceeding 0.03 ppm. It is shown that. On the other hand, the implementation of the means of the present invention requires 10 per dm 3.
Contains less than 0, often less than 10 cohesive defects (unless the initial blank contains large amounts of refractory inclusions, typically 5 mg / kg or more),
It makes it possible to obtain rolled products containing less than 03 ppm of hydrogen.
【0051】とりわけ合金の性質または鋳造条件によっ
て、鋳造と場合によっては予備圧延によって形成された
前記ブランクは、大きさが100ミクロンを越える内部
凝集不良を10〜100/dm3 しか含まないことが可
能であり、0.03ppmを越える溶融または包含水素
を含む、そしてこの場合、本発明による製造方法によっ
て、10/dm3 未満の内部凝集不良と、0.03pp
m未満の溶融または包含水素を含む標的のための圧延製
品が得られるが、先ほど同様、酸化物、窒化物、炭化物
さらには黒鉛などの耐火含有物の含有率が高い場合は除
かれる。Depending on the nature of the alloy or the casting conditions, among others, the blanks formed by casting and optionally pre-rolling may contain only 10-100 / dm 3 of internal agglomeration defects of more than 100 microns in size. And containing more than 0.03 ppm of molten or entrapped hydrogen, and in this case by the process according to the invention an internal cohesion failure of less than 10 / dm 3 and 0.03 pp.
Rolled products for targets containing less than m of molten or entrapped hydrogen are obtained, but likewise above, where the content of refractory inclusions such as oxides, nitrides, carbides and even graphite is high.
【0052】[0052]
【0053】[0053]
【実施例1】 標的に加工するためのブランクの製造:Example 1 Production of a blank for processing into a target:
【0054】高純度の黒鉛の坩堝内で、空気溶解によっ
て、超高純度のアルミニウムベースの、金属不純物の含
有率が10ppm未満の、珪素を重量で1%、銅を重量
で0.5%添加した合金を450kg製造した。In a high-purity graphite crucible, 1% by weight of silicon and 0.5% by weight of copper having a metal impurity content of less than 10 ppm in an ultra-high-purity aluminum base were added by air dissolution. 450 kg of this alloy was manufactured.
【0055】この金属をガス抜きを行わずに、電磁撹拌
連続鋳造によって、粗直径が137mmのビレットに鋳
込んだ。This metal was cast into a billet having a coarse diameter of 137 mm by electromagnetic stirring continuous casting without degassing.
【0056】鋳造の間、大きさが100ミクロンを越え
る包含物の大部分を除去するために選択した性質の、ア
ルミナの多孔板を通して金属を連続濾過した。During casting, the metal was continuously filtered through a perforated plate of alumina of a nature selected to remove most of the inclusions above 100 microns in size.
【0057】このように鋳造した金属の気体(水素)含
有率を、STROEHLEINという商標の機器を用い
て、含有水素抽出の古典的方法によって、固体標本溶解
によって、固体ビレットの薄片から採取した固体標本で
測定した。The gas (hydrogen) content of the metal thus cast was taken from a thin section of solid billet by solid sample dissolution by the classical method of hydrogen content extraction using an instrument under the trademark STROEHLEIN. It was measured at.
【0058】この水素含有率は、鋳造ビレットから採取
した異なる薄片の間で平均0.17ppm、標準偏差
0.03ppmであり、全ての測定は同じ日に同じ作業
員が実施した。This hydrogen content averaged 0.17 ppm with a standard deviation of 0.03 ppm among different flakes taken from the cast billet, and all measurements were carried out by the same worker on the same day.
【0059】鋳造ビレットから採取した薄片を高周波
(10Mhz)の超音波で検査して、100ミクロンを
越える大きさの多数の凝集不良(微小収縮巣及び微小
孔)の存在が明らかにされ、100ミクロンを越える大
きさの凝集不良は検査した金属のdm3 当たり平均30
0に達し、欠陥が最も集中した区域である薄片の中心で
は1000/dm3 を越えた。Examination of thin pieces taken from the cast billet with high frequency (10 Mhz) ultrasonic waves revealed the presence of numerous agglomeration defects (micro shrinkage foci and micro pores) of more than 100 micron, and 100 micron. Agglomeration failure of more than 30 on average per dm 3 of inspected metal
It reached 0 and exceeded 1000 / dm 3 at the center of the flakes, which is the most concentrated area of defects.
【0060】超音波検査に関する補足情報は、本願出願
人によるフランス特許出願第9601990号に含まれ
ている。Additional information on ultrasonic examination is contained in the French patent application No. 9601990 by the applicant.
