[go: up one dir, main page]

JPH09256129A - Production of high strength heat treated type aluminum alloy sheet for drawing - Google Patents

Production of high strength heat treated type aluminum alloy sheet for drawing

Info

Publication number
JPH09256129A
JPH09256129A JP8722996A JP8722996A JPH09256129A JP H09256129 A JPH09256129 A JP H09256129A JP 8722996 A JP8722996 A JP 8722996A JP 8722996 A JP8722996 A JP 8722996A JP H09256129 A JPH09256129 A JP H09256129A
Authority
JP
Japan
Prior art keywords
treatment
alloy
strength
less
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8722996A
Other languages
Japanese (ja)
Other versions
JP3278130B2 (en
Inventor
Toshio Komatsubara
俊雄 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP08722996A priority Critical patent/JP3278130B2/en
Publication of JPH09256129A publication Critical patent/JPH09256129A/en
Application granted granted Critical
Publication of JP3278130B2 publication Critical patent/JP3278130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an aluminum alloy sheet having a high strength as an Al alloy sheet for drawing used for a DI can body, a DRD can body, a can top or the like, furthermore excellent in can formability such as drawability and ironing properties and moreover small in a secular change in the material characteristics. SOLUTION: An Al alloy composed of, by weight 3 to 6% Zn, 0.5 to 3% Mg, >0.5 to 1.5% Mn, and the balance substantial Al is finished into a prescribed sheet thickness, which is thereafter subjected to short time solution treatment at 450 to 550 deg.C for <=5min, is furthermore subjected to artificial aging treatment at 80 to 150 deg.C for 1 to 24hr and is then subjected to final cold rolling. As for an Al alloy contg. 1 to 2.5% Cu in addition to the above each component, it is finished into a prescribed sheet thickness, which is thereafter subjected to short time solution treatment at 450 to 540 deg.C for <=5min and is subjected to artificial aging treatment and final cold rolling similar to the above.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は高強度が要求され
る絞り加工用の熱処理型アルミニウム合金板の製造方法
に関し、特にアルミニウム2ピースDI缶の缶胴材や缶
蓋材あるいは食缶(DRD缶)などの主として容器材料
として使用される絞り加工用アルミニウム合金板の製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a heat-treatable aluminum alloy plate for drawing which requires high strength, and more particularly to a can body, can lid material or food can (DRD can) of an aluminum two-piece DI can. ) And the like, and mainly relates to a method for producing an aluminum alloy sheet for drawing used as a container material.

【0002】[0002]

【従来の技術】絞り加工が施されて用いられるアルミニ
ウム容器としては、DI加工(絞り−しごき加工)が施
されて成形される2ピースDI缶や、DRD加工(絞り
−再絞り加工)が施されて成形されるDRD缶(食
缶)、そのほか各種の深絞り缶がある。これらのアルミ
ニウム缶のうち最も代表的なDI缶の製造方法として
は、缶胴素材に対して深絞り加工、しごき加工によるD
I加工を施して缶胴形状を得た後、所定のサイズにトリ
ミングを施してから塗装焼付け処理を施し、その後缶胴
縁部に対してネッキング加工(口絞り加工)、フランジ
加工(口拡げ加工)を行ない、さらに別に成形した缶蓋
(缶エンド)を合せてシーミング加工(巻締め加工)を
行なうのが通常である。このようにDI缶などの製造に
は多種類の加工が施されるところから、深絞り性、しご
き性、口絞り性、口拡げ性、張出性などの種々の加工性
と強度とのバランスから、その材料が選択、検討されて
いる。
2. Description of the Related Art As an aluminum container that is used after being drawn, a two-piece DI can that is formed by DI processing (drawing-ironing) or DRD processing (drawing-redrawing) is used. There are DRD cans (food cans) that are formed by molding and various deep-drawing cans. The most typical method for producing DI cans among these aluminum cans is to perform deep drawing and ironing on the can body material.
After I processing is performed to obtain the can body shape, trimming is performed to a predetermined size, then paint baking is applied, and then necking processing (mouth drawing) and flange processing (mouth widening processing) are applied to the can body edge. ) Is performed, and the can lid (can end) that has been separately molded is combined and subjected to seaming (winding). Since various types of processing are applied to the production of DI cans, etc., it is a balance between various workability such as deep drawability, ironing property, mouth drawability, mouth spreadability, and overhangability, and strength. From that, the material is selected and examined.

【0003】そして前述のような各種のアルミニウム缶
のうち、DI缶の缶胴材としてはJIS 3004合金
やAA3104合金のH19材あるいはH39材などが
多用され、またDI缶の缶蓋材にはJIS 5052合
金やJIS 5082合金、JIS 5182合金のH
18材もしくはH38材などが多用され、さらにDRD
缶やその他の深絞り缶にはJIS 5052合金のH1
8材もしくはH38材やAA5042合金のH38材な
どが多用されている。
Among the various aluminum cans as described above, H19 or H39 of JIS 3004 alloy or AA3104 alloy is often used as a can body for DI cans, and the can lid of DI cans is JIS. H of 5052 alloy, JIS 5082 alloy, JIS 5182 alloy
18 materials or H38 materials are often used, and DRD
JIS 5052 alloy H1 for cans and other deep drawn cans
Eight materials, H38 material, H38 material of AA5042 alloy, etc. are often used.

【0004】[0004]

【発明が解決しようとする課題】アルミニウム2ピース
DI缶で代表されるアルミニウム缶に対しては、材料コ
スト低減のために従来より一層薄肉化することが強く望
まれている。そこでこれらのアルミニウム缶の材料に
は、薄肉化しても充分な高強度を有しかつ優れた絞り加
工性などの成形性を確保し得る材料が望まれている。し
かしながら前述のような従来のアルミニウム缶用アルミ
ニウム合金板では、例えば缶胴用合金板の場合製缶後の
200℃×20分程度の塗装焼付処理時において、また
缶蓋用合金板の場合製缶前の270℃×20秒程度の塗
装焼付処理時において軟化を起してしまうため、最終的
に得られる強度はせいぜい300N/mm2 程度となる
から、薄肉化を図るためには強度不足となってしまう。
また前述のような従来の合金系をベースとして例えばC
u等の強化元素を添加したり、あるいは素材の冷間加工
率を大きくするなどの手段によって強度向上を図ること
も考えられるが、その場合には成形性が著しく低下して
しまい、缶材料としては不適当となってしまう。
For aluminum cans represented by aluminum two-piece DI cans, it is strongly desired to make them thinner than before in order to reduce the material cost. Therefore, as a material for these aluminum cans, a material that has a sufficiently high strength even when it is made thin and is capable of ensuring excellent formability such as drawability is desired. However, in the conventional aluminum alloy plate for aluminum cans as described above, for example, in the case of an alloy plate for a can body, at the time of paint baking at about 200 ° C. for 20 minutes after the can is made, and in the case of an alloy plate for a can lid, Since the softening occurs during the previous baking process of 270 ° C for about 20 seconds, the strength finally obtained is at most about 300 N / mm 2, so the strength is insufficient for thinning. Will end up.
Further, based on the conventional alloy system as described above, for example, C
It is possible to improve the strength by adding a strengthening element such as u or increasing the cold working rate of the material, but in that case, the formability is remarkably reduced, and as a can material Would be inappropriate.

