JPH09251866A - Method of operating battery system using sodium-sulfur battery - Google Patents
Method of operating battery system using sodium-sulfur batteryInfo
- Publication number
- JPH09251866A JPH09251866A JP5782296A JP5782296A JPH09251866A JP H09251866 A JPH09251866 A JP H09251866A JP 5782296 A JP5782296 A JP 5782296A JP 5782296 A JP5782296 A JP 5782296A JP H09251866 A JPH09251866 A JP H09251866A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- heat insulating
- battery
- sodium
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】 本発明は、溶融ナトリウム
を陰極活物質とし、溶融硫黄を陽極活物質とするナトリ
ウム−硫黄電池から構成されるバッテリーシステムの運
転方法に関する。TECHNICAL FIELD The present invention relates to a method for operating a battery system including a sodium-sulfur battery in which molten sodium is used as a cathode active material and molten sulfur is used as an anode active material.
【0002】[0002]
【従来の技術】 ナトリウム−硫黄電池は、一方に陰極
活物質である溶融金属ナトリウム、他方には陽極活物質
である溶融硫黄を配し、両者をナトリウムイオンに対し
て選択的な透過性を有するベータアルミナ固体電解質で
隔離し、300〜350℃で作動させる高温二次電池で
ある。2. Description of the Related Art A sodium-sulfur battery has molten metal sodium as a cathode active material on one side and molten sulfur as an anode active material on the other side, and both have selective permeability to sodium ions. A high-temperature secondary battery operated at 300 to 350 ° C., isolated by a beta-alumina solid electrolyte.
【0003】 ナトリウム−硫黄電池を用いたバッテリ
ーシステムは、上記のような構成を有する単電池を所定
数接続し、断熱容器に収容して成るモジュール電池を、
さらに所定数直並列に接続することにより構成される。A battery system using a sodium-sulfur battery is a module battery in which a predetermined number of unit cells having the above-mentioned structure are connected and housed in a heat insulating container.
Further, it is configured by connecting a predetermined number in series and parallel.
【0004】 このようなナトリウム−硫黄電池を用い
たバッテリーシステムの運転は、第一休止段階、放電段
階、第二休止段階、充電段階から成るサイクルを繰り返
して行われる。放電段階においては溶融ナトリウムが電
子を放出してナトリウムイオンとなり、これが固体電解
質管内を透過して陽極側に移動し、硫黄及び外部回路を
通ってきた電子と反応して多硫化ナトリウムを生成し、
2V程度の電圧を発生させる。一方、充電時において
は、放電とは逆にナトリウム及び硫黄の生成反応が起こ
る。上記の充電段階は吸熱反応であるのに対し、ナトリ
ウムと硫黄から多硫化ナトリウムが生成する放電段階は
発熱反応である。The operation of the battery system using the sodium-sulfur battery is performed by repeating a cycle including a first resting stage, a discharging stage, a second resting stage, and a charging stage. In the discharge stage, the molten sodium releases electrons to become sodium ions, which permeate the solid electrolyte tube and move to the anode side, where they react with sulfur and the electrons that have passed through the external circuit to produce sodium polysulfide,
A voltage of about 2V is generated. On the other hand, at the time of charging, the reaction of generating sodium and sulfur occurs contrary to the discharging. The above-mentioned charging step is an endothermic reaction, whereas the discharging step in which sodium polysulfide is produced from sodium and sulfur is an exothermic reaction.
【0005】 従来のモジュール電池では、放電段階に
おいて上昇した電池の温度が、休止段階及び充電段階に
おいて、放電開始時の値まで下がるように断熱容器の放
熱量を設定し、1サイクル毎の熱の収支を取ってきた。
そのため、モジュール電池の出力電力や出力時間の変更
に伴い内部発熱量が変化するため、その都度、断熱容器
の放熱量の設定変更を行っていた。又、単電池性能の異
なるモジュール電池を使用する場合にも同様に内部発熱
量が変化するため、断熱容器の放熱量を変更していた。
さらに、単電池の劣化によりモジュール電池抵抗が増加
した場合等も同様に断熱容器の放熱量を変更していた。In the conventional module battery, the amount of heat released from the heat insulating container is set so that the temperature of the battery that rises in the discharging stage drops to the value at the beginning of discharging in the resting stage and the charging stage. I've got a balance.