【0061】超音波でこのように検査した薄片の表面を
光学顕微鏡検査にかけて、大きさが10ミクロンを越え
る、大抵の場合は50ミクロンを越える珪素沈殿物の局
所的な大きな集中、ならびに銅の多い金属管沈殿物を含
む多数の微小孔の存在が明らかになった。The surface of the slices so inspected by ultrasound is subjected to optical microscopy to find a large local concentration of silicon precipitates with a size of more than 10 microns, in most cases of more than 50 microns, as well as a high copper content. The presence of numerous micropores, including metal tube precipitates, was revealed.
【0062】鋳込み製品の構造をこのように特性化し
て、直径137mm、長さが600mmのビレットの最
初の輪切りを採取した。The structure of the cast product was thus characterized and a first round slice of a billet 137 mm in diameter and 600 mm in length was taken.
【0063】最初に、ビレットのこの輪切りに、大きな
厚みの酸化物層で形成された鋳造皮を除去するために、
水溶性油を添加した水を注ぎながら、それ自体周知の仕
方で軽く黒皮を剥いた。このようにして、ビレットの直
径を132mmまで縮小した。First, in order to remove the cast skin formed by the thick oxide layer on this slice of billet,
The skin was lightly peeled in a manner known per se while pouring water with added water-soluble oil. In this way, the diameter of the billet was reduced to 132 mm.
【0064】次いで、フランス規格AIR9051によ
る古典的検査によって、ビレットのこの輪切りに、0.
7mmの平坦な底の孔に相当する大きさの欠陥(反響振
幅)がないことを確認した。This round slice of billet was then cut to 0 .. by classical inspection according to the French standard AIR 9051.
It was confirmed that there was no defect (echo amplitude) corresponding in size to the 7 mm flat bottom hole.
【0065】過程1):この予備確認と乾燥の後、このビ
レットの輪切りを「ダイアモンド」バイトで潤滑剤なし
に乾式再加工し(いわゆる「ダイアモンド」加工)、直
径を131mmまで縮小した。Process 1): After this preliminary confirmation and drying, the round slice of this billet was dry reprocessed with a "diamond" bite without lubricant (so-called "diamond" processing), and the diameter was reduced to 131 mm.
【0066】過程2):乾式再加工の直後に、ビレットの
輪切りを、あらかじめ0.13Pa(10-3トール)の
真空にかけた加熱炉内に直ちに導入し、次いで8kPa
(60トール)の気圧で酸素と水蒸気の含有率が(体積
で)10ppm未満の、極めて純粋なアルゴンを炉内に
導入する。Step 2): Immediately after the dry reworking, a billet slice was immediately introduced into a heating furnace previously evacuated to a vacuum of 0.13 Pa (10 -3 Torr), and then 8 kPa.
Very pure argon with an oxygen and water vapor content of less than 10 ppm (by volume) at a pressure of (60 Torr) is introduced into the furnace.
【0067】次いで、毎時50℃の温度上昇速度で51
0℃までビレットの輪切りを加熱し、8時間の間この温
度に維持した。Then, at a temperature rising rate of 50 ° C./hour, 51
The billet slices were heated to 0 ° C. and maintained at this temperature for 8 hours.
【0068】過程3):ビレットの固化の際に、平衡外の
状態で形成されたあらゆる沈殿物を再溶解するためのこ
の最初の保持(均質化過程)の後、温度を4時間かけて
次第に565℃まで再上昇させた。ビレットの輪切りは
この温度に120時間保持し、炉から出して、およそ6
時間で環境温度まで空気冷却した(強制換気)。Step 3): During the solidification of the billet, after this initial holding (homogenization step) to redissolve any precipitate formed out of equilibrium, the temperature is gradually increased over 4 hours. The temperature was raised again to 565 ° C. The billet slices were kept at this temperature for 120 hours, removed from the furnace, and
Air cooled to ambient temperature in hours (forced ventilation).