【0005】ところで各種のアルミニウム合金のうちで
も2000系(Al−Cu−Mg系)あるいは7000
系(Al−Zn−Mg系)の熱処理型合金では、耐力で
400N/mm2 を越える高強度を得ることができるこ
とから、高強度を要する構造用材料として多用されてい
るが、構造用材料の場合溶体化処理のままの状態、ある
いは人工時効処理を施した状態で使用されるのが通常で
あり、成形加工が施されたとしても極く軽微な加工に過
ぎない。またこれらの熱処理型合金を強い成形加工を必
要とする用途に用いる場合には、軟質材の状態で成形し
て、その後溶体化処理や人工時効処理を施して強度を確
保することも行なわれているが、缶用材料としてはこの
ようなプロセスは不適切である。いずれにしても、これ
らの従来の熱処理型合金では、強度は充分に高いもの
の、溶体化処理後の状態で成形性、とりわけ絞り性、し
ごき性、張出し性に劣り、そのため缶用材料に適用する
ことは考えられていなかった。
Among various aluminum alloys, 2000 series (Al--Cu--Mg series) or 7000 series.
The heat treatment type alloys of the Al-Zn-Mg-based type are often used as structural materials that require high strength because they can obtain high strength exceeding 400 N / mm 2 in proof stress. In this case, it is usually used in the state of solution treatment as it is, or in the state of being subjected to artificial aging treatment, and even if it is subjected to molding processing, it is only a very slight processing. When these heat-treatable alloys are used for applications requiring strong forming, they are also formed in a soft material state and then subjected to solution treatment or artificial aging treatment to secure the strength. However, such a process is unsuitable as a material for cans. In any case, although these conventional heat-treatable alloys have sufficiently high strength, they are inferior in formability, especially drawability, ironing property, and overhanging property after the solution treatment, and therefore are applied to can materials. That was not considered.

【0006】さらにDI缶の缶胴用材料の場合、高強度
と優れたDI成形性(絞り加工性、しごき加工性)が要
求されるばかりでなく、DI缶胴に成形して塗装焼付処
理を施した後のネッキング加工、フランジ加工、シーミ
ング加工での成形性も要求される。近年の缶胴の薄肉化
に伴ってフランジ部の肉厚も減少してきているため、フ
ランジ加工、シーミング加工中におけるフランジ部の破
断が生じやすくなっており、そのためフランジ加工性や
シーミング加工性の改善が強く望まれ、さらに缶蓋の軽
量化のためにネック径の小径化、したがってネッキング
加工量の増加の要請もあり、そこでより一層のフランジ
部の成形性向上が求められている。また缶蓋材の場合は
深絞り性のほか、張出し性、開口性のより一層の向上も
望まれている。
Further, in the case of a material for a can body of a DI can, not only high strength and excellent DI formability (drawing workability, ironing workability) are required, but also a DI can body is formed and a paint baking treatment is performed. Formability in necking, flanging and seaming after application is also required. Since the thickness of the flange has been decreasing with the thinning of the can body in recent years, it is easy for the flange to break during flanging and seaming, which improves flanging and seaming. There is also a strong demand for a smaller neck diameter in order to reduce the weight of the can lid, and thus an increase in the amount of necking, and therefor a further improvement in the formability of the flange portion is required. Further, in the case of a can lid material, in addition to deep drawing property, further improvement in overhanging property and opening property is desired.

【0007】ところで本願発明は、既に特願平7−15
3899号において、「絞り加工用高強度熱処理型アル
ミニウム合金板およびその製造方法」を提案している。
この提案は、基本的には7000系合金をベースとした
熱処理型DI缶用合金と、その熱処理方法についてのも
のである。具体的には、Zn3〜6wt%、Mg0.5
〜3wt%、Mn0.5wt%を越え1.5%wt以下
を含有し、残部がAlおよび不可避的不純物よりなるD
I缶用合金、あるいは前記各合金元素のほか、Cu0.
1〜2.5wt%を添加したDI缶用の合金を提案する
と同時に、これらの合金について、所定の板厚まで仕上
げた後、450〜550℃の範囲内あるいは450〜5
40℃の範囲内の温度で溶体化処理を施し、さらに30
%を越え75%以下の圧延率で冷間圧延を施す方法を提
案している。
By the way, the present invention has already been disclosed in Japanese Patent Application No. 7-15.
In 3899, "a high-strength heat-treatable aluminum alloy plate for drawing and a manufacturing method thereof" is proposed.
This proposal is basically a heat treatment type DI can alloy based on a 7000 series alloy and a heat treatment method thereof. Specifically, Zn3 to 6 wt%, Mg0.5
˜3 wt%, Mn exceeding 0.5 wt% and 1.5 wt% or less, and the balance D consisting of Al and unavoidable impurities
In addition to the alloys for I cans or the above alloy elements, Cu0.
At the same time as proposing alloys for DI cans to which 1 to 2.5 wt% is added, at the same time after finishing these alloys to a predetermined plate thickness, within the range of 450 to 550 ° C. or 450 to 5 ° C.
The solution heat treatment is performed at a temperature within the range of 40 ° C., and further 30
It proposes a method of performing cold rolling at a rolling ratio of more than 75% and 75% or less.

【0008】上記提案によれば、熱処理型合金として高
強度を示すと同時に、絞り加工性等の良好な成形性を確
保することができ、そのほか前述の諸要求を満たすこと
が可能となった。しかしながらさらに実用化のための検
討を進めたところ、上記提案の合金は、素材製造メーカ
ーにおいて板材を製造後、製造メーカーにおいて製缶す
るまでの間の保管などの期間中において熱処理型合金に
特有の経時変化によって材料の強度、特に耐力が上昇
し、そのため板製造から製缶まで長期間経過した場合に
は製缶時におけるしごき性などの成形加工性が低下して
しまう問題があり、そのほか板製造後の製缶までの期間
によって製缶時の強度、成形性にばらつきが生じてしま
う問題があることが判明した。
According to the above-mentioned proposal, it is possible to exhibit high strength as a heat treatment type alloy, to secure good formability such as drawability, and to satisfy the above-mentioned various requirements. However, as a result of further study for practical use, the alloy proposed above is unique to heat-treatable alloys during the period such as storage after the plate material is manufactured by the material manufacturer and before the can is manufactured by the manufacturer. There is a problem that the strength of the material, especially the proof stress, rises with the lapse of time, so that if a long time elapses from plate manufacturing to can manufacturing, the formability such as ironing property during can manufacturing decreases, and other plate manufacturing. It was found that there is a problem in that strength and moldability during can making vary depending on the period until later can making.

【0009】この発明は以上の事情を背景としてなされ
たもので、前述の諸要求を満たすことができると同時
に、板製造後の経時変化が少なく、板を製造してから長
期間経過してから製缶する場合でもしごき性等の成形加
工性の低下や材料特性のばらつきを招くおそれが少ない
絞り加工用アルミニウム合金板の製造方法を提供するこ
とを目的とするものである。
The present invention has been made in view of the above circumstances, and at the same time, it is possible to satisfy the above-mentioned various requirements, and at the same time, there is little change with time after the plate is manufactured, and after a long time has passed since the plate was manufactured. It is an object of the present invention to provide a method for producing an aluminum alloy sheet for drawing, which is less likely to cause deterioration in forming processability such as ironing property and variation in material properties even when making a can.

【0010】[0010]

【課題を解決するための手段】前述の課題を解決するた
め、本発明者等が鋭意実験・研究を重ねた結果、前記提
案の成分組成の合金に対する製造プロセス、製造条件を
適切に定めることによって、熱処理型合金として高強度
を示すと同時に絞り加工性等の良好な成形性を確保する
ことができるばかりでなく、板製造後の経時変化が少な
いアルミニウム合金板が得られることを見出し、この発
明をなすに至った。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the inventors of the present invention have conducted extensive experiments and researches, and as a result, by appropriately determining the manufacturing process and manufacturing conditions for the alloy having the above-mentioned composition of ingredients. It has been found that an aluminum alloy sheet that not only exhibits high strength as a heat-treatment type alloy but also has good formability such as drawability, and that has little change over time after the sheet is manufactured. Came to make.