Therefore, the internal heat generation amount changes with the change of the output power and output time of the module battery, so that the heat radiation amount of the heat insulating container is changed each time. Further, when module batteries having different cell performances are used, the internal heat generation amount also changes, so that the heat radiation amount of the heat insulating container is changed.
Further, when the module battery resistance increases due to the deterioration of the single cell, the heat radiation amount of the heat insulating container is also changed.
【0006】[0006]
【発明が解決しようとする課題】従って、断熱容器の放
熱量の設定変更が頻繁に必要となり、このような設定変
更を行わない場合は、放熱量を過多とすることにより、
ヒーター加熱をより大きくし熱収支を取ってきた。その
場合はヒーター加熱によりエネルギーが消費されるた
め、高い放充電効率が得られるというナトリウム−硫黄
電池の特徴が損なわれることになる。Therefore, it is necessary to frequently change the setting of the heat radiation amount of the heat insulating container. If such a setting change is not made, the heat radiation amount becomes excessive,
The heating of the heater was made larger and the heat balance was taken. In that case, since energy is consumed by heating the heater, the characteristic of the sodium-sulfur battery that high discharge efficiency is obtained is impaired.
【0007】 又、断熱容器からの放熱量Qは断熱容器
外部の温度Tbの影響を受けることから、放熱量Qの調
節が困難であり、ナトリウム−硫黄電池の温度管理に不
都合が生じるという問題があった。[0007] Further, the heat radiation amount Q from the insulated container from being affected by the temperature T b of the heat insulating container outside, it is difficult to adjust the heat radiation amount Q, sodium - a problem that inconvenience temperature control sulfur battery occurs was there.
【0008】 即ち、断熱容器からの放熱量Qは、断熱
容器内部の温度をT、基準内部温度Th及び基準外部温
度Toにおける放熱量をQ0とすると、Q=Q0(T−
Tb)/(Th−To)で表され、例えばTbが高い場合
は、放熱量Qが小さくなり、放電段階において、ナトリ
ウム−硫黄電池の温度が一定の値を越える危険性があっ
た。In other words, the heat radiation amount Q from the heat insulating container is Q = Q 0 (T−, where T is the temperature inside the heat insulating container and Q 0 is the heat radiation amount at the reference internal temperature T h and the reference external temperature T o .
It is represented by T b ) / (T h −T o ). For example, when T b is high, the heat radiation amount Q becomes small, and there is a risk that the temperature of the sodium-sulfur battery will exceed a certain value during the discharging stage. It was
【0009】 又、Tbが低い場合は、放熱量Qが大き
くなり、電池の温度が下がり過ぎて充電及び放電を開始
できなかったり、あるいは保温のためのヒーターエネル
ギーが大きすぎて高い充放電効率をもつ運転が行えない
という問題があった。Further, when T b is low, the amount of heat radiation Q becomes large, the temperature of the battery is too low to start charging and discharging, or the heater energy for heat retention is too large and the charging / discharging efficiency is high. There was a problem that it was not possible to drive with.
【0010】 又、ナトリウム−硫黄電池の電気容量q
は硫黄とナトリウムの量によって決まり、q=I・T
(Iは電流、Tは放電時間を表す。)より、放電時の電
流と放電時間との積は一定である。従って、Kを定数と
すると、反応熱量はK・qで表される。ここで、ナトリ
ウム−硫黄電池の放電時における抵抗発熱量をQd、放
熱量をHdとすると、放電時における電池の温度上昇は
(K・q+Qd−Hd)/C(Cは熱容量を表す。)とな
る。Also, the electric capacity q of the sodium-sulfur battery
Is determined by the amount of sulfur and sodium, q = IT
From (I represents current and T represents discharge time), the product of current and discharge time during discharge is constant. Therefore, when K is a constant, the heat of reaction is represented by K · q. Assuming that the resistance heat generation amount during discharge of the sodium-sulfur battery is Q d and the heat radiation amount is H d , the temperature rise of the battery during discharge is (Kq + Q d −H d ) / C (C is the heat capacity). It represents.).