【0069】過程4):次に、長さ600mmのこのビレ
ットの輪切りを厚みが55mm程度のほぼ等しい厚みの
10個の薄片に裁断した。表面仕上げの後、それぞれの
薄片を、両面ともに、15Mhzの高周波数の超音波で
検査した。このように検査したそれぞれの薄片は過程1)
の終わりに得られたような鋳造粗ビレットのものにほぼ
匹敵する多孔率を示し、100ミクロンを越える大きさ
の孔が多数あった。さらに厚みが55mmのそれぞれの
薄片の片面で実施した顕微鏡検査では珪素の、大きさが
20ミクロンを越える大きな沈殿物、あるいは銅が濃縮
された沈殿物がないことが明らかにされた。別の5枚が
挿入された5枚の薄片から、上述の方法で、水素含有率
を測定するために、直径10mmの円筒状の標本を抽出
した。この測定含有率は0.03ppm未満で、鋳造粗
ビレットの含有率は0.17ppmであるから、最初に
含まれていた水素は80%以上減少したことになる。厚
みが55mmの別の5枚の薄片は、圧搾及び冷間圧延に
よって、20から50mmの間の厚み(20/30/4
0/45/50mm)まで押し潰し、次に周波数15M
Hzの超音波で検査した。この検査から、この超音波測
定法の予備検定を考慮して、厚みが45mm(標本厚み
20/30/40mm)未満の、押し潰された薄片に
は、0.1mmの平坦な底の孔の大きさを越える等しい
大きさの欠陥がほとんどないこと、もっと正確には金属
のdm3 当たりの凝集不良が30未満であることがわか
った。一方、厚みが45と50mmの薄片では、凝集不
良がはるかに多数あり、元のビレットの300に比較し
て一般的に100程度であった。Step 4): Next, a round slice of this billet having a length of 600 mm was cut into ten thin pieces having a thickness of about 55 mm and having almost the same thickness. After surface finishing, each flakes was inspected on both sides with high frequency ultrasonic waves of 15 Mhz. Each slice examined in this way is a process 1)
It had porosities almost comparable to those of the cast crude billets as obtained at the end of the above, with a large number of pores larger than 100 microns. In addition, microscopic examination performed on one side of each flake with a thickness of 55 mm revealed no large precipitates of silicon greater than 20 microns or copper-enriched precipitates. A cylindrical specimen with a diameter of 10 mm was extracted from the 5 slices into which another 5 slices were inserted, in order to measure the hydrogen content by the method described above. This measured content is less than 0.03 ppm, and the content of the casting crude billet is 0.17 ppm, which means that the hydrogen initially contained was reduced by 80% or more. Another 5 slices with a thickness of 55 mm were pressed and cold rolled to a thickness of between 20 and 50 mm (20/30/4
0/45 / 50mm), then frequency 15M
It was examined by ultrasonic waves at Hz. From this examination, considering the preliminary verification of this ultrasonic measurement method, the crushed flakes with a thickness of less than 45 mm (specimen thickness 20/30/40 mm) have a flat bottom hole of 0.1 mm. It has been found that there are few defects of equal size exceeding the size, more precisely less than 30 cohesive defects per dm 3 of metal. On the other hand, in the case of the flakes having the thicknesses of 45 and 50 mm, the cohesion failure was far more numerous, and was generally about 100 as compared with 300 of the original billet.
【0070】[0070]
【実施例2】Embodiment 2
【0071】過程2)と3)で炉の雰囲気を空気とする以外
は実施例1の手順を再現する。この場合、加工したビレ
ットの表面に、気密な、厚みが5ナノメートルを越える
酸化物の厚い層が形成された。過程4)で測定した水素含
有率は0.08と0.17ppmの間で、実施例1で得
られたものよりはるかに高いことがわかった。光学顕微
鏡試験では、過程2)と3)の熱処理の後の合金内に存在す
る孔が、過程4)の圧延の際にわずかしか閉じないので、
100ミクロンを越える凝集不良の数がdm3当たりお
よそ150個になることが示された。The procedure of Example 1 is reproduced except that the furnace atmosphere is air in steps 2) and 3). In this case, an airtight, thick layer of oxide having a thickness of more than 5 nanometers was formed on the surface of the processed billet. It was found that the hydrogen content measured in step 4) was between 0.08 and 0.17 ppm, much higher than that obtained in Example 1. In the optical microscope examination, the holes present in the alloy after the heat treatment of steps 2) and 3) are only slightly closed during the rolling of step 4),
It has been shown that the number of cohesive defects above 100 microns is approximately 150 per dm 3 .