【0011】具体的には、請求項1の発明の絞り加工用
高強度熱処理型アルミニウム合金板の製造方法は、Zn
3〜6%、Mg0.5〜3%、Mn0.5%を越え1.
5%以下を含有し、残部がAlおよび不可避的不純物よ
りなる合金を所定の板厚まで仕上げた後、450〜55
0℃の範囲内の温度で5分以下の溶体化処理を施し、次
いで80〜150℃の範囲内の温度で1〜24時間の人
工時効処理を施し、さらに70%以下の圧延率で冷間圧
延を施すことを特徴とするものである。
Specifically, the method for producing a high-strength heat-treatable aluminum alloy plate for drawing according to the first aspect of the invention comprises:
3-6%, Mg 0.5-3%, Mn 0.5% and over 1.
After the alloy containing 5% or less and the balance of Al and unavoidable impurities is finished to a predetermined plate thickness, 450 to 55
Solution heat treatment for 5 minutes or less at a temperature in the range of 0 ° C, artificial aging treatment for 1 to 24 hours at a temperature in the range of 80 to 150 ° C, and cold rolling at a rolling ratio of 70% or less. It is characterized by being rolled.

【0012】また請求項2の発明の絞り加工用高強度熱
処理型アルミニウム合金板の製造方法は、Zn3〜6
%、Mg0.5〜3%、Cu0.1〜2.5%、Mn
0.5%を越え1.5%以下を含有し、残部がAlおよ
び不可避的不純物よりなる合金を所定の板厚まで仕上げ
た後、450〜540℃の範囲内の温度で5分以下の溶
体化処理を施し、次いで80〜150℃の範囲内の温度
で1〜24時間の人工時効処理を施し、さらに70%以
下の圧延率で冷間圧延を施すことを特徴とするものであ
る。
The method for producing a high-strength heat-treatable aluminum alloy plate for drawing according to the second aspect of the invention is Zn3-6.
%, Mg 0.5 to 3%, Cu 0.1 to 2.5%, Mn
After finishing an alloy containing 0.5% or more and 1.5% or less with the balance being Al and unavoidable impurities to a predetermined plate thickness, a solution for 5 minutes or less at a temperature in the range of 450 to 540 ° C. Chemical aging treatment, then artificial aging treatment for 1 to 24 hours at a temperature in the range of 80 to 150 ° C., and further cold rolling at a rolling ratio of 70% or less.

【0013】[0013]

【発明の実施の形態】この発明においては、成分組成面
においては、基本的には熱処理型合金としてZnおよび
Mgによる析出硬化に基づく強度向上を図るとともにM
nの添加により組織の安定化、しごき加工性の向上を図
り、さらに必要に応じてCuを添加して固溶強化により
強度向上を図り、また製造プロセス面からは、溶体化処
理の時間を短時間として絞り加工用材料として充分な成
形性が確保されるようにし、併せて溶体化処理後に適切
な条件で人工時効処理を行なうことによって、板製造後
の経時変化を抑制することとしている。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, in terms of composition of components, basically, as a heat-treatable alloy, strength is improved by precipitation hardening by Zn and Mg, and M
The addition of n stabilizes the structure and improves the ironing workability, and if necessary, Cu is added to strengthen the solid solution to enhance the strength. In terms of the manufacturing process, the solution treatment time is shortened. In order to ensure sufficient formability as a material for drawing work as time, and also to perform artificial aging treatment under appropriate conditions after solution treatment, it is intended to suppress the change over time after plate production.

【0014】そこで先ずこの発明における成分組成の限
定理由を説明する。
Therefore, first, the reasons for limiting the component composition in the present invention will be explained.

【0015】Zn:ZnはMgとともにMgZn2 を形
成して、析出硬化による強度向上に有効である。Zn量
が3%未満では強度向上の効果が充分に得られず、一方
6%を越えれば圧延性が低下するとともに缶成形性も低
下させ、さらには耐食性の低下を招く。したがってZn
量は3〜6%の範囲内とした。
Zn: Zn forms MgZn 2 together with Mg and is effective in improving the strength by precipitation hardening. If the Zn content is less than 3%, the effect of improving the strength cannot be sufficiently obtained, while if it exceeds 6%, the rolling property and the can formability are deteriorated, and further the corrosion resistance is deteriorated. Therefore Zn
The amount was within the range of 3 to 6%.

【0016】Mg:MgはZnとともにMgZn2 を形
成して、析出硬化による強度向上に有効である。またM
gは、単独でも固溶強化による強度向上に有効である。
Mg量が0.5%未満では強度向上の効果が充分に得ら
れず、一方3%を越えれば圧延性が低下するとともに、
缶成形性を低下させる。したがってMg量は0.5〜3
%の範囲内とした。
Mg: Mg forms MgZn 2 together with Zn and is effective in improving strength by precipitation hardening. Also M
g alone is effective for improving strength by solid solution strengthening.
If the amount of Mg is less than 0.5%, the effect of improving the strength cannot be sufficiently obtained, while if it exceeds 3%, the rolling property decreases and
Reduces can formability. Therefore, the amount of Mg is 0.5 to 3
%.

【0017】Mn:Mnは結晶粒の微細化、安定化に有
効な元素であり、またMn系金属間化合物による固体潤
滑効果によってしごき加工性を向上させる。Mn量が
0.5%以下ではこれらの効果が充分に得られず、一方
1.5%を越えればMnAl6 の初晶巨大金属間化合物
が生成されて、成形性、とりわけフランジ成形性を著し
く損なってしまい、またMn系金属間化合物にMgZn
2 析出物が不均一に粗大析出して、強度向上が図れなく
なってしまう。したがってMn量は0.5%を越え1.
5%以下の範囲内とした。
Mn: Mn is an element effective for refining and stabilizing crystal grains, and improves the ironing workability by the solid lubrication effect of the Mn-based intermetallic compound. If the amount of Mn is 0.5% or less, these effects cannot be sufficiently obtained, while if it exceeds 1.5%, primary crystal giant intermetallic compounds of MnAl 6 are generated, and formability, especially flange formability is remarkably increased. It was damaged, and MgZn was added to the Mn-based intermetallic compound.
2 Precipitates are unevenly and coarsely deposited, making it impossible to improve strength. Therefore, the Mn content exceeds 0.5% and 1.
It was set within the range of 5% or less.

【0018】Cu:Cuは固溶強化による強度向上に有
効な元素であり、そこで請求項2の発明の合金において
積極的に添加することとした。Cu量が0.1%未満で
は強度向上の効果が充分に得られず、一方2.5%を越
えれば成形性、耐食性が劣化する。したがって請求項2
の発明においてCu量は0.1〜2.5%の範囲内とし
た。なお請求項1の発明の合金においても、Cuは不純
物として0.1%未満含有される場合があることは勿論
である。
Cu: Cu is an element effective in improving the strength by solid solution strengthening, and therefore it was decided to add it positively in the alloy of the invention of claim 2. If the Cu content is less than 0.1%, the effect of improving the strength cannot be sufficiently obtained, while if it exceeds 2.5%, the formability and corrosion resistance deteriorate. Therefore, claim 2
In the present invention, the amount of Cu is within the range of 0.1 to 2.5%. Of course, in the alloy according to the first aspect of the present invention, Cu may be contained as an impurity in an amount of less than 0.1%.