【0011】 ところで、ナトリウム−硫黄電池の使用
方法として、従来のロードレベリングの8時間率運転
(定格運転:電力需要の高い昼間の8時間における運転
である。)から、ピークカットを目的とした、4時間率
運転(2倍出力運転:定格運転の際の放電電流の値をI
cで表すと2Icの電流で放電を行う。)若しくは2.7
時間率運転(3倍出力運転:同様に3Icの電流で放電
を行う。)を想定すると、ナトリウム−硫黄電池の放電
時における抵抗発熱量QdはI2RT(Rは抵抗を表
す。)で表されるため、抵抗発熱量はそれぞれ2倍、3
倍となる。By the way, as a method of using a sodium-sulfur battery, the purpose is to cut the peak from the conventional 8-hour rate operation of load leveling (rated operation: operation during 8 hours during the daytime when power demand is high). 4-hour rate operation (double output operation: the value of the discharge current during rated operation is I
When expressed by c , discharging is performed with a current of 2I c . ) Or 2.7
Time constant operation: Assuming (3 times power operation to discharge at a current of similarly 3I c.), Sodium - resistance calorific value Q d at the time of discharge of sulfur batteries I 2 RT (representing R is resistance.) Therefore, the amount of heat generated by resistance is doubled and 3 times, respectively.
Double.
【0012】 いま、Tbが一定であれば、通常運転で
可能であった第一休止段階、放電段階、第二休止段階、
充電段階から成る1サイクルの熱収支を0にすることが
不可能となるため、多サイクルの連続運転ができず、実
質的に高出力運転は困難であった。Now, if T b is constant, the first resting stage, the discharging stage, the second resting stage, which was possible in the normal operation,
Since it was impossible to reduce the heat balance of one cycle consisting of the charging stage to zero, continuous operation of multiple cycles was not possible, and high output operation was practically difficult.
【0013】 本発明は、このような状況に鑑みてなさ
れたものであり、その目的とするところは、断熱容器外
部の温度を調節することにより、断熱容器からの放熱量
を制御し、低出力運転のみならず高出力運転をも可能に
するとともに、外部環境温度に左右されずに安定な放電
及び充電が可能なナトリウム−硫黄電池を用いたバッテ
リーシステムの運転方法を提供することにある。The present invention has been made in view of such circumstances, and an object of the present invention is to adjust the temperature outside the heat insulating container to control the amount of heat radiated from the heat insulating container to achieve a low output. It is an object of the present invention to provide a method of operating a battery system using a sodium-sulfur battery, which enables not only operation but also high-power operation and is capable of stable discharge and charge regardless of the external environment temperature.
【0014】[0014]
【課題を解決するための手段】 即ち、本発明によれ
ば、放電段階と充電段階を、各々の間に休止段階を挟み
つつ繰り返す、ナトリウム−硫黄電池を用いたバッテリ
ーシステムの運転方法であって、複数のナトリウム−硫
黄電池から構成され、断熱容器に収容されたモジュール
電池複数個をさらに直並列に接続して成るバッテリーシ
ステムを、断熱材から成る容器内に収容し、その容器に
設けた換気装置により容器内の温度を調節するナトリウ
ム−硫黄電池を用いたバッテリーシステムの運転方法が
提供される。That is, according to the present invention, there is provided a method of operating a battery system using a sodium-sulfur battery, wherein a discharging step and a charging step are repeated with a rest step interposed therebetween. , A battery system composed of a plurality of sodium-sulfur batteries, which is housed in a heat-insulating container and further connected in series and in parallel, is housed in a container made of a heat insulating material, and ventilation provided in the container. The apparatus provides a method of operating a battery system using a sodium-sulfur battery that regulates the temperature in the container.