【0072】[0072]
【実施例3】Embodiment 3
【0073】過程1)で「ダイアモンド」加工の後に、溶
液のpHを3.5未満の値に調整するのに必要な量の塩
酸を添加した、1リットル当たり2グラムの塩化カドミ
ウムの水溶液内にビレットの輪切りを入れた以外は実施
例1の手順を再現した。2分待った後、カドミウムの陽
極と陰極に使用したビレットの輪切りの間に5アンペア
の電流を2分間流した。この電解析出作業によって厚み
が0.1から0.15ミクロンのカドミウムが付着し
た。実験として、このように被覆されたこの断片を、飽
和水蒸気の雰囲気内で、1週間の間40℃に保温した。
次いで、熱処理炉に入れた後(過程2)と3))、実施例1
と全く同じ熱サイクルにかけた。実施例3の場合、ビレ
ットの輪切りの再加熱の間に放出されるカドミウム蒸気
をそこで凝結させ、最終冷却の際にビレットの輪切りや
炉の壁に再蒸着するのを防止するために、炉は150℃
未満の温度に維持した、低温トラップを備えている。他
方、液体カドミウムがビレットの輪切りの粒子の継ぎ目
に侵入する一切の汚染を防止するために、過程2)で温度
を上昇する際に、あらかじめビレットの輪切りに付着し
たカドミウムの全量を低温トラップ内で蒸発させ、再凝
結させるために、温度290℃で6時間保持した。この
とき、過程2)と3)の後で、水素の含有率が0.03pp
m未満であることが確認された。この条件で、過程4)の
仕上げ圧延処理によって、鋳造した粗ビレット内に当初
から存在している孔の大半が完全にふさがり、過程4)の
後で、100ミクロンを越える凝集不良の数が平均して
dm3 当たり10から20、即ち実施例1で得たものよ
りはるかに少ない数の薄片を得ることが可能になること
もわかった。After the "diamond" processing in step 1), in an aqueous solution of 2 g of cadmium chloride per liter, added with the amount of hydrochloric acid necessary to adjust the pH of the solution to a value below 3.5. The procedure of Example 1 was reproduced, except that the billet was sliced. After waiting for 2 minutes, a current of 5 amperes was applied for 2 minutes between the slices of billet used for the cadmium anode and cathode. This electrolytic deposition operation deposited cadmium with a thickness of 0.1 to 0.15 micron. As an experiment, the pieces thus coated were kept at 40 ° C. for 1 week in an atmosphere of saturated steam.
Then, after placing in a heat treatment furnace (steps 2) and 3)), Example 1
Exactly the same heat cycle. In the case of Example 3, in order to prevent the cadmium vapor released during the reheating of the billet slices from condensing there and preventing redeposition on the billet slices and the furnace wall during final cooling, the furnace was 150 ° C
Equipped with a cryogenic trap maintained at a temperature below. On the other hand, in order to prevent any contamination of liquid cadmium from entering the joints of the billet sliced particles, when increasing the temperature in step 2), the total amount of cadmium adhering to the billet sliced in advance in the cryotrap. The temperature was held at 290 ° C. for 6 hours in order to evaporate and recondense. At this time, after steps 2) and 3), the hydrogen content is 0.03 pp.
It was confirmed that it was less than m. Under this condition, the finish rolling process of step 4) completely closed most of the holes originally existing in the cast rough billet, and after the process 4), the number of aggregation defects exceeding 100 microns was averaged. It has also been found that it is possible to obtain from 10 to 20 flakes per dm 3, a much smaller number of flakes than obtained in Example 1.
【0074】[0074]
【実施例4】Embodiment 4
【0075】a)開始ブランク製造 実施例1と同じ鋳込みから得られた、鋳造粗ビレットの
輪切りを採取した。長さが150mmの円筒状のこのビ
レットの輪切りを軽い黒皮剥ぎにかけて、直径を137
mmから132mmにした。次いで、510℃で8時
間、空気均質化にかけ、次いで350℃に急速冷却し
て、この温度で鋳造軸に平行に、プレスでの押し潰しに
よる予備圧延にかけ、厚みが50mm、直径およそ23
0mmの円盤に変形した。A) Starting Blank Manufacture A cast rough billet slice obtained from the same casting as in Example 1 was sampled. A 150 mm long cylindrical billet is lightly stripped to a 137 mm diameter.
It was changed from mm to 132 mm. It is then subjected to air homogenization at 510 ° C. for 8 hours, then rapidly cooled to 350 ° C. and pre-rolled by pressing at this temperature parallel to the casting axis, with a thickness of 50 mm and a diameter of approximately 23 mm.
It was transformed into a 0 mm disk.