【0019】以上の各元素のほかは、基本的にはAlお
よび不可避的不純物とすれば良い。一般的な不純物とし
てはFe,Si,Cr,Zr等があるが、Feは0.7
%未満、Siは0.5%未満、Crは0.3%未満、Z
rは0.3%未満であればこの発明の効果を損なうこと
はない。また一般のアルミニウム合金では鋳塊組織微細
化のために微量のTiを単独であるいはBと複合して添
加することがあり、またTi,Bは不純物として含有さ
れることもあるが、この発明でもTiは0.2%未満、
Bは0.05%未満であれば特にこの発明の効果を損な
うことはない。
In addition to the above elements, Al and unavoidable impurities may be basically used. Common impurities include Fe, Si, Cr, Zr, etc., but Fe is 0.7
%, Si is less than 0.5%, Cr is less than 0.3%, Z
If r is less than 0.3%, the effect of the present invention is not impaired. Further, in general aluminum alloys, a small amount of Ti may be added alone or in combination with B in order to refine the ingot structure, and Ti and B may be contained as impurities. Ti is less than 0.2%,
If B is less than 0.05%, the effect of the present invention is not particularly impaired.

【0020】次にこの発明における製造プロセスについ
て説明する。
Next, the manufacturing process in the present invention will be described.

【0021】前述のような成分組成の合金を所定の中間
板厚に仕上げるまでの工程(溶体化処理前までのプロセ
ス)は特に限定しないが、通常はDC鋳造法(半連続鋳
造法)によって鋳造した後、均質化処理を施し、さらに
熱間圧延を行ない、必要に応じて冷間圧延を施して、所
定の中間板厚とすれば良い。あるいはまた連続鋳造法を
適用し、さらに必要に応じて均質化処理、冷間圧延を行
なって、所定の中間板厚としても良い。
The step of finishing the alloy having the above-mentioned composition of components to a predetermined intermediate plate thickness (process before solution treatment) is not particularly limited, but is usually cast by the DC casting method (semi-continuous casting method). After that, homogenization treatment is performed, hot rolling is further performed, and cold rolling is performed as necessary to obtain a predetermined intermediate plate thickness. Alternatively, a continuous casting method may be applied, and if necessary, homogenization treatment and cold rolling may be performed to obtain a predetermined intermediate plate thickness.

【0022】ここで、DC鋳造は常法に従って行なえば
良い。また均質化処理も常法に従って400〜500℃
において1〜24時間程度加熱すれば良い。均質化処理
の加熱時間が1時間未満、加熱温度が400℃未満では
いずれも均質化の効果が得られず、一方加熱時間が24
時間を越えれば均質化の効果が飽和して経済性を損なう
だけであり、また加熱温度が500℃を越えれば共晶融
解による局所溶解が発生するおそれがある。
Here, DC casting may be performed according to a conventional method. Further, homogenization treatment is 400 to 500 ° C. according to a conventional method.
In the above, heating may be performed for about 1 to 24 hours. If the heating time of the homogenization treatment is less than 1 hour and the heating temperature is less than 400 ° C., the homogenization effect cannot be obtained.
If the time is exceeded, the homogenizing effect is saturated and the economic efficiency is impaired, and if the heating temperature exceeds 500 ° C., local dissolution due to eutectic melting may occur.

【0023】均質化処理後には直ちに、あるいは熱間圧
延前予備加熱を行なってから、熱間圧延を行なうが、こ
の熱間圧延は、その開始温度を400〜500℃の範囲
内、終了温度を200〜350℃の範囲内とすることが
好ましい。熱間圧延開始温度が400℃未満では変形抵
抗が大きく、圧延性が悪くなり、一方500℃を越える
熱間圧延開始温度では熱延割れが発生するおそれがあ
る。なおこの熱間圧延は、均質化処理温度以上で開始す
ることが望ましく、このようにすることによって、均質
化処理後の粗大析出物の形成を抑制することができる。
また熱間圧延終了温度が200℃未満では圧延が困難で
あり、一方350℃を越える熱間圧延終了温度では熱間
圧延上り後に金属間化合物の不均一な粗大析出が促進さ
れてしまって、その後の溶体化処理性が低下し、さらに
は絞り性、張出性、口拡げ性を劣化させる。
Immediately after the homogenization treatment or after preheating before hot rolling, hot rolling is performed. In this hot rolling, the starting temperature is within the range of 400 to 500 ° C. and the ending temperature is within the range. The temperature is preferably in the range of 200 to 350 ° C. If the hot rolling start temperature is lower than 400 ° C, the deformation resistance is large and the rolling property is deteriorated. On the other hand, if the hot rolling start temperature is higher than 500 ° C, hot rolling cracks may occur. Note that this hot rolling is preferably started at a homogenization treatment temperature or higher, and by doing so, formation of coarse precipitates after the homogenization treatment can be suppressed.
Further, if the hot rolling finish temperature is lower than 200 ° C., rolling is difficult, whereas if the hot rolling finish temperature is higher than 350 ° C., uneven coarse precipitation of intermetallic compounds is promoted after the hot rolling, and then Solution treatment property of and deteriorates drawability, bulging property, and mouth widening property.

【0024】一方連続鋳造法を適用する場合、ロール間
に直接溶湯を注入して凝固させる方法(薄板連続鋳造
法)を適用しても、あるいはベルトやブロック間に溶湯
を注入して凝固させる方法を適用しても良く、いずれの
場合も必要に応じて熱間圧延を行なっても良い。なお連
続鋳造法を適用する場合、鋳造板厚は1〜10mmの範
囲内が好ましい。鋳造板厚が1mm未満では鋳造が困難
であり、一方10mmを越えればその後の製品板厚まで
の冷間圧延の負荷が大きくなり、量産性が低下する。
On the other hand, when the continuous casting method is applied, a method of directly injecting molten metal between rolls to solidify (thin plate continuous casting method) or a method of injecting molten metal between belts and blocks to solidify May be applied, and in any case, hot rolling may be performed as necessary. When the continuous casting method is applied, the cast plate thickness is preferably within the range of 1 to 10 mm. If the thickness of the cast plate is less than 1 mm, it is difficult to perform casting. On the other hand, if it exceeds 10 mm, the load of cold rolling up to the subsequent product sheet thickness increases, and mass productivity decreases.

【0025】熱間圧延後あるいは連続鋳造後に必要に応
じて中間板厚とするために行なう冷間圧延は、常法に従
って行なえば良く、圧延率も特に限定されるものではな
い。
Cold rolling performed after hot rolling or continuous casting to obtain an intermediate plate thickness as necessary may be performed according to a conventional method, and the rolling ratio is not particularly limited.