【0015】 本発明において、上記換気装置は、排気
ファン及び吸気ファンであってもよく、吸気ファン及び
通風孔であってもよい。In the present invention, the ventilation device may be an exhaust fan and an intake fan, or may be an intake fan and a ventilation hole.
【0016】[0016]
【発明の実施の形態】 本発明において、ナトリウム−
硫黄電池を用いたバッテリーシステムは、換気装置を設
けた断熱材から成る容器内に収容された状態で運転され
る。BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, sodium-
A battery system using a sulfur battery is operated while being housed in a container made of a heat insulating material provided with a ventilation device.
【0017】 バッテリーシステムを構成する各モジュ
ール電池はそれ自体断熱容器に収容されているが、バッ
テリーシステム自体をさらに断熱材から成る容器に気密
に収容することにより、外部との空気の出入りを制限
し、外気温度により断熱容器からの放熱量が変化すると
いう事態を防ぐことができる。Each module battery that constitutes the battery system is itself housed in a heat insulating container, but by further hermetically housing the battery system itself in a container made of a heat insulating material, it is possible to restrict the entry and exit of air from the outside. It is possible to prevent a situation in which the heat radiation amount from the heat insulating container changes depending on the outside air temperature.
【0018】 又、バッテリーシステムを収容した容器
に換気装置を設けることにより、断熱容器外部の温度を
制御することができ、ひいては、断熱容器からの放熱量
の制御が可能となり、内部発熱量と熱収支を取りながら
放充電運転を行うことが可能となる。Further, by providing a ventilation device in the container accommodating the battery system, it is possible to control the temperature outside the heat insulating container, which in turn makes it possible to control the amount of heat radiated from the heat insulating container, and the internal heat generation amount and heat It becomes possible to perform discharge operation while keeping the balance.
【0019】 従って、高出力運転が可能になるととも
に、通常の運転においても、外気の温度が低い場合に、
外気の遮断により断熱容器外部の温度を上昇させて断熱
容器からの放熱量を低下させることにより、サイクル運
転中のヒーター加熱量を減少して、放充電効率が低下す
るという事態を回避することができる。又、外気の温度
が高い場合においても、外気を除去することにより断熱
容器外部の温度を低下させて、断熱容器外部からの放熱
量を増加させ、各サイクル終了後の温度を初期温度に戻
し、連続運転による加速度的な温度上昇を回避すること
ができる。Therefore, high-output operation becomes possible, and even in normal operation, when the outside air temperature is low,
By shutting off the outside air to raise the temperature outside the heat-insulating container and reduce the amount of heat released from the heat-insulating container, it is possible to avoid the situation where the heater heating amount during cycle operation is reduced and the discharge efficiency decreases. it can. Further, even when the temperature of the outside air is high, the temperature outside the heat insulating container is lowered by removing the outside air, the amount of heat released from the outside of the heat insulating container is increased, and the temperature after the end of each cycle is returned to the initial temperature, It is possible to avoid an accelerating temperature rise due to continuous operation.