【0076】b)標的への加工 環境温度に冷却した後、この円盤をその平坦面の乾式加
工にかけて厚みを48mmにし、すぐに炉に移して、
0.13Pa(即ち10-3トール)の真空にかけた。最
初にこの円盤を510℃で8時間維持し、次いで4時間
かけて、温度を550℃まで次第に上昇させ、円盤をこ
の温度で36時間保持した。熱処理とから引き出し、環
境温度まで空気で急速冷却した後、この円盤をクロスミ
ルによる仕上げ圧延にかけ、連続して3回通すことによ
ってその厚みを48mmから25mmにし、平均直径を
およそ320mmにした。次にこの圧延した円盤を32
0℃で1時間空気による再結晶化処理にかけ、次いでダ
イアモンドによる仕上げ加工で最終厚みを20mm、直
径を305mmにした。周波数15MHzの超音波で試
験を行い、鋳造粗製品内に存在した100ミクロンを越
える大きさの欠陥の大半がこの製造工程全体の後に消失
し、仕上げ加工した標的内の、この欠陥の最終密度が、
金属1dm3 当たり100ミクロンを越える大きさの欠
陥が10未満であることが明らかになった。銅製の担持
板に鑞付けで接続した後、この円盤は超高集積度のエッ
チングが極めて細い(エッチング幅0.35ミクロン)
集積回路の金属化のために、陰極スパッタの標的として
使用された。得られた結果は、後工程のエッチングを妨
げる粒子を、集積回路に付着させることになる微小アー
クの発生頻度から判断して、優秀と評価された(この原
因による回路不良率が3%未満)。B) Working on target After cooling to ambient temperature, this disk was dry worked on its flat surface to a thickness of 48 mm and immediately transferred to a furnace,
A vacuum of 0.13 Pa (ie 10 −3 Torr) was applied. The disc was first maintained at 510 ° C. for 8 hours, then the temperature was gradually increased to 550 ° C. over 4 hours and the disc was kept at this temperature for 36 hours. After being taken out from the heat treatment and rapidly cooled to the ambient temperature with air, the disk was subjected to finish rolling with a cross mill, and the thickness was changed from 48 mm to 25 mm by passing three times in succession to an average diameter of about 320 mm. Next, roll this rolled disc into 32
It was subjected to a recrystallization treatment with air at 0 ° C. for 1 hour, followed by a diamond finishing treatment to give a final thickness of 20 mm and a diameter of 305 mm. When tested with ultrasonic waves at a frequency of 15 MHz, most of the defects larger than 100 microns present in the casting blank disappeared after the entire manufacturing process and the final density of the defects in the finished target was ,
It has been found that there are less than 10 defects with a size of more than 100 microns per dm 3 of metal. After being brazed and connected to a copper carrier plate, this disk has extremely fine etching with an extremely high degree of integration (etching width 0.35 micron).
Used as a target for cathodic sputtering for metallization of integrated circuits. The obtained results were evaluated as excellent (the circuit failure rate due to this cause is less than 3%), judging from the frequency of occurrence of minute arcs that would cause particles that interfere with etching in the subsequent process to adhere to the integrated circuit. .
【0077】[0077]
【0078】上記に記載され、重量で1%の珪素と重量
で0.5%の銅を主要添加物として含む合金などの、微
小収縮巣と微小孔の形成が極めて起きやすいアルミニウ
ム合金で特に徹底した試験を実施した製造方法は、当業
者には容易に理解できるように、同じ有利な効果で、電
子回路の金属化に使用される多の全てのアルミニウム合
金、例えば2元合金Al−Si、またはAl−Cu、ま
たはもっと複雑な合金Al−Cu−Ti、Al−Si−
Ti、さらにはAl−Si−Cu−Tiなどにも適用で
きるが、熱処理の特殊条件を適合させて、特に「均質化
火傷」などの現象を防止しなければならない、これは金
属間沈殿物と溶融性共晶が豊富な部品の区域の局部的溶
融現象である。このようにして、上記合金の標的のため
のブランク内に取り込まれた水素の含有率を大幅に減ら
すことができた、またそのことによって鋳造粗部品内に
存在する欠陥の圧延による再閉塞を大幅に促し、この標
的が使用の際に固体または液体の粒子を放出する傾向を
減らすことができた。In particular, the aluminum alloys described above and containing 1% by weight of silicon and 0.5% by weight of copper as a main additive are particularly prone to the formation of microscopic shrinkage cavities and micropores. As will be readily understood by a person skilled in the art, the manufacturing methods carried out with the same tests have the same advantageous effects, and with the same advantageous effects, all of the many aluminum alloys used for the metallization of electronic circuits, such as the binary alloy Al--Si, Or Al-Cu, or more complex alloys Al-Cu-Ti, Al-Si-
Although it can be applied to Ti, as well as Al-Si-Cu-Ti, etc., special conditions of heat treatment have to be adapted to prevent phenomena such as "homogenized burns". It is a local melting phenomenon in the area of parts rich in meltable eutectic. In this way, the content of hydrogen taken up in the blank for targeting the alloys could be significantly reduced, which also significantly reduces the rolling reocclusion of defects present in the casting rough part. This target was able to reduce the tendency of this target to release solid or liquid particles upon use.
【0079】[得られた結果][Results Obtained]
【0080】実施例1から3のいずれにおいても、過程
5)の後で得られた薄片は標的に使用され、本願出願人に
よるフランス特許出願第96−01990号に記載の如
く金属化比較試験で検査した。使用の際に、本発明によ
って処理したブランクから得られた標的はほぼ全体的
に、標的からの金属化集積回路上への粒子の再付着によ
る不良率が非常に低かった(5%未満の不良)。In each of Examples 1 to 3, the process
The flakes obtained after 5) were used as targets and examined in a metallization comparison test as described in our French patent application 96-01990. In use, the targets obtained from the blanks treated according to the invention almost entirely had a very low failure rate due to redeposition of particles from the target onto the metallized integrated circuits (less than 5% failure). ).
Claims (16)
対応する組成の液体金属を鋳込んで形成したブランクか
ら陰極スパッタ標的を形成するためのアルミニウムまた
はアルミニウム合金製の標的のための圧延製品の製造方
法において、下記の連続する過程を特徴とする製造方
法: 1)前記ブランクを被覆する酸化物層を除去し、その再形
成を防止する手段を実施する過程と; 2)非酸化雰囲気を有する炉内で、前記製品の表面を酸化
するおそれのない条件の下で、アルミニウム母材内に存
在する合金元素を含む沈殿物を均質化および溶液化する
熱処理を実施する過程と; 3)最初から前記製品内に含まれる水素の大部分を抽出す
ることを可能にする条件の下で、水素含有率が0.05
ppm未満、好適には0.03ppm未満に成るまで、
前記均質化熱処理を延長する過程と; 4)前記ブランクを少なくとも10%の厚みまたは断面の
減少に対応する圧延にかける過程。1. A method of manufacturing a rolled product for an aluminum or aluminum alloy target for forming a cathode sputter target from a blank formed by casting a liquid metal having a composition corresponding to aluminum or an aluminum alloy, comprising: A manufacturing method characterized by a continuous process of: 1) performing a means for removing the oxide layer covering the blank and preventing its re-formation; 2) in a furnace having a non-oxidizing atmosphere, A step of carrying out a heat treatment for homogenizing and solubilizing precipitates containing alloying elements present in the aluminum base material under the condition that the surface of the product is not oxidized; 3) included in the product from the beginning The hydrogen content is less than 0.05 under the conditions that allow most of the hydrogen to be extracted.
until less than ppm, preferably less than 0.03 ppm,
Prolonging the homogenizing heat treatment; 4) subjecting the blank to rolling corresponding to a thickness or cross-section reduction of at least 10%.
粗ビレットであり、過程3)の後、圧延の過程4)の前に、
前記ビレットが薄片に切断され、それぞれの薄片が過程
4)で圧延にかけられる標的のブランクを構成することを
特徴とする製造方法。2. The manufacturing method according to claim 1, wherein the blank is a cast coarse billet having a cylindrical or rectangular cross section, and after the step 3) and before the rolling step 4),
The billet is cut into thin pieces and each thin piece is processed
A manufacturing method, characterized in that a target blank to be rolled in 4) is constructed.
り、前記粗鋳造ブランクを形成する、必要ならば均質化
処理した、断面が円形または長方形の粗鋳造ビレット
を、前記標的の目標仕上げ厚みの1.1倍以上の最終厚
みに押しつぶすか圧延して得られたブランクであること
を特徴とする製造方法。3. The manufacturing method according to claim 1, wherein the blank used in step 1) is a partially rolled blank, forming the rough casting blank, homogenized if necessary, and having a circular cross section. Alternatively, it is a blank obtained by crushing or rolling a rectangular rough cast billet to a final thickness of 1.1 times or more the target finish thickness of the target.
造方法において、 過程4)の圧延の後に粒度を安定させるための再結晶化熱
処理過程と、前記標的に最終的寸法を与える最終加工過
程が続くことを特徴とする製造方法。4. The manufacturing method according to claim 1, wherein after the rolling in step 4), a recrystallization heat treatment step for stabilizing the grain size and a final dimension are given to the target. A manufacturing method characterized in that a final processing step is continued.
造方法において、 酸化物の層の除去が前記ブランクの表面を乾式加工し、
その直後に前記熱処理炉に移すことによって行われるこ
とを特徴とする製造方法。5. The manufacturing method according to claim 1, wherein the oxide layer is removed by dry-processing the surface of the blank,
Immediately thereafter, the method is carried out by transferring to the heat treatment furnace.