【0026】上述のようにして中間板厚まで仕上げた後
には、溶体化処理を施す。この溶体化処理は、450〜
550℃の範囲内の温度もしくは450〜540℃の範
囲内の温度で5分以下の短時間加熱とする必要がある。
溶体化処理温度が450℃未満では、時効析出によって
強度向上に寄与する元素の溶体化が不充分となり、その
ため充分な強度向上を図れなくなる。またCuを積極的
に添加していない請求項1の合金の場合、溶体化処理温
度が550℃を越えれば共晶融解が生じてしまうおそれ
があり、一方Cuを積極的に添加した請求項2の合金の
場合は、Cu添加により融点が下がるため、溶体化処理
温度が540℃を越えれば共晶融解が生じてしまうおそ
れがある。さらにこの溶体化処理は、その処理時間を5
分以下の短時間とし、不完全溶体化とすることが重要で
ある。すなわち、一般に7000系熱処理合金の溶体化
処理時間はJIS 4000において板厚との関係で最
低時間が規定されているが、JISに準拠した長時間の
溶体化処理を施して、完全に溶体化させた場合、高強度
は得られるものの、その後の冷間圧延性が低下するばか
りでなく、絞り性、張出性などの缶成形性が劣化する。
また長時間溶体化処理を行なえば、表面酸化皮膜が厚く
なって、これにより成形性、特にしごき性を劣化させて
しまうところから、溶体化処理後にアルカリ洗浄や酸洗
浄などの表面洗浄処理が必要となり、コストアップを招
いてしまう。これに対し溶体化処理時間を5分以下とし
て、不完全な溶体化を行なえば、缶の肉薄化に必要な程
度の高強度化を図りつつも、絞り性、張出性、しごき性
などの缶成形性を充分に確保することができ、かつ溶体
化処理後の表面洗浄処理も不要となる。このような短時
間の溶体化処理は、連続焼鈍炉を用いれば容易に行なう
ことができる。なお溶体化処理後の冷却速度は、10℃
/sec以上であれば充分である。したがって溶体化処
理後の冷却は、水焼入れのみならず、強制空冷を適用す
ることもできる。
After finishing the intermediate plate thickness as described above, a solution treatment is applied. This solution treatment is 450-
It is necessary to perform heating at a temperature in the range of 550 ° C. or a temperature in the range of 450 to 540 ° C. for a short time of 5 minutes or less.
If the solution heat treatment temperature is lower than 450 ° C., the solution of the element contributing to the strength improvement becomes insufficient due to the aging precipitation, so that the strength cannot be sufficiently improved. Further, in the case of the alloy of claim 1 in which Cu is not positively added, eutectic melting may occur if the solution treatment temperature exceeds 550 ° C., while Cu is actively added. In the case of the alloy (1), the melting point is lowered by the addition of Cu, so that if the solution treatment temperature exceeds 540 ° C., eutectic melting may occur. Further, this solution heat treatment requires 5 hours.
It is important that the time is not more than a minute and the solution is incomplete. That is, in general, the minimum solution treatment time of the 7000 series heat-treated alloy is specified in JIS 4000 in relation to the plate thickness. However, the solution treatment is performed for a long time in accordance with JIS to completely complete the solution treatment. In this case, although high strength is obtained, not only the subsequent cold rolling property is deteriorated, but also the can formability such as drawability and bulging property is deteriorated.
Also, if solution treatment is performed for a long time, the surface oxide film becomes thick, which deteriorates formability, especially ironing property, so surface cleaning treatment such as alkali cleaning or acid cleaning is required after solution treatment. Therefore, the cost is increased. On the other hand, if the solution heat treatment time is set to 5 minutes or less and incomplete solution heat treatment is performed, strength can be increased to the extent necessary for thinning the can, and drawability, overhanging property, and ironing property can be improved. Sufficient can formability can be secured, and the surface cleaning treatment after the solution treatment is not necessary. Such short-time solution heat treatment can be easily performed by using a continuous annealing furnace. The cooling rate after solution treatment was 10 ° C.
/ Sec or more is sufficient. Therefore, for cooling after the solution treatment, not only water quenching but also forced air cooling can be applied.

【0027】溶体化処理後には80〜150℃の範囲内
の温度で1〜24時間保持する人工時効処理を施す。こ
のような人工時効処理を施すことによって、微細な析出
物が生成されて加工歪が均質化されるとともに材料強度
の向上が図られ、またその後の最終冷間圧延によって付
与される強度が安定化して冷間圧延性が向上するばかり
でなく、特に最終板の経時変化が抑制されて、製缶時ま
で長期間経過しても製缶時の成形性の低下が少なく、ま
た製缶までの経過期間による強度、成形性のばらつきを
少なくすることができる。すなわち、溶体化処理後にそ
のまま最終の冷間圧延を行なった場合には板製造後に経
時変化が生じて製缶時の強度が上昇して成形性が低下し
たり、製缶時の強度、成形性にばらつきが生じるおそれ
があるが、溶体化処理後に人工時効処理を行なって予め
微細な析出物を生成させておくことにより、板製造時の
放置期間中における微細析出物の析出が少なくなり、経
時変化を防止することができるのである。ここで、人工
時効処理における温度が80℃未満、または保持時間が
1時間未満では上述の効果が充分に得られず、一方温度
が150℃を越えるかまたは保持時間が24時間を越え
れば過時効となって強度の低下を招いてしまう。したが
って人工時効処理は80〜150℃の温度で1〜24時
間と規定した。
After the solution treatment, an artificial aging treatment is carried out by keeping the temperature within the range of 80 to 150 ° C. for 1 to 24 hours. By performing such artificial aging treatment, fine precipitates are generated to homogenize the working strain and improve the material strength, and the strength imparted by the subsequent final cold rolling is stabilized. Not only the cold rolling property is improved, but also the change of the final plate with time is suppressed, so that the formability during the can making does not decrease even after a long time until the can making. It is possible to reduce variations in strength and moldability depending on the period. That is, when the final cold rolling is carried out as it is after the solution heat treatment, there is a change over time after the plate is manufactured, and the strength during the can making is increased and the formability is lowered, or the strength and the formability during the can making are reduced. However, by precipitating fine precipitates by performing artificial aging treatment after solution treatment, precipitation of fine precipitates during the standing period during plate production is reduced, and The change can be prevented. Here, if the temperature in the artificial aging treatment is less than 80 ° C. or the holding time is less than 1 hour, the above effect cannot be sufficiently obtained, while if the temperature exceeds 150 ° C. or the holding time exceeds 24 hours, the over-aging is performed. Will result in a decrease in strength. Therefore, the artificial aging treatment was defined as a temperature of 80 to 150 ° C. for 1 to 24 hours.

【0028】なお溶体化処理後には、直ちに人工時効処
理を施さず、室温に1日(24時間)以上放置して室温
時効させてから人工時効処理を施すことが望ましい。こ
のように人工処理前に24時間以上の室温時効を行なえ
ば、その室温時効中に生成される微細析出物がその後の
人工時効処理による析出物分布を緻密化し、その結果そ
の後の冷間圧延で導入される転位(加工歪)を均質化さ
せる効果を奏することができる。
After the solution treatment, it is preferable that the artificial aging treatment is not performed immediately, but the artificial aging treatment is performed after leaving it to stand at room temperature for one day (24 hours) or more for aging at room temperature. Thus, if the room temperature aging is performed for 24 hours or more before the artificial treatment, the fine precipitates generated during the room temperature aging densify the precipitate distribution due to the subsequent artificial aging treatment, and as a result, in the subsequent cold rolling. The effect of homogenizing the introduced dislocation (working strain) can be exerted.

【0029】前述のようにして人工時効処理を行なった
後には、最終板厚とするための冷間圧延を行なう。この
最終冷間圧延は、圧延率70%以下とする必要がある。
圧延率が70%を越えれば、高強度は得られるものの成
形性が著しく低下し、また深絞り加工における耳率も大
きくなる。なお最終の冷延圧延における圧延率の下限は
特に定めないが、充分な高強度を得るためには30%以
上とすることが望ましい。
After performing the artificial aging treatment as described above, cold rolling is performed to obtain the final plate thickness. This final cold rolling needs to be performed at a rolling rate of 70% or less.
When the rolling ratio exceeds 70%, although high strength is obtained, the formability is remarkably lowered and the earring ratio in deep drawing becomes large. Although the lower limit of the rolling ratio in the final cold rolling is not particularly defined, it is preferably 30% or more in order to obtain a sufficiently high strength.