【0020】 バッテリーシステムを収容する容器は、
150℃程度の耐熱性を備えていればよく、レンガ、珪
酸カルシウム、発泡スチロール、ウレタン等の合成樹脂
等の比較的安価な素材が用いられる。これらの材質の熱
絶縁性はそれほど大きくはないが、各モジュール電池自
体は、熱絶縁性に優れる断熱容器に収容されているた
め、その内部の温度分布は、一般的には±5℃以内と小
さく、バッテリーシステムを収容する容器内の温度分布
が多少大きくても、それがバッテリーシステムの特性に
影響を与えることは無い。これらの素材を容器として用
いる場合には、ある程度の熱絶縁性と機械的強度を保つ
ために、20〜100mm程度の厚さで使用することが
必要である。しかし、各モジュール電池に対して一個ず
つ必要とされる断熱容器とは異なり、バッテリーシステ
ム全体に一個の容器を準備すればよいため、多少肉厚で
あってもバッテリーシステムの体積が大きくなり、エネ
ルギー密度を下げることはない。The container that houses the battery system is
It suffices that it has heat resistance of about 150 ° C., and relatively inexpensive materials such as bricks, calcium silicate, styrofoam, and synthetic resins such as urethane are used. Although the thermal insulation of these materials is not so large, the temperature distribution inside each module battery is generally within ± 5 ° C because it is housed in a heat insulating container with excellent thermal insulation. Even if the temperature distribution is small and the temperature distribution in the container that houses the battery system is somewhat large, it does not affect the characteristics of the battery system. When these materials are used as a container, it is necessary to use them with a thickness of about 20 to 100 mm in order to maintain a certain degree of thermal insulation and mechanical strength. However, unlike the insulated container that requires one for each module battery, it is sufficient to prepare one container for the entire battery system. It does not reduce the density.
【0021】 換気装置としては、ファン、自動開閉機
能を持つ通風孔等が用いられるが、排気ファンと吸気フ
ァンを併用したり、吸気ファンと通風孔を併用すること
が好ましい。換気装置は、断熱容器外部の温度に応じて
自動的に作動若しくは停止することが好ましいが、手動
で作動させるものであってもよい。As the ventilation device, a fan, a ventilation hole having an automatic opening / closing function, or the like is used, but it is preferable to use an exhaust fan and an intake fan together, or to use an intake fan and an ventilation hole together. The ventilation device is preferably operated or stopped automatically according to the temperature outside the heat insulating container, but may be operated manually.
【0022】 又、CPU等を用いて、換気装置の作動
を、ナトリウム−硫黄電池の充電、又は放電の開始若し
くは終了、ヒータの作動等とともに、電池の温度、断熱
容器外部の温度等に応じて制御してもよい。In addition, the CPU or the like is used to control the operation of the ventilator according to the temperature of the battery, the temperature outside the heat insulating container, etc. along with the start or end of charging or discharging of the sodium-sulfur battery, the operation of the heater, etc. You may control.
【0023】[0023]
【実施例】 以下、本発明を図示の実施例を用いてさら
に詳しく説明するが、本発明はこれらの実施例に限られ
るものではない。Hereinafter, the present invention will be described in more detail with reference to the illustrated embodiments, but the present invention is not limited to these embodiments.
【0024】 換気装置として排気ファンと吸気ファン
を用いて、本発明の方法により運転されるバッテリーシ
ステムの一例を図1に示す。An example of a battery system operated by the method of the present invention using an exhaust fan and an intake fan as a ventilation device is shown in FIG.
【0025】 図1において、バッテリーシステム1
は、40〜50台のモジュール電池を直並列に接続して
構成され、各モジュール電池は真空断熱容器4に収容し
て構成されている。真空断熱容器4は、2枚の薄い金属
板の間に断熱材を封入し密閉して構成される。バッテリ
ーシステム1は、低熱絶縁性の断熱材から成る容器5に
気密に収容され、容器5の外壁には排気ファン6と吸気
ファン7が設置されている。In FIG. 1, a battery system 1
Is configured by connecting 40 to 50 module batteries in series and parallel, and each module battery is housed in a vacuum heat insulating container 4. The vacuum heat insulating container 4 is configured by sealing a heat insulating material between two thin metal plates and sealing the heat insulating material. The battery system 1 is hermetically housed in a container 5 made of a heat insulating material having a low thermal insulation property, and an exhaust fan 6 and an intake fan 7 are installed on the outer wall of the container 5.