造方法において、 前記ブランクの表面の酸化物層が、pHが3.5未満の
酸の水溶液内に酸化物を溶解して除去され、このように
して処理した表面は次に低沸点の金属の薄膜によって覆
われ、前記ブランク表面の酸化物層の再形成が防止され
ることを特徴とする製造方法。6. The manufacturing method according to claim 1, wherein the oxide layer on the surface of the blank dissolves the oxide in an aqueous solution of an acid having a pH of less than 3.5. The method, characterized in that the surface which has been removed and treated in this way is then covered with a thin film of a low-boiling metal to prevent the reformation of the oxide layer on the blank surface.
満で、好適には、前記アルミニウムまたは合金のブラン
クに陰極電位をかけた電解によって、付着させることを
特徴とする製造方法。7. The method according to claim 6, wherein cadmium or zinc in an aqueous solution of an acid is electrolyzed at a pH of less than 3.5, preferably by applying a cathodic potential to the aluminum or alloy blank. A manufacturing method, characterized in that it is attached.
造方法において、 前記雰囲気内の酸化気体の残留圧力が0.13Pa未満
であることを特徴とする製造方法。8. The manufacturing method according to claim 5, wherein the residual pressure of the oxidizing gas in the atmosphere is less than 0.13 Pa.
方法。9. The manufacturing method according to claim 8, wherein the heat treatment is performed in a vacuum.
おいて、 前記熱処理が酸化気体の残有含有率が低い中性気体の雰
囲気の下で、好適には精製アルゴンの下で実施されるこ
とを特徴とする製造方法。10. The manufacturing method according to claim 8, wherein the heat treatment is carried out under an atmosphere of a neutral gas having a low residual content of oxidizing gas, preferably under purified argon. And a manufacturing method.
請求項8〜10のいずれか一つに記載の製造方法におい
て、 前記熱処理炉が、前記ブランクの表面に付着した、前記
薄膜の金属の金属蒸気を凝集させることのできる、温度
200℃未満に維持された低温トラップが備えることを
特徴とする製造方法。11. The manufacturing method according to claim 6, wherein the heat treatment furnace adheres to the surface of the blank, and the metal of the thin film is adhered to the surface of the blank. A manufacturing method comprising a low temperature trap capable of coagulating metal vapor and maintained at a temperature of less than 200 ° C.
造方法において、過程2)の均質化が前記アルミニウム合
金の共融温度未満の温度で実施され、過程3)の水素抽出
がこの共融温度を超えるが、前記均質な合金の固相線温
度より低い温度で実施されることを特徴とする製造方
法。12. The manufacturing method according to claim 1, wherein the homogenization in step 2) is performed at a temperature lower than the eutectic temperature of the aluminum alloy, and the hydrogen extraction in step 3) is performed in this step. A manufacturing method characterized by being carried out at a temperature above the melting temperature but below the solidus temperature of the homogeneous alloy.
の製造方法において、 過程1)の開始に使用される前記ブランクが、dm3 当た
り100を越える内部凝集不良、100ミクロンを越え
る大きさの凝集不良を含み、さらに0.03ppmを越
える溶融または包含水素を含むことを特徴とする製造方
法。13. The manufacturing method according to claim 1, wherein the blank used for starting step 1) has an internal cohesion failure of more than 100 and a size of more than 100 microns per dm 3. A manufacturing method characterized in that the molten or entrapped hydrogen exceeds 0.03 ppm.
の製造方法において、 過程1)の開始に使用される前記ブランクが、大きさが1
00ミクロンを越える内部凝集不良をdm3 あたり10
〜100含み、0.03ppmを越える溶融または包含
水素を含むことを特徴とする製造方法。14. The manufacturing method according to claim 1, wherein the blank used to start the step 1) has a size of 1 or less.
Internal cohesion failure of more than 00 micron is 10 per dm 3.
-100, and more than 0.03 ppm of molten or included hydrogen is included.
未満で、0.03ppm未満の溶融または包含水素を含
む請求項13に記載の製造方法によって製造することを
特徴とする、標的のための圧延製品。15. Internal cohesion failure is 100 per dm 3.
Rolled product for a target, characterized in that it is produced by the production method according to claim 13 containing less than 0.03 ppm of molten or entrapped hydrogen.
0.03ppm未満の溶融または包含水素を含む請求項
14に記載の製造方法によって製造することを特徴とす
る、標的のための圧延製品。16. Internal cohesion failure of less than 10 / dm 3 .