【0030】最終の冷間圧延によって製品板厚に仕上げ
られた後には、必要に応じて80〜160℃の範囲内の
温度で1〜12時間保持する最終焼鈍を行なっても良
い。このような最終焼鈍を行なうことによって歪を安定
化し、深絞り性を一層改善することができる。最終焼鈍
の温度が80℃未満、時間が1時間未満では、上述の効
果が得られない。一方最終焼鈍の温度が160℃を越え
れば過時効となって強度低下を招き、また最終焼鈍の時
間が12時間を越えれば強度が高くなり過ぎて成形性、
特に絞り加工性、しごき加工性、フランジ成形性が低下
し、またこの場合、温度によっては過時効となって強度
低下を招く。なお最近の冷間圧延機は高速高圧下のた
め、上り温度が100℃を越えることが多く、この場合
は特に積極的な加熱を行なわなくても、冷間圧延直後の
巻取コイル冷却中の自己焼鈍により最終焼鈍を行なうこ
とができる。
After finishing the final product thickness by cold rolling, final annealing may be carried out at a temperature in the range of 80 to 160 ° C. for 1 to 12 hours, if necessary. By performing such final annealing, the strain can be stabilized and the deep drawability can be further improved. If the temperature of the final annealing is less than 80 ° C. and the time is less than 1 hour, the above effect cannot be obtained. On the other hand, if the temperature of the final annealing exceeds 160 ° C., overaging causes the strength to decrease, and if the time of the final annealing exceeds 12 hours, the strength becomes too high and the formability,
In particular, drawing workability, ironing workability, and flange formability are deteriorated, and in this case, depending on the temperature, overaging is caused, resulting in a decrease in strength. Since the recent cold rolling mill is operated under high speed and high pressure, the rising temperature often exceeds 100 ° C. In this case, even if the positive heating is not particularly performed, the winding coil immediately after the cold rolling is cooled. The final annealing can be performed by self-annealing.

【0031】[0031]

【実施例】表1の合金No.1,2の合金について、常
法に従ってDC鋳造法により鋳造し、得られた鋳塊に4
60℃×12時間の均質化処理を施し、面削後470℃
で熱間圧延を開始し、板厚3mmの熱延板とした。また
表1の合金No.3の合金について5mm厚に連続鋳造
圧延し、その後460℃×12時間の均質化処理を施し
た。一方表1の合金No.4はJIS 3004合金相
当の従来材であり、これについてはDC鋳造後、600
℃×5時間の均質化処理を施し、面削後常法に従って2
mm厚まで熱間圧延した。
EXAMPLES Alloy No. of Table 1 The alloys 1 and 2 were cast by the DC casting method according to the usual method, and
After homogenizing treatment at 60 ℃ for 12 hours, after grinding, 470 ℃
Then, hot rolling was started to obtain a hot rolled plate having a plate thickness of 3 mm. In addition, alloy No. The alloy No. 3 was continuously cast-rolled to a thickness of 5 mm, and then homogenized at 460 ° C. for 12 hours. On the other hand, alloy No. 1 in Table 1 No. 4 is a conventional material equivalent to JIS 3004 alloy.
After homogenizing treatment at ℃ × 5 hours, after face-cutting 2 according to the usual method
It was hot rolled to a thickness of mm.

【0032】このようにして得られた熱延板(もしくは
連続鋳造圧延版)に対して、表2の製造条件符号A〜K
に示す各条件で1次冷間圧延→溶体化処理→人工時効処
理→2次冷間圧延→最終焼鈍を施した。なお一部の製造
条件符号B,E,G〜Iでは人工時効処理または最終焼
鈍を省き、また従来材(合金No.4)に対する製造条
件Kでは人工時効処理を行なわなかった。
With respect to the hot rolled plate (or continuous casting and rolling plate) thus obtained, the manufacturing condition codes A to K in Table 2 are given.
Under the conditions shown in 1), primary cold rolling → solution treatment → artificial aging treatment → secondary cold rolling → final annealing was performed. It should be noted that the artificial aging treatment or the final annealing was omitted in some of the manufacturing condition codes B, E, and GI, and the artificial aging treatment was not performed in the manufacturing condition K for the conventional material (alloy No. 4).

【0033】以上のようにして得られた各板について、
機械的性能を調べるとともに、DI缶特性を調べた。そ
の結果を表3に示す。なお機械的性能としては、前述の
ような板製造直後(人工時効処理直後)の状態と、その
後塗装焼付処理として200℃×20分の加熱を行なっ
た後の状態との2状態において引張強度(TS)、耐力
(YS)、伸び(EL)を調べた。一方DI缶特性とし
ては製缶性、フランジ成形性、耐圧強度、外観品質につ
いて調べ、従来材(合金番号4;製造条件符号K)と比
較して評価し、従来材と同等の場合に○印、優れている
場合に◎印、劣る場合に×印を付した。ここで、製缶性
はDI缶胴を4000缶連続して成形し、DI加工での
破断の発生率で評価し、またフランジ加工性については
DI加工後のDI缶胴にネッキング加工を行なった後、
円錐型ポンチを押し込み、フランジ部の破断時の口拡げ
率で評価し、耐圧強度はDI缶に内圧を加えてバックリ
ング発生時の圧力で評価し、さらに外観品質はDI缶胴
表面におけるゴーリングおよびフローラインの発生の有
無および光沢の程度で評価した。
Regarding each plate obtained as described above,
The mechanical performance and the DI can properties were examined. Table 3 shows the results. In terms of mechanical performance, the tensile strength in two states, that is, the state immediately after plate production (immediately after artificial aging treatment) as described above and the state after heating at 200 ° C. for 20 minutes as coating baking treatment ( TS), yield strength (YS), and elongation (EL) were examined. On the other hand, as DI can properties, can property, flange formability, pressure resistance and appearance quality were examined and evaluated in comparison with the conventional material (alloy No. 4; manufacturing condition code K). , ◎ when excellent, and × when inferior. Here, the can-making property was evaluated by the rate of occurrence of breakage during DI processing when 4000 cans of DI can bodies were continuously molded, and regarding the flange processability, the DI can body was subjected to necking processing after DI processing. rear,
Push in the conical punch and evaluate the expansion ratio when the flange part breaks, compressive strength is evaluated by the pressure when buckling occurs by applying internal pressure to the DI can, and the appearance quality is evaluated by goring and The presence or absence of flow lines and the degree of gloss were evaluated.

【0034】また、表1の合金No.1の合金につい
て、表2の製造条件符号A〜Dの各プロセスで製造して
得られた各板の材料特性の経時変化として、板製造直後
(最終焼鈍直後)から1日目、3日目、7日目、1ケ月
目、6ケ月目の耐力値を調べた。その結果を表4に示
す。なお表4において「耐力上昇量」は、6ケ月経過時
の耐力と1日目の耐力との差を表わす。また評価として
は、耐力上昇量が10N/mm2 以内の場合に○印を、
10N/mm2 を越える場合に×印を付した。
Further, alloy No. 1 in Table 1 was used. For the alloy of No. 1 as the time-dependent change of the material properties of each plate obtained by the processes of the production condition codes A to D in Table 2, the first day and the third day immediately after the plate production (immediately after the final annealing). The proof stress values on the 7th day, the 1st month and the 6th month were examined. The results are shown in Table 4. In Table 4, the "proof strength increase amount" represents the difference between the yield strength after 6 months and the yield strength on the first day. Also, as an evaluation, when the amount of increase in proof stress is within 10 N / mm 2 , a mark of ○ is given,
When it exceeded 10 N / mm 2 , an X mark was added.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】表3に示されるように、この発明で規定す
る成分組成範囲内の合金(合金No.1〜No.3)に
ついて、この発明で規定するプロセス範囲内の条件で板
を製造した場合(製造条件符号A,G,J)は、従来材
(合金No.4、製造条件符号K;3004合金)と比
較して高強度が達成されており、しかもDI缶特性も同
等以上であることが確認された。
As shown in Table 3, for alloys (alloy Nos. 1 to 3) within the composition range defined by the present invention, a plate was manufactured under the conditions within the process range defined by the present invention. (Manufacturing condition code A, G, J) has achieved higher strength than the conventional material (alloy No. 4, manufacturing condition code K; 3004 alloy), and the DI can characteristics are equal or higher. Was confirmed.