【0026】 又、図1のバッテリーシステム1は、モ
ジュール電池の電圧及び電流を検知するとともに、それ
らの値を制御する電圧・電流監視手段9、モジュール電
池内の温度を検知するとともに、その値を制御するモジ
ュール電池温度監視手段10、並びに容器5内の温度を
検知するとともに、排気ファン6と吸気ファン7の作動
を調節することによりその値を制御する容器内温度監視
手段11を備える。制御コンピュータ8には、電池抵
抗、運転温度、外気温度、及び定格運転に対する出力倍
数等の値が入力されており、これらの値に基づいて、上
記の制御手段に制御信号を出力する。In addition, the battery system 1 of FIG. 1 detects the voltage and current of the module battery, detects the temperature inside the module battery and the voltage / current monitoring means 9 for controlling the values, and detects the value. The module battery temperature monitoring means 10 to be controlled and the in-container temperature monitoring means 11 for detecting the temperature in the container 5 and controlling the values by adjusting the operations of the exhaust fan 6 and the intake fan 7 are provided. Values such as battery resistance, operating temperature, outside temperature, and output multiple for rated operation are input to the control computer 8, and control signals are output to the control means based on these values.
【0027】 上記のバッテリーシステム1を定格運転
した場合の、各作動段階における、電力、電圧、並びに
容器内部とモジュール電池内の温度の変化をそれぞれ図
2(a)、(b)、(c)に示す。又、2倍出力運転時
の各作動段階における、電力、電圧、並びに容器内部と
モジュール電池内の温度の変化をそれぞれ図3(a)、
(b)、(c)に示す。定格運転時には容器5内部の温
度を80〜100℃に維持し、2倍出力運転時には40
〜60℃に維持することにより、定格運転時及び2倍出
力運転時の内部発熱量をそれぞれ制御し、熱収支を0と
している。又、土日祝日等の電力貯蔵システムを使用し
ない待機状態においては、容器5内の温度を120〜1
50℃に維持することにより、バッテリー内部を保温す
るヒーター電力量を減らしている。なお、これらの温度
は容器5の材質、厚さ、配線材の材質等により適宜変え
る必要がある。FIGS. 2A, 2B and 2C show changes in electric power, voltage, and temperature inside the container and inside the module battery at each operation stage when the above-described battery system 1 is operated under rated conditions. Shown in. 3 (a) shows changes in the electric power, the voltage, and the temperature inside the container and the module battery at each operation stage during the double output operation, respectively.
(B) and (c). The temperature inside the container 5 is maintained at 80 to 100 ° C during rated operation, and 40% during double output operation.
By maintaining the temperature at -60 ° C, the internal heat generation amount during the rated operation and the double output operation are controlled, and the heat balance is set to zero. Further, in a standby state such as Saturdays, Sundays, and holidays when the power storage system is not used, the temperature in the container 5 is set to 120 to 1
By maintaining the temperature at 50 ° C, the electric power of the heater that keeps the inside of the battery warm is reduced. Note that these temperatures need to be appropriately changed depending on the material and thickness of the container 5, the material of the wiring material, and the like.
【0028】[0028]
【発明の効果】 本発明において、ナトリウム−硫黄電
池を用いたバッテリーシステムは断熱材から成る容器に
収容され、さらに、その容器には換気装置が設置されて
いるため、容器内部の温度を調節することにより、断熱
容器からの放熱量の制御を通じて、ナトリウム−硫黄電
池の温度を調節することが可能となる。従って、高出力
運転が可能になるとともに、外部温度に左右されない安
定な放充電効率を得ることが可能となる。According to the present invention, a battery system using a sodium-sulfur battery is housed in a container made of a heat insulating material, and a ventilation device is installed in the container, so that the temperature inside the container is adjusted. This makes it possible to adjust the temperature of the sodium-sulfur battery by controlling the amount of heat released from the heat insulating container. Therefore, it is possible to perform high-output operation and obtain stable discharge and charge efficiency that is not affected by the external temperature.