A rolled product for a target, characterized in that it is produced by the production method according to claim 14 containing less than 0.03 ppm of molten or entrapped hydrogen.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR9603113 | 1996-03-07 | ||
| FR9603113A FR2745822B1 (en) | 1996-03-07 | 1996-03-07 | PROCESS FOR THE MANUFACTURE OF ALUMINUM OR ALUMINUM ALLOY ARTICLES FOR FORMING CATHODE SPRAY TARGETS |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH09241837A true JPH09241837A (en) | 1997-09-16 |
Family
ID=9490114
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP11523996A Pending JPH09241837A (en) | 1996-03-07 | 1996-04-15 | Rolled product for target and its production |
Country Status (3)
| Country | Link |
|---|---|
| JP (1) | JPH09241837A (en) |
| FR (1) | FR2745822B1 (en) |
| WO (1) | WO1997033011A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2012102380A (en) * | 2010-11-11 | 2012-05-31 | Ulvac Japan Ltd | Method for inspecting target material for sputtering, and method for producing sputtering target |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108097722B (en) * | 2017-12-08 | 2019-11-05 | 宁波江丰电子材料股份有限公司 | A kind of Al-Sc alloy target material forming method |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1842200A (en) * | 1928-05-04 | 1932-01-19 | Westinghouse Lamp Co | Method of degasifying metal bodies |
| GB863788A (en) * | 1958-07-17 | 1961-03-29 | Aluminum Co Of America | Method of producing substantially gas- and void-free aluminium and aluminium-base alloy articles |
| US5268236A (en) * | 1988-11-25 | 1993-12-07 | Vereinigte Aluminum-Werke Ag | Composite aluminum plate for physical coating processes and methods for producing composite aluminum plate and target |
| DE3839775C2 (en) * | 1988-11-25 | 1998-12-24 | Vaw Ver Aluminium Werke Ag | Cathode sputtering target and process for its manufacture |
| FR2664618B1 (en) * | 1990-07-10 | 1993-10-08 | Pechiney Aluminium | PROCESS FOR THE MANUFACTURE OF CATHODES FOR CATHODE SPRAYING BASED ON VERY HIGH PURITY ALUMINUM. |
-
1996
- 1996-03-07 FR FR9603113A patent/FR2745822B1/en not_active Expired - Fee Related
- 1996-04-15 JP JP11523996A patent/JPH09241837A/en active Pending
-
1997
- 1997-02-28 WO PCT/FR1997/000363 patent/WO1997033011A1/en active Application Filing
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2012102380A (en) * | 2010-11-11 | 2012-05-31 | Ulvac Japan Ltd | Method for inspecting target material for sputtering, and method for producing sputtering target |
Also Published As
| Publication number | Publication date |
|---|---|
| FR2745822A1 (en) | 1997-09-12 |
| WO1997033011A1 (en) | 1997-09-12 |
| FR2745822B1 (en) | 1998-04-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4996639B2 (en) | Sputter target | |
| US10665462B2 (en) | Copper alloy sputtering target and semiconductor element wiring | |
| TWI247819B (en) | Physical vapor deposition targets, and methods of fabricating metallic materials | |
| US7101447B2 (en) | Tantalum sputtering target with fine grains and uniform texture and method of manufacture | |
| JP3413782B2 (en) | Titanium target for sputtering and method for producing the same | |
| JPH1180942A (en) | Ta sputter target, method of manufacturing the same and assembly | |
| JP2003500546A (en) | Copper sputter target assembly and method of manufacturing the same | |
| US6849139B2 (en) | Methods of forming copper-containing sputtering targets | |
| JPH10330923A (en) | High purity copper sputtering target and thin film | |
| KR100506562B1 (en) | Cathode pulverisation targets in aluminium alloy | |
| JP2003527967A (en) | Bonding target to backing plate | |
| JPH108244A (en) | Single crystal copper target and its production as well as semiconductor internal wiring formed by using the same | |
| JP2001504898A5 (en) | ||
| JPH1060632A (en) | Sputtering target, its production, and semiconductor device | |
| JP2000034562A (en) | Sputtering target and thin film forming equipment parts | |
| JPH11293454A (en) | Target material for aluminum series sputtering and its production | |
| JP3819487B2 (en) | Manufacturing method of semiconductor device | |
| JPH1060636A (en) | Aluminum base target for sputtering and its production | |
| JPH09241837A (en) | Rolled product for target and its production | |
| WO2020194789A1 (en) | Joint body of target material and backing plate, and method for manufacturing joint body of target material and backing plate | |
| JP2000328242A (en) | Ti-al alloy sputtering target and its production | |
| JP3606451B2 (en) | Method for producing Al-based electrode film | |
| JP3509011B2 (en) | Method for Refining Production Materials for Target Material for Al-based Sputtering | |
| JPH10147860A (en) | Al-based sputtering target material and its production | |
| JPS634050A (en) | Manufacturing method of aluminum alloy substrate for magnetic disk |