【0040】一方、製造条件符号Cは人工時効処理の温
度が高過ぎた比較例、製造条件符号Eは人工時効処理の
時間が長過ぎた比較例であり、いずれも過時効によって
強度が低下し、またフランジ成形性にも劣っていた。ま
た製造条件符号Fは最終冷間圧延の圧延率が高過ぎた比
較例であるが、この場合は強度が高過ぎて製缶性に劣る
とともに、DI加工後の耳率が高かった。さに製造条件
符号Hは溶体化処理の温度が高過ぎた比較例であるが、
この場合は共晶融解の発生により絞り性が低下し、また
DI缶表面のフローラインの発生により外観品質不良が
生じた。製造条件符号Iは溶体化処理の時間が長過ぎた
比較例であるが、この場合は製缶性が低下するとともに
酸化皮膜によるフローラインの発生によって外観不良が
生じた。
On the other hand, the manufacturing condition code C is a comparative example in which the temperature of the artificial aging treatment is too high, and the manufacturing condition code E is a comparative example in which the artificial aging treatment time is too long. Also, the flange formability was poor. Further, the manufacturing condition code F is a comparative example in which the rolling ratio of the final cold rolling was too high, but in this case, the strength was too high and the can manufacturing property was poor, and the earring ratio after DI processing was high. The manufacturing condition code H is a comparative example in which the solution treatment temperature is too high.
In this case, the drawability was lowered due to the occurrence of eutectic melting, and the appearance quality was poor due to the occurrence of flow lines on the surface of the DI can. Manufacturing condition code I is a comparative example in which the solution treatment time was too long, but in this case, the can manufacturing property was deteriorated and the appearance defect was caused by the generation of flow lines due to the oxide film.

【0041】また材料特性の経時変化については、表4
に示すように、この発明で規定する成分組成範囲内の合
金についてこの発明で規定するプロセス条件で製造した
製造条件符号Aの場合は、6ケ月経過時でも耐力値の上
昇はわずか7N/mm2 に過ぎず、安定した材料特性を
有していることが判る。一方製造条件符号Bは溶体化処
理後に人工時効処理を施さなかった比較例、製造条件符
号Dは溶体化処理後の人工時効処理の温度が低過ぎた比
較例であり、これらの場合はいずれも1ケ月〜6ケ月経
過時の耐力値の上昇が著しく大きく、しごき性も低下し
てしまうことが判明した。
Table 4 shows changes with time in material characteristics.
As shown in FIG. 6, in the case of manufacturing condition code A manufactured under the process conditions specified in the present invention for the alloys within the compositional range specified in the present invention, the proof stress value increases only 7 N / mm 2 even after 6 months have elapsed. It can be seen that the material has stable material properties. On the other hand, the manufacturing condition code B is a comparative example in which the artificial aging treatment was not performed after the solution treatment, and the manufacturing condition code D is a comparative example in which the temperature of the artificial aging treatment after the solution treatment was too low. It has been found that the yield strength increases significantly after one month to six months, and ironing property also decreases.

【0042】[0042]

【発明の効果】以上の実施例からも明らかなように、こ
の発明によれば、各種の缶等に使用される絞り加工用ア
ルミニウム合金板として、高強度を有すると同時に、優
れた成形性、特に優れた絞り性、しごき性を有し、しか
も経時変化が少なく、材料特性が長期間安定しているア
ルミニウム合金板を得ることが可能となった。すなわ
ち、従来のAl−Mn−Mg−Cu系合金やAl−Mg
−Mn系合金では強度を高めれば絞り性、しごき性が低
下するとされていたが、この発明の場合、成分組成を厳
しく規定し、さらには熱処理型合金として適切な溶体化
処理条件を適用して合金元素の固溶析出状態を適正化す
ることによって、強度を高めながらも良好な成形性を確
保することが可能となり、なおかつ溶体化処理後に適切
な人工時効処理を施しておくことによって、熱処理型合
金に特有の経時変化を抑制することが可能となったので
ある。したがってこの発明によるアルミニウム合金板を
用いれば、特に缶用素材として、薄肉化、高強度化が可
能となり、また板製造から製缶までの経過期間によって
製缶時の材料特性にばらつきが生じることが少なく、特
に板製造から製缶までに長期間経過しても製缶時の成形
性の低下を防止し、安定して製缶することができる。ま
たこの発明の方法によるアルミニウム合金板は、DI缶
胴、DRD缶胴のみならず缶蓋にも適用可能であり、そ
のため缶のユニアロイ化を達成できるから、リサイクル
性を良好にすることもできる。
As is clear from the above examples, according to the present invention, as an aluminum alloy plate for drawing used in various cans and the like, it has high strength and excellent formability, It has become possible to obtain an aluminum alloy plate which has particularly excellent drawability and ironing property, has little change over time, and has stable material properties for a long period of time. That is, a conventional Al-Mn-Mg-Cu alloy or Al-Mg
In the -Mn alloy, the drawability and ironing property are said to be lowered if the strength is increased, but in the case of the present invention, the composition of the components is strictly defined, and further, as a heat treatment type alloy, appropriate solution treatment conditions are applied. By optimizing the solid solution precipitation state of alloying elements, it is possible to secure good formability while increasing strength, and by applying an appropriate artificial aging treatment after solution treatment, heat treatment type It has become possible to suppress the time-dependent change peculiar to alloys. Therefore, when the aluminum alloy sheet according to the present invention is used, it is possible to reduce the thickness and increase the strength, especially as a material for cans, and the material characteristics during can making may vary depending on the elapsed time from plate production to can making. In particular, even if a long period of time elapses from plate production to can making, it is possible to prevent deterioration of moldability during can making and to stably make can. Further, the aluminum alloy sheet according to the method of the present invention can be applied not only to the DI can body and the DRD can body but also to the can lid. Therefore, since the can can be unialloyed, the recyclability can be improved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Zn3〜6%(重量%、以下同じ)、M
g0.5〜3%、Mn0.5%を越え1.5%以下を含
有し、残部がAlおよび不可避的不純物よりなる合金を
所定の板厚まで仕上げた後、450〜550℃の範囲内
の温度で5分以下の溶体化処理を施し、次いで80〜1
50℃の範囲内の温度で1〜24時間の人工時効処理を
施し、さらに70%以下の圧延率で冷間圧延を施すこと
を特徴とする、絞り加工用高強度熱処理型アルミニウム
合金板の製造方法。
1. Zn 3 to 6% (weight%, the same applies hereinafter), M
An alloy containing g of 0.5 to 3% and Mn of more than 0.5% and 1.5% or less and the balance of Al and unavoidable impurities is finished to a predetermined plate thickness, and then within a range of 450 to 550 ° C. Solution treatment for 5 minutes or less at temperature, then 80-1
Manufacture of a high-strength heat-treatable aluminum alloy sheet for drawing, characterized by performing artificial aging treatment for 1 to 24 hours at a temperature in the range of 50 ° C. and further cold rolling at a rolling rate of 70% or less. Method.
【請求項2】 Zn3〜6%、Mg0.5〜3%、Cu
0.1〜2.5%、Mn0.5%を越え1.5%以下を
含有し、残部がAlおよび不可避的不純物よりなる合金
を所定の板厚まで仕上げた後、450〜540℃の範囲
内の温度で5分以下の溶体化処理を施し、次いで80〜
150℃の範囲内の温度で1〜24時間の人工時効処理
を施し、さらに70%以下の圧延率で冷間圧延を施すこ
とを特徴とする、絞り加工用高強度熱処理型アルミニウ
ム合金板の製造方法。
2. Zn 3-6%, Mg 0.5-3%, Cu
An alloy containing 0.1 to 2.5%, Mn more than 0.5% and 1.5% or less, and the balance of Al and inevitable impurities is finished to a predetermined plate thickness, and then in the range of 450 to 540 ° C. Solution treatment for 5 minutes or less at the internal temperature, then 80 ~
Manufacture of a high-strength heat-treatable aluminum alloy sheet for drawing, characterized by performing artificial aging treatment for 1 to 24 hours at a temperature in the range of 150 ° C., and further performing cold rolling at a rolling rate of 70% or less. Method.
JP08722996A 1996-03-15 1996-03-15 Method for producing high-strength heat-treated aluminum alloy sheet for drawing Expired - Fee Related JP3278130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08722996A JP3278130B2 (en) 1996-03-15 1996-03-15 Method for producing high-strength heat-treated aluminum alloy sheet for drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08722996A JP3278130B2 (en) 1996-03-15 1996-03-15 Method for producing high-strength heat-treated aluminum alloy sheet for drawing