【図1】 バッテリーシステムの一例を示す断面図であ
る。FIG. 1 is a cross-sectional view showing an example of a battery system.
【図2】 定格運転時における各作動段階での(a)電
力の値の変化を示すグラフ、(b)電圧の値の変化を示
すグラフ、(c)容器内部の温度とモジュール電池内の
温度の変化を示すグラフである。2A and 2B are graphs showing a change in the value of electric power at each operation stage during rated operation, a graph showing a change in the value of voltage in FIG. 2, and a temperature inside the container and a temperature inside the module battery. It is a graph which shows the change of.
【図3】 2倍出力運転時における各作動段階での
(a)電力の値の変化を示すグラフ、(b)電圧の値の
変化を示すグラフ、(c)容器内部の温度とモジュール
電池内の温度の変化を示すグラフである。3A and 3B are graphs showing changes in the value of electric power at each operation stage during double output operation, FIG. 3B is a graph showing changes in the value of voltage, and FIG. 3 is a graph showing changes in temperature of the.
1・・・バッテリーシステム、2・・・モジュール電池、3・・
・ナトリウム−硫黄電池、4・・・真空断熱容器、5・・・容
器、6・・・排気ファン、7・・・吸気ファン、8・・・制御コ
ンピュータ、9・・・電圧・電流監視手段、10・・・モジュ
ール電池温度監視手段、11・・・容器内温度監視手段、
12・・・交直変換器。1 ... Battery system, 2 ... Module battery, 3 ...
・ Sodium-sulfur battery, 4 ... Vacuum insulation container, 5 ... Container, 6 ... Exhaust fan, 7 ... Intake fan, 8 ... Control computer, 9 ... Voltage / current monitoring means 10 ... Module battery temperature monitoring means, 11 ... In-container temperature monitoring means,
12 ... AC / DC converter.
Claims (3)
段階を挟みつつ繰り返すナトリウム−硫黄電池を用いた
バッテリーシステムの運転方法であって、 複数のナトリウム−硫黄電池から構成され、断熱容器に
収容されたモジュール電池複数個をさらに直並列に接続
して成る該バッテリーシステムを、断熱材から成る容器
内に収容し、該容器に設けた換気装置により該容器内の
温度を調節するナトリウム−硫黄電池を用いたバッテリ
ーシステムの運転方法。1. A method of operating a battery system using a sodium-sulfur battery, wherein a discharging stage and a charging stage are repeated with a rest stage interposed therebetween, the method comprising: a plurality of sodium-sulfur batteries, A battery system comprising a plurality of module batteries connected in series and parallel to each other is housed in a container made of a heat insulating material, and the temperature inside the container is adjusted by a ventilation device provided in the container. A method of operating a battery system using a sulfur battery.
ンである請求項1に記載のナトリウム−硫黄電池を用い
たバッテリーシステムの運転方法。2. The method for operating a battery system using a sodium-sulfur battery according to claim 1, wherein the ventilation device is an intake fan and an exhaust fan.
ある請求項1に記載のナトリウム−硫黄電池を用いたバ
ッテリーシステムの運転方法。3. The method of operating a battery system using a sodium-sulfur battery according to claim 1, wherein the ventilation device is an intake fan and a ventilation hole.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5782296A JP2980840B2 (en) | 1996-03-14 | 1996-03-14 | Operating method of battery system using sodium-sulfur battery |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5782296A JP2980840B2 (en) | 1996-03-14 | 1996-03-14 | Operating method of battery system using sodium-sulfur battery |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH09251866A true JPH09251866A (en) | 1997-09-22 |
| JP2980840B2 JP2980840B2 (en) | 1999-11-22 |
Family
ID=13066623
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP5782296A Expired - Lifetime JP2980840B2 (en) | 1996-03-14 | 1996-03-14 | Operating method of battery system using sodium-sulfur battery |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2980840B2 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003346922A (en) * | 2002-05-28 | 2003-12-05 | Mitsubishi Heavy Ind Ltd | Temperature adjusting device and method for power storage device, and power storage device |
| US7396445B2 (en) | 2001-01-15 | 2008-07-08 | Tdk Corporation | Method of manufacturing a thin-film magnetic head using a soft magnetic film having high saturation magnetic flux density |
| WO2011132557A1 (en) * | 2010-04-22 | 2011-10-27 | 住友電気工業株式会社 | Molten salt battery device and temperature control method for molten salt battery |
| US8685571B2 (en) | 2010-04-06 | 2014-04-01 | Sumitomo Electric Industries, Ltd. | Method for producing separator, method for producing molten salt battery, separator, and molten salt battery |
-
1996
- 1996-03-14 JP JP5782296A patent/JP2980840B2/en not_active Expired - Lifetime
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7396445B2 (en) | 2001-01-15 | 2008-07-08 | Tdk Corporation | Method of manufacturing a thin-film magnetic head using a soft magnetic film having high saturation magnetic flux density |
| JP2003346922A (en) * | 2002-05-28 | 2003-12-05 | Mitsubishi Heavy Ind Ltd | Temperature adjusting device and method for power storage device, and power storage device |
| US8685571B2 (en) | 2010-04-06 | 2014-04-01 | Sumitomo Electric Industries, Ltd. | Method for producing separator, method for producing molten salt battery, separator, and molten salt battery |
| WO2011132557A1 (en) * | 2010-04-22 | 2011-10-27 | 住友電気工業株式会社 | Molten salt battery device and temperature control method for molten salt battery |
| JP5729306B2 (en) * | 2010-04-22 | 2015-06-03 | 住友電気工業株式会社 | Molten salt battery device |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2980840B2 (en) | 1999-11-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3614485B1 (en) | Battery device and battery temperature adjusting method | |
| KR102742036B1 (en) | Appratus and method for calculating battery power | |
| JPH11501447A (en) | Method and apparatus for controlling battery temperature during charge / discharge | |
| KR20150116661A (en) | Fuel cell hybrid system | |
| US4782279A (en) | Method and arrangement for charging a sealed, secondary electrochemical power source | |
| WO2016136507A1 (en) | Storage battery control device | |
| JPH11214025A (en) | Fuel cell apparatus | |
| US4897322A (en) | Method for preventing overheating of high-temperature storage batteries | |
| JP2980840B2 (en) | Operating method of battery system using sodium-sulfur battery | |
| JPH1064597A (en) | Rechargeable battery power supply | |
| JP2877634B2 (en) | Portable power supply | |
| JP2004055373A (en) | Sodium-sulfur battery and temperature adjusting method | |
| JP4567317B2 (en) | NAS battery power storage system | |
| US5447807A (en) | Power source | |
| JP2931581B1 (en) | Temperature control system for sodium-sulfur battery | |
| KR20240097772A (en) | System of controling a temperature of a battery and method of controling a temperature of a battery | |
| JP3328868B2 (en) | High temperature battery module and battery system using the same | |
| EP4333180A1 (en) | Composite battery, and composite battery system provided with same | |
| JP2001314045A (en) | Charging device | |
| JP2004355860A (en) | Combined power generation system, power plant, method of keeping secondary battery warm | |
| JP3218177B2 (en) | Operating method of battery system using sodium-sulfur battery | |
| US3278334A (en) | Anode limited sealed secondary battery having an auxiliary electrode | |
| JP2021164329A (en) | Controller, control system, and control method | |
| KR102671824B1 (en) | Gas suppression device and suppression method for lithium sulfur battery | |
| JP3382912B2 (en) | Combined power generation system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990907 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070917 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080917 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090917 Year of fee payment: 10 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100917 Year of fee payment: 11 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110917 Year of fee payment: 12 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110917 Year of fee payment: 12 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120917 Year of fee payment: 13 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120917 Year of fee payment: 13 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130917 Year of fee payment: 14 |
|
| EXPY | Cancellation because of completion of term |