Publications (2)

Publication Number Publication Date
JPH09256129A true JPH09256129A (en) 1997-09-30
JP3278130B2 JP3278130B2 (en) 2002-04-30

Family

ID=13909041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08722996A Expired - Fee Related JP3278130B2 (en) 1996-03-15 1996-03-15 Method for producing high-strength heat-treated aluminum alloy sheet for drawing

Country Status (1)

Country Link
JP (1) JP3278130B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009542912A (en) * 2006-06-30 2009-12-03 アルカン ロールド プロダクツ−レイヴンズウッド,エルエルシー Heat-treatable high-strength aluminum alloy
WO2012033939A3 (en) * 2010-09-08 2012-08-09 Alcoa Inc. Improved 7xxx aluminum alloys, and methods for producing the same
US9556502B2 (en) 2012-07-16 2017-01-31 Arconic Inc. 6xxx aluminum alloys, and methods for producing the same
US9587298B2 (en) 2013-02-19 2017-03-07 Arconic Inc. Heat treatable aluminum alloys having magnesium and zinc and methods for producing the same
JP2017536485A (en) * 2014-12-09 2017-12-07 ノベリス・インコーポレイテッドNovelis Inc. Reduction of aging time of 7XXX series alloys
US9926620B2 (en) 2012-03-07 2018-03-27 Arconic Inc. 2xxx aluminum alloys, and methods for producing the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8357249B2 (en) 2006-06-30 2013-01-22 Constellium Rolled Products Ravenswood, Llc High strength, heat treatable aluminum alloy
JP2009542912A (en) * 2006-06-30 2009-12-03 アルカン ロールド プロダクツ−レイヴンズウッド,エルエルシー Heat-treatable high-strength aluminum alloy
US9249484B2 (en) 2010-09-08 2016-02-02 Alcoa Inc. 7XXX aluminum alloys, and methods for producing the same
JP2013542319A (en) * 2010-09-08 2013-11-21 アルコア インコーポレイテッド Improved 7XXX aluminum alloy and method for producing the same
US8999079B2 (en) 2010-09-08 2015-04-07 Alcoa, Inc. 6xxx aluminum alloys, and methods for producing the same
US9194028B2 (en) 2010-09-08 2015-11-24 Alcoa Inc. 2xxx aluminum alloys, and methods for producing the same
WO2012033939A3 (en) * 2010-09-08 2012-08-09 Alcoa Inc. Improved 7xxx aluminum alloys, and methods for producing the same
US9359660B2 (en) 2010-09-08 2016-06-07 Alcoa Inc. 6XXX aluminum alloys, and methods for producing the same
US9926620B2 (en) 2012-03-07 2018-03-27 Arconic Inc. 2xxx aluminum alloys, and methods for producing the same
US9556502B2 (en) 2012-07-16 2017-01-31 Arconic Inc. 6xxx aluminum alloys, and methods for producing the same
US9890443B2 (en) 2012-07-16 2018-02-13 Arconic Inc. 6XXX aluminum alloys, and methods for producing the same
US9587298B2 (en) 2013-02-19 2017-03-07 Arconic Inc. Heat treatable aluminum alloys having magnesium and zinc and methods for producing the same
JP2017536485A (en) * 2014-12-09 2017-12-07 ノベリス・インコーポレイテッドNovelis Inc. Reduction of aging time of 7XXX series alloys
US10648066B2 (en) 2014-12-09 2020-05-12 Novelis Inc. Reduced aging time of 7xxx series alloy

Also Published As

Publication number Publication date
JP3278130B2 (en) 2002-04-30

Similar Documents

Publication Publication Date Title
JPH11181558A (en) Manufacturing method of aluminum alloy sheet for low pressure positive pressure can body
JP3600022B2 (en) Manufacturing method of aluminum base alloy sheet for deep drawing
JPH08325664A (en) High-strength heat treatment type aluminum alloy sheet for drawing and its production
JPH09256129A (en) Production of high strength heat treated type aluminum alloy sheet for drawing
JPS626740B2 (en)
JP2003293105A (en) Method for producing aluminum alloy sheet for bottle type drink can
JP2525017B2 (en) Aluminum alloy material for can ends
JPH09268341A (en) Aluminum alloy baking coated plate for can lid material excellent in stress corrosion cracking resistance of score part and manufacturing method thereof
JP2004010941A (en) Aluminum alloy sheet for bottle-type beverage can
JP2626859B2 (en) Method for producing aluminum alloy sheet for high strength forming with low anisotropy
JP2005076041A (en) Manufacturing method of aluminum alloy hard plate for can body
JP4750392B2 (en) Aluminum alloy plate for bottle-shaped cans
JP2006283113A (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JPH04214834A (en) Aluminum alloy sheet excellent in corrosion resistance and press formability and its manufacture
JPH055149A (en) Hard aluminum alloy sheet for forming and its production
JP2773874B2 (en) Manufacturing method of aluminum alloy plate
JP2891620B2 (en) High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the same
JPH04276047A (en) Production of hard aluminum alloy sheet for forming
JP3218099B2 (en) Method for producing aluminum alloy sheet with low ear ratio and excellent formability
JPH08127850A (en) Manufacturing method of aluminum alloy plate for forming with low ear rate
JP2000080452A (en) Production of aluminum alloy sheet for deep drawing
JPH10121179A (en) Aluminum alloy sheet for carbonated beverage can lid, minimal in deterioration in pressure-resisting strength, and its production
JPH0617181A (en) Aluminum alloy hard plate having high strength, low in tearing load and excellent in formability and manufacture thereof
JP4060460B2 (en) Method for producing aluminum alloy plate for can body
JPH04276046A (en) Production of hard aluminum alloy sheet for forming

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees