[go: up one dir, main page]

JPH09271385A - New dna fragments, plasmid and recombined microorganism holding these fragments and production of debranching enzyme therewith - Google Patents

New dna fragments, plasmid and recombined microorganism holding these fragments and production of debranching enzyme therewith

Info

Publication number
JPH09271385A
JPH09271385A JP8134492A JP13449296A JPH09271385A JP H09271385 A JPH09271385 A JP H09271385A JP 8134492 A JP8134492 A JP 8134492A JP 13449296 A JP13449296 A JP 13449296A JP H09271385 A JPH09271385 A JP H09271385A
Authority
JP
Japan
Prior art keywords
gly
thr
val
asn
asp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8134492A
Other languages
Japanese (ja)
Inventor
Yoshinao Koide
芳直 小出
Seiji Sasaki
征治 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amano Enzyme Inc
Original Assignee
Amano Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amano Pharmaceutical Co Ltd filed Critical Amano Pharmaceutical Co Ltd
Priority to JP8134492A priority Critical patent/JPH09271385A/en
Publication of JPH09271385A publication Critical patent/JPH09271385A/en
Pending legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a new DNA fragment containing a debranching enzyme gene produced by a microorganism of the genus Bacillus, etc., having a specific restriction enzyme map, and useful for the genetic engineering production of an enzyme expressing a heat-resistant and acidic α-1,6-glucosidase activity, etc. SOLUTION: This DNA codes a debranching enzyme containing an amino acid sequence of formula I or its part and an amino acid sequence homologous thereto, and gives a restriction enzyme map of formula II. The DNA is useful for producing a heat-resistant enzyme having an acidic α-1,6-glucosidase (debranching enzyme) activity and used for the saccharification of starch, etc., in a high yield by a genetic engineering method. The DNA fragment is obtained by culturing Bacillus SP APC-9603 strain (FERM BP-4204), collecting the cells by a centrifugal method, isolating the chromosomal DNA from the cells by a conventional method, treating the DNA with a restriction enzyme, binding the obtained fragments to a vector, transducing the vector into Escherichia coli, culturing the transformant, selecting a strain decomposing a colored pullulan derivative to form a harrow, and subsequently recovering the DNA of the strain.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐熱性、酸性α-1,6-
グルコシダーゼ活性(以下、枝切り酵素ともいう)を有
する蛋白質の遺伝情報を有するDNA断片、該DNA断
片を含有する発現ベクター、該発現ベクターで形質転換
された形質転換体及び該形質転換体を培養することによ
る、耐熱性、酸性α-1,6-グルコシダーゼを効率よく製
造する方法に関する。
FIELD OF THE INVENTION The present invention is heat-resistant and acidic α-1,6-
A DNA fragment having the genetic information of a protein having glucosidase activity (hereinafter, also referred to as debranching enzyme), an expression vector containing the DNA fragment, a transformant transformed with the expression vector, and the transformant are cultured. The present invention relates to a method for efficiently producing heat-resistant and acidic α-1,6-glucosidase.

【0002】更に詳細には、バチルス(Bacillus)・エ
スピー APC-9603(FERM BP-4204)の産生する耐熱性、
酸性α-1,6-グルコシダーゼの遺伝子を枯草菌により、
発現させることにより該酵素を効率的に製造する方法に
関する。
More specifically, the heat resistance produced by Bacillus sp. APC-9603 (FERM BP-4204),
The gene for acid α-1,6-glucosidase is produced by Bacillus subtilis
The present invention relates to a method for efficiently producing the enzyme by expressing the enzyme.

【0003】[0003]

【従来の技術】α-1,6-グルコシダーゼとは澱粉等のα-
1,6-グルコシド結合を切断し、直鎖アミロースを生成す
る酵素であり、その基質特異性から主にイソアミラーゼ
(EC 3.2.1.68)或いはプルラナーゼ(EC 3.2.1.41)等
に分類されている。特にプルラナーゼはグルコース、マ
ルトース、マルトトリオース、マルトテトラオース、マ
ルトペンタオース、マルトヘキサオース等のマルトオリ
ゴ糖の生産にエンド型アミラーゼ及びエキソ型アミラー
ゼと併用して糖化業界において広く用いられている。
2. Description of the Related Art What is α-1,6-glucosidase?
It is an enzyme that cleaves 1,6-glucoside bonds to produce linear amylose, and is mainly classified into isoamylase (EC 3.2.1.68), pullulanase (EC 3.2.1.41) and the like based on its substrate specificity. In particular, pullulanase is widely used in the saccharification industry in combination with endo-type and exo-type amylase in the production of maltooligosaccharides such as glucose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose and the like.

【0004】即ち、澱粉からグルコースへの高レベル変
換を行うために液化澱粉の糖化段階で、α-1,6-グルコ
シド結合を加水分解する枝切り酵素を加えるのである
が、当該酵素の生産菌としては、古くは酵母に見い出さ
れて、近年になって各種の細菌においてその生産が報告
されるようになった。
That is, a debranching enzyme that hydrolyzes an α-1,6-glucoside bond is added at the saccharification stage of liquefied starch in order to convert starch into glucose at a high level. As a result, it was found in yeast for a long time, and its production has been reported in various bacteria in recent years.

【0005】例えば生産菌としてはアエロバクター・ア
エロゲネス(Aerobacter aerogenes)、エシエリシア・
インターメデイア(Escherichia intermedia)、シユー
ドモナス・アミロデラモサ(Pseudomonas amyloderamos
a)、ストレプトコツカス・ミテス(Streptococcus mi
tis)、サイトフアーガ(Cytophaga)属、ストレプトミ
セス(Streptomyces)属及びフラボクロモゲネス(Flav
ochromogenes)属等である。
[0005] For example, as the producing bacteria, Aerobacter aerogenes, Escherichia
Escherichia intermedia, Pseudomonas amyloderamos
a), Streptococcus mites
tis), Cytophaga genus, Streptomyces genus and Flavochromogenes (Flav)
genus, etc.

【0006】一方、バチルス(Bacillus)属の生産する
α−1,6−グルコシダーゼとしてはバチルス・セレウ
ス(Bacillus cereus)IFO 3001、バチルス・
フエルムス(Bacillus fermus)IFO 3330、バ
チルス・アシドプルリチカス(Bacillus acidopullulyt
icus)及びバチルス・セクトラマス(Bacillus sectorr
amus)等が知られている。
On the other hand, the α-1,6-glucosidase produced by the genus Bacillus is Bacillus cereus IFO 3001, Bacillus cereus.
Bacillus fermus IFO 3330, Bacillus acidopullulyt
icus) and Bacillus sectramas (Bacillus sectorr)
amus) etc. are known.

【0007】また、耐熱性を有し、酸性側に至適pHを
有し、更に基質特異性が広い性質を有する新規な枝切り
酵素を生産する菌株としてバチルス・エスピー APC-96
03(FERM BP-4204)が報告されている(特開平5-29296
2)。
[0007] Bacillus sp. APC-96 is a strain producing a novel debranching enzyme having heat resistance, optimum pH on the acidic side, and wide substrate specificity.
03 (FERM BP-4204) has been reported (JP-A-5-29296).
2).

【0008】即ち、バチルス・エスピー APC-9603由来
の枝切り酵素は従来の菌株の産生する枝切り酵素と比較
して澱粉の糖化に使用するのにより適切な酵素である。
しかしながら、この生産能は十分とは言えず、より効果
的な製造法が求められていた。
That is, the debranching enzyme derived from Bacillus sp. APC-9603 is a more suitable enzyme to be used for saccharification of starch as compared with the debranching enzyme produced by conventional strains.
However, this productivity is not sufficient, and a more effective production method has been demanded.

【0009】[0009]

【課題を解決するための手段】本発明は、新規なプラス
ミドを有する枯草菌を利用して、耐熱性があり、酸性側
に至適pHを有し、更に基質特異性が広い性質を有するα
-1,6-グルコシダーゼを製造する方法に関するものであ
る。
The present invention utilizes a Bacillus subtilis harboring a novel plasmid, which is thermostable, has an optimum pH on the acidic side, and has a wide substrate specificity.
The present invention relates to a method for producing -1,6-glucosidase.

【0010】本発明に使用する新規な枝切り酵素は、バ
チルス・エスピー APC-9603により分泌産生されるが、
本菌株は愛知県の土壌より分離された。
The novel debranching enzyme used in the present invention is secreted and produced by Bacillus sp. APC-9603.
This strain was isolated from soil in Aichi prefecture.

【0011】バチルス・エスピー APC-9603は以下に述
べるような菌学的性質を有する。尚、本菌株は工業技術
院生命工学工業技術研究所にFERM BP-4204として寄託さ
れている。
Bacillus sp. APC-9603 has the following mycological properties. This strain has been deposited as FERM BP-4204 at the Institute of Biotechnology, Institute of Biotechnology, AIST.

【0012】 A. 形態 (1) 細胞の形 直桿状 (2) 細胞の大きさ 0.5〜0.8×3.0〜4.0μ (3) 運動性 陽性 (4) 胞子嚢 円形膨潤(1.0〜1.5μ) (5) 胞子の位置 菌端〜準端立 (6) コロニーの性状 半透明、光沢ある円形凸状、菌苔はやや黄味 (7) グラム染色 可変(幼若細胞で陽性、古い培養では不定)A. Morphology (1) Cell shape Straight rod shape (2) Cell size 0.5 to 0.8 × 3.0 to 4.0 μ (3) Motility positive (4) Sporangial circular swelling (1.0 to 1.5 μ) (5) ) Position of spores Endo-quasi-edge (6) Properties of colony Semi-transparent, glossy circular convex, moss is slightly yellowish (7) Gram stain variable (positive in immature cells, undefined in old culture)

【0013】B. 生育状態及び生理学的性質 (1) 普通ブイヨンでの生育 陰性 (2) 好気的生育 陽性 (3) 嫌気的生育 陰性 (4) 生育温度 13〜45℃ (5) 最適生育温度 33〜38℃ (6) 生育pH 4.0〜6.0 (7) 最適生育pH 4.5〜5.5 (8) NaCl中での生育範囲 0〜5.0% (9) 硝酸塩の還元 陽性 (10)色素の生成 陰性 (11)クエン酸の利用 陰性 (12)プロピオン酸塩の利用 陰性 (13)カタラーゼ活性 陰性 (14)チロシンの分解 陰性 (15)デンプンの加水分解 陰性 (16)VP反応 陰性 (17)レシチナーゼ 陰性 (18)インドール 陰性 (19)エスクリンの分解 陽性 (20)リトマスミルク反応 不変(30日) (21)ゼラチンの分解 陽性(弱) (22)カゼインの分解 陰性 (23)フェニルアラニン脱アミノ 陰性 (24)VPブロスのpH 5.0 (25)糖類の利用 グルコースから酸 陽性(遅延) マンニトールから酸 陽性 アラビノースから酸 陽性 キシロースから酸 陽性 シュクロースから酸 陽性(遅延) ラクトースから酸 陽性(遅延) トレハロースから酸 陽性 マニトールからガス 陰性B. Growth state and physiological properties (1) Growth negative in normal broth (2) Aerobic growth positive (3) Anaerobic growth negative (4) Growth temperature 13 to 45 ° C (5) Optimal growth temperature 33-38 ℃ (6) Growth pH 4.0-6.0 (7) Optimal growth pH 4.5-5.5 (8) Growth range in NaCl 0-5.0% (9) Nitrate reduction positive (10) Pigment formation negative (11 ) Use of citric acid Negative (12) Use of propionate Negative (13) Negative of catalase activity (14) Negative degradation of tyrosine (15) Negative hydrolysis of starch (16) Negative of VP reaction (17) Negative of lecithinase (18) Indole negative (19) Esculin decomposition positive (20) Litmus milk reaction unchanged (30 days) (21) Gelatin decomposition positive (weak) (22) Casein decomposition negative (23) Phenylalanine deamino negative (24) VP broth pH 5.0 (25) Utilization of sugars Glucose is acid-positive (delayed) Mannitol is acid-positive Arabinose is acid-positive Xysis Over scan acid from the acid-positive sucrose-positive (delayed) acid positive lactose (delay) Gas-negative trehalose from acid positive mannitol

【0014】上記の試験において、グラム染色、カタラ
ーゼ、形態などの検査は、指定の酵母エキス無機塩培
地、生育試験(pH、温度)はトリブチケースソイ寒天
(BBL)、その他の生理試験はすべてpHを5.0±0.1と
し、14日間培養した。
In the above test, Gram stain, catalase, morphology, etc. are inspected by a designated yeast extract inorganic salt medium, growth test (pH, temperature) is Tributycase soy agar (BBL), and other physiological tests are all. The pH was adjusted to 5.0 ± 0.1 and the cells were cultured for 14 days.

【0015】以上の菌学的性質をバージーのマニユアル
・オブ・デイターミネイテイブ・バクテリオロジー(Be
rgey's Manual of Determinative Bacteriology)第8
版及びザ・ジーナス・バチルス("The Genus Bacillus"
Ruth, B. Gordon,Agriculture Handbook No. 427,Agri
culture Research Service,U.S.Department of Agricul
ture Washington D.C.(1973)の記載に従って菌株を同
定した。
The above-mentioned mycological properties are based on the Burj's Manual of Determinative Bacteriology (Be
rgey's Manual of Determinative Bacteriology) 8th
Edition and The Genus Bacillus
Ruth, B. Gordon, Agriculture Handbook No. 427, Agri
culture Research Service, USDepartment of Agricul
Strains were identified as described by ture Washington DC (1973).

【0016】即ち、本菌株はグラム染色陽性、胞子を着
生すること、好気的に生育すること等からバチルス属に
属する菌株であることは明らかである。本菌株は、バチ
ラス・サーキュランス(Bacillus circulans)の菌学的
性質に非常に類似しているが、カタラーゼ陰性である点
で異なっている。カタラーゼ陰性として知られるバチル
ス属としては、例えばバチルス・ラーベ(Bacillus lar
vae)、バチルス・ポピリア(Bacillus popilliae)或
いはバチルス・レンチモルブス(Bacillus lentimorbu
s)等であるが、本菌株はこれらとは明らかに異なって
いる。よって、本発明者らは本菌株をバチルス・エスピ
ー APC-9603と命名した。次に本菌株の産生するα-1,6
-グルコシダーゼの酵素化学的性質を以下に詳述する。
That is, it is clear that this strain belongs to the genus Bacillus because it is Gram-staining positive, has spores, and grows aerobically. This strain is very similar to the mycological properties of Bacillus circulans, except that it is negative for catalase. Examples of the genus Bacillus known to be negative for catalase include Bacillus larb
vae), Bacillus popilliae or Bacillus lentimorbu
s) etc., but this strain is clearly different from these. Therefore, the present inventors named this strain Bacillus sp. APC-9603. Next, α-1,6 produced by this strain
-The enzymic chemistry of glucosidase is detailed below.

【0017】1 作用:本酵素はα-1,6-グルコシド結
合に作用して直鎖アミロースを生成する。
1 Action: This enzyme acts on the α-1,6-glucoside bond to produce linear amylose.

【0018】2 基質特異性:本酵素のプルラン活性に
対するトウモロコシの溶性デンプン、トウモロコシのア
ミロペクチン、ポテトのアミロペクチン、カキのグリコ
ーゲンの相対活性は表1に示す通りである。1%濃度の
基質(pH5.0、100mM マッキルバイン緩衝液)に対する
相対活性で示す。
2 Substrate specificity: The relative activities of corn soluble starch, corn amylopectin, potato amylopectin and oyster glycogen with respect to the pullulan activity of this enzyme are shown in Table 1. The activity is shown relative to 1% concentration of substrate (pH 5.0, 100 mM McIlvain buffer).

【0019】[0019]

【表1】 [Table 1]

【0020】3 至適pH:約5.2(100mMマッキルバイン
緩衝液)を示す。(図1に示す)
3 Optimum pH: about 5.2 (100 mM McIlvain buffer) is shown. (Shown in Figure 1)

【0021】4 pH安定性:40℃、30分処理(100mMマ
ッキルバイン緩衝液)においてpH4.0〜6.0まで安定であ
る。(図2に示す)
4 pH stability: Stable up to pH 4.0 to 6.0 at 40 ° C. for 30 minutes (100 mM McIlvain buffer). (Shown in Figure 2)

【0022】5 至適温度: 約65℃付近(pH5.0、30
分反応)を示す。(図3に示す)
5 Optimum temperature: around 65 ° C (pH 5.0, 30
Minute reaction). (Shown in FIG. 3)

【0023】6 温度安定性:70℃、30分処理において
80%安定である。(図4に示す)
6 Temperature stability: 70 ° C., 30 minutes treatment
80% stable. (Shown in FIG. 4)

【0024】7 阻害剤の影響:p−メルクリ安息香酸
(以下、p-CMBという)及びEDTAで僅かに阻害され、N
−エチルマレイミド(以下、N-ENIという)及びモノヨ
ード酢酸(以下、MIAという)では阻害されない。各種
阻害剤による影響は、該阻害剤の終濃度が1mMで50mM酢
酸緩衝液、pH5.0、40℃、30分処理後の残存活性で表3
に示す。
7 Effect of inhibitors: Slightly inhibited by p-mercuribenzoic acid (hereinafter referred to as p-CMB) and EDTA, and N
-Not inhibited by ethylmaleimide (hereinafter referred to as N-ENI) and monoiodoacetic acid (hereinafter referred to as MIA). The effect of each inhibitor is the residual activity after treatment for 30 minutes at 50 mM acetate buffer, pH 5.0, 40 mM at a final concentration of 1 mM of the inhibitor.
Shown in

【0025】[0025]

【表2】 [Table 2]

【0026】8 金属塩の影響:Mg2+、Co2+、Ca2+、Ni
2+、Ba2+、Cu2+、Zn2+及びAg3+にはほとんど影響され
ず、Mn2+、Fe3+、Sn2+及びCd2+で僅かに阻害され、Hg2+
で強く阻害される。各種金属塩による影響は該金属塩の
終濃度が、活性14u/mlに対して1mMで50mM酢酸緩衝液
pH5.0、40℃、30分処理後の残存活性で示す。
8 Effect of metal salt: Mg 2+ , Co 2+ , Ca 2+ , Ni
Almost unaffected by 2+ , Ba 2+ , Cu 2+ , Zn 2+ and Ag 3+ , slightly inhibited by Mn 2+ , Fe 3+ , Sn 2+ and Cd 2+ , Hg 2+
Is strongly hindered by. The effect of various metal salts is that the final concentration of the metal salt is 1 mM per activity of 14 u / ml and 50 mM acetate buffer.
It shows the residual activity after treatment at pH 5.0, 40 ° C. for 30 minutes.

【0027】[0027]

【表3】 [Table 3]

【0028】9 分子量:約98,000(SDS-ポリアクリル
アミド電気泳動法による)
9 molecular weight: about 98,000 (by SDS-polyacrylamide gel electrophoresis)

【0029】10 等電点:約2.910 Isoelectric point: about 2.9

【0030】11 活性測定法 分岐デキストリン DE7〜9(参松工業(株)製) 0.4%
(w/v)と0.05N酢酸緩衝液(pH5.0)を溶解した基質6
mlに酵素液1.0mlを加えて50℃にて30分間反応後、2ml
の0.4Mトリクロロ酢酸-0.25N硫酸溶液を加えて混合後、
0.005Nヨウ素溶液1mlを加え、混和後25℃で15分間放置
する。
11 Activity measuring method Branched dextrin DE7-9 (manufactured by Sanmatsu Industry Co., Ltd.) 0.4%
(W / v) and 0.05N acetate buffer (pH 5.0) dissolved substrate 6
Add 1.0 ml of enzyme solution to ml and react at 50 ° C for 30 minutes, then 2 ml
0.4M trichloroacetic acid-0.25N sulfuric acid solution was added and mixed,
Add 1 ml of 0.005N iodine solution, mix, and leave at 25 ° C for 15 minutes.

【0031】この液について610nmにおける吸光度
(E30)を測定する。ブランクとして0.4Mトリクロロ酢
酸-0.25N酢酸溶液に酵素を入れて攪拌後基質6mlを加え
る。
The absorbance (E 30 ) at 610 nm of this solution is measured. As a blank, the enzyme was added to a 0.4 M trichloroacetic acid-0.25 N acetic acid solution, and after stirring, 6 ml of a substrate was added.

【0032】次に0.005Nヨウ素溶液1.0mlを加えてよく
混合後、25℃にて15分間放置後、610nmの吸光度(E0
を測定する。
Next, 1.0 ml of 0.005N iodine solution was added and mixed well, and after leaving at 25 ° C. for 15 minutes, the absorbance at 610 nm (E 0 )
Is measured.

【0033】枝切り酵素活性1単位が、上記条件下にお
いて1.0の吸光度の増加をもたらす酵素量とし、次式よ
り求められる。 枝切り酵素活性(u/ml)=希釈倍数 × (E30−E0)/1.0 E30:反応液の吸光度 E0:対象の吸光度
One unit of the debranching enzyme activity is the amount of the enzyme that causes an increase in the absorbance of 1.0 under the above conditions, and is calculated from the following equation. Debranching enzyme activity (u / ml) = dilution × (E 30 -E 0) /1.0 E 30: reaction absorbance E 0: target absorbance

【0034】本発明の枝切り酵素をコードするDNA断
片は、上述したバチルス・エスピーAPC-9603より産生さ
れうる枝切り酵素の活性を有していて配列表の配列番
号:1に記載のアミノ酸配列又はその一部及びそれらと
相同的なアミノ酸配列を含む枝切り酵素をコードするD
NA断片を含むことを特徴とする。ここで「その一部及
びそれらと相同的な」とは、枝切り酵素の活性を有する
限り、配列表の配列番号:1に示したアミノ酸配列につ
いてアミノ酸のいくつかの欠失、挿入、置換等があって
もよいことを示すものである。
The DNA fragment encoding the debranching enzyme of the present invention has the activity of the debranching enzyme which can be produced by the above-mentioned Bacillus sp. APC-9603, and has the amino acid sequence set forth in SEQ ID NO: 1 in the sequence listing. Or a part thereof and D encoding a debranching enzyme containing an amino acid sequence homologous thereto
It is characterized in that it contains an NA fragment. Here, "a part and homologous thereto" means that, as long as it has the activity of debranching enzyme, some deletions, insertions, substitutions, etc. of amino acids in the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing. Indicates that there may be.

【0035】本発明のDNAには、配列表の配列番号:
2に示した3934塩基からなるDNAが含まれること
はいうまでもないが、本願発明はこれに限られるもので
はない。なお、DNAがコードするアミノ酸配列につい
てアミノ酸のいくつかの欠失、挿入、置換等を生じるよ
うにDNAを改変することは、合成オリゴヌクレオチド
を用いた部位特異的変異導入法など、周知の方法で適宜
行うことができる。
For the DNA of the present invention, SEQ ID NO: in the sequence listing:
It goes without saying that the DNA consisting of 3934 bases shown in 2 is included, but the present invention is not limited to this. It should be noted that the modification of DNA so as to cause some deletions, insertions, substitutions, etc. of amino acids in the amino acid sequence encoded by DNA is carried out by a well-known method such as a site-directed mutagenesis method using synthetic oligonucleotides It can be performed appropriately.

【0036】また、枝切り酵素の全遺伝子は、少なくと
も転写に必要なプロモーター領域配列、分泌に関与する
シグナル配列、成熟枝切り酵素をコードするヌクレオチ
ド配列及び、転写、転移終結領域を含む。
Further, the whole gene of the debranching enzyme contains at least a promoter region sequence required for transcription, a signal sequence involved in secretion, a nucleotide sequence encoding a mature debranching enzyme, and a transcription and transfer termination region.

【0037】更に、本発明のDNA断片は少なくともバ
チルス・エスピー APC-9603の枝切り酵素の成熟蛋白を
コードするヌクレオチド配列及び分泌を可能とするシグ
ナル配列及び転写プロモーターと転写終結領域を含むこ
とが好ましい。
Further, the DNA fragment of the present invention preferably contains at least a nucleotide sequence encoding the mature protein of the debranching enzyme of Bacillus sp. APC-9603, a signal sequence enabling secretion, a transcription promoter and a transcription termination region. .

【0038】本発明において修飾枝切り酵素とは、アミ
ノ酸配列において少なくとも1個のアミノ酸が野生型酵
素と異なる酵素をいい、これらの修飾は、DNAの変異
誘発の慣用的な手法、例えば、紫外線照射、亜硝酸、ヒ
ドロキシルアミン、N−メチル−N’−ニトロ−N−ニ
トロソグアニジンによる処理、又は遺伝子工学的手法
〔Molcular cloning-alaboratory manual、Samnrook,
F. Ritsah, Maniatis-secound edition(1989)〕により
行うことが出来る。
In the present invention, the modified debranching enzyme means an enzyme in which at least one amino acid differs from the wild-type enzyme in the amino acid sequence, and these modifications are carried out by a conventional method for mutagenesis of DNA, for example, ultraviolet irradiation. , Treatment with nitrous acid, hydroxylamine, N-methyl-N'-nitro-N-nitrosoguanidine, or a genetic engineering method [Molcular cloning-alaboratory manual, Samnrook,
F. Ritsah, Maniatis-secound edition (1989)].

【0039】微生物中において、本発明の遺伝子を発現
させるためには、まず微生物中において安定に存在する
プラスミドベクターやファージベクター中にこの遺伝子
を挿入する必要がある。また、本発明のDNAを微生物
中で発現させるためには、それが有する遺伝情報を転写
・翻訳させる必要がある。そのためには、転写・翻訳を
制御するユニットにあたるプロモーターを本発明のDN
Aの5'−側上流に、ターミネーターを3'−側下流に、そ
れぞれ組み込めばよい。このプロモーター、ターミネー
ターとしては、宿主として利用する微生物中において機
能することが知られているプロモーター、ターミネータ
ーを用いる必要がある。
In order to express the gene of the present invention in a microorganism, it is first necessary to insert this gene into a plasmid vector or phage vector which is stably present in the microorganism. Further, in order to express the DNA of the present invention in a microorganism, it is necessary to transcribe / translate the genetic information contained therein. For that purpose, a promoter corresponding to a unit that controls transcription / translation should be a DN of the present invention.
The terminator may be incorporated in the upstream of 5′-side of A and in the downstream of 3′-side, respectively. As the promoter and terminator, it is necessary to use a promoter and terminator known to function in the microorganism used as the host.

【0040】例えば、バチルス属においては、ベクター
としてpUB110系プラスミド、pC194系プラスミドなどが
利用可能であり、染色体に直接挿入させることもでき
る。また、プロモーター、ターミネーターとしてapr
(アルカリプロテアーゼ)、npr(中性プロテアー
ゼ)、amy(α−アミラーゼ)などが利用できる。
For example, in the genus Bacillus, pUB110 series plasmids, pC194 series plasmids and the like can be used as vectors, and they can be directly inserted into the chromosome. Also, apr as a promoter and terminator
(Alkaline protease), npr (neutral protease), amy (α-amylase) and the like can be used.

【0041】本発明においては、バチルス・エスピー
N-2(FERM P-8809)のセルラーゼをコードする全遺伝子
中の転写プロモーター及び分泌シグナル配列を利用する
ことがより好ましい。
In the present invention, Bacillus sp.
More preferably, the transcription promoter and secretory signal sequence in the entire gene encoding the cellulase of N-2 (FERM P-8809) are used.

【0042】即ち、成熟枝切り酵素をコードする構造遺
伝子を転写プロモーター及び分泌シグナル配列の下流に
連結することが好ましい。
That is, it is preferable to connect the structural gene encoding the mature debranching enzyme downstream of the transcription promoter and secretion signal sequence.

【0043】更に本発明は、枝切り酵素をコードする該
遺伝子工学的手法により、導入されている組換え体菌株
をも提供する。この遺伝子は、プラスミドに連結されて
宿主菌に導入される。
Further, the present invention also provides a recombinant strain which has been introduced by the genetic engineering method encoding a debranching enzyme. This gene is ligated to a plasmid and introduced into a host bacterium.

【0044】本発明において形質転換の対象となる微生
物は、枝切り酵素活性を有するポリペプチドをコードす
るDNAにより形質転換され、枝切り酵素活性を発現す
ることができる微生物であればいかなるものでもよく、
具体的には、イシェリヒア(Escherichia) 属,バチルス
(Bacillus)属,シュードモナス(Pseudomonas) 属,、ペ
ニシリウム(Penicillium)属、セラチア(Serratia)
属,ブレビバクテリウム(Brevibacterium)属,コリネバ
クテリイウム(Corynebacterium) 属、ストレプトコッカ
ス(Streptococcu)属、ラクトバチルス(Lactobacillus)
属など宿主−ベクター系の開発されている細菌、サッカ
ロマイセス(Saccharomyces) 属,クライベロマイセス(K
luyveromyces) 属,シゾサッカロマイセス(Schizosacch
aromyces)属,チゴサッカロマイセス属(Zygosaccharomy
ces) 、ヤロウイア(Yarrowia)属、トリコスポロン(Tric
hosporon)属、ロドスポリジウム(Rhodosporidium)属、
ハンゼヌラ(Hansenula) 属、ピキア(Pichia)属、キャン
ディダ(Candida) 属などの酵母、ノイロスポラ(Neurosp
ora)属、アスペルギルス(Aspergillus) 属、セファロス
ポリウム(Cephalosporium)属、トリコデルマ(Trichoder
ma) 属などに属するカビなどが含まれる。
The microorganism to be transformed in the present invention may be any microorganism as long as it is transformed with a DNA encoding a polypeptide having a debranching enzyme activity and can express the debranching enzyme activity. ,
Specifically, the genus Escherichia, Bacillus
(Bacillus) genus, Pseudomonas genus, Penicillium genus, Serratia
Genus, Brevibacterium genus, Corynebacterium genus, Streptococcu genus, Lactobacillus
Kleberomyces (Saccharomyces), a bacterium for which a host-vector system such as a genus has been developed,
genus luyveromyces, Schizosacch
aromyces), Zygosaccharomyces
ces), Yarrowia spp., Trichosporon (Tric
hosporon) genus, Rhodosporidium genus,
The yeasts of the genera Hansenula, Pichia, Candida, etc., Neurospora (Neurospora)
ora), Aspergillus, Cephalosporium, Trichoderma
ma) Includes molds that belong to the genus.

【0045】好ましい宿主としては、バチルス属細菌、
又はアスペルギルス属やペニシリウム属の糸状菌を含む
群より選択される。より好ましくは、バチルス属細菌か
ら選択されることが好ましい。
As a preferred host, a bacterium of the genus Bacillus,
Alternatively, it is selected from the group including filamentous fungi of the genus Aspergillus and the genus Penicillium. More preferably, it is preferably selected from Bacillus bacteria.

【0046】宿主は、枯草菌、バチルス・リケニホルミ
ス、バチルス・プミラス、バチルス・アミロリクェファ
シエンス、バチルス・レンタス等より選ばれることが特
に好ましい。良好な結果は、本発明の枝切り酵素の発現
のための宿主が、バチルス・サチルスIA289株である際
に得られた。
The host is particularly preferably selected from Bacillus subtilis, Bacillus licheniformis, Bacillus pumilas, Bacillus amyloliquefaciens, Bacillus lentus and the like. Good results have been obtained when the host for expression of the debranching enzyme of the present invention is Bacillus subtilis strain IA289.

【0047】形質転換体の作製のための手順ないし方法
は、通常の分子生物学、生物工学、遺伝子工学の分野に
おいて慣用されている技術に準じて行うことができる。
The procedure or method for producing a transformant can be carried out according to the techniques commonly used in the fields of ordinary molecular biology, biotechnology and genetic engineering.

【0048】本発明は、又、当該組換え菌の培養による
枝切り酵素の調製方法であって、枝切り酵素をコードす
るDNA断片を単離し、このDNA断片を適切なベクタ
ーに挿入し、さらにこのベクターを適切な宿主に導入し
て得た形質転換体を培養し、枝切り酵素遺伝子を発現さ
せ、培養液中に生産された枝切り酵素を回収することを
含む方法も提供する。
The present invention also provides a method for preparing a debranching enzyme by culturing the recombinant bacterium, which comprises isolating a DNA fragment encoding the debranching enzyme, inserting the DNA fragment into an appropriate vector, and Also provided is a method comprising culturing a transformant obtained by introducing this vector into an appropriate host, expressing a debranching enzyme gene, and recovering the debranching enzyme produced in the culture solution.

【0049】以下、実施例を挙げて本発明を更に具体的
に説明するが、本発明はそれら実施例に限定されるもの
ではない。以下、特に記載しない限り、%はW/Vで記載
する。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Hereinafter, unless otherwise stated,% is expressed in W / V.

【0050】[0050]

【実施例】【Example】

実施例1 枝切り酵素の調製と精製 バチルス・エスピー APC-9603(FREM BP-4204)をMB培
地ミーストP1G(アサヒビール社製)1.5%、分岐デキス
トリン 2.5%、KH2PO4 0.1%、MgSO4・7H2O 0.03%、FeS
O4・7H2O 0.01%、(NH4)2SO4 0.025%(pH5.3)にて37℃
で通気攪拌しながら培養を行う。
Example 1 Preparation and purification of debranching enzyme Bacillus sp. APC-9603 (FREM BP-4204) was prepared using MB medium Mist P1G (Asahi Breweries) 1.5%, branched dextrin 2.5%, KH 2 PO 4 0.1%, MgSO 4・ 7H 2 O 0.03%, FeS
O 4 · 7H 2 O 0.01% , 37 ℃ at (NH 4) 2 SO 4 0.025 % (pH5.3)
Culture with aeration and stirring.

【0051】65時間培養した後、遠心分離(KUBOTA RA
8、5000rpm, 30分間)を行い、遠心上清を粗枝切り酵素
液として回収する。
After culturing for 65 hours, centrifugation (KUBOTA RA
(8, 5000 rpm, 30 minutes) and collect the supernatant as crude debranching enzyme solution.

【0052】次いで、限外ろ過により濃縮し、枝切り酵
素濃縮液を得る。得られた濃縮枝切り酵素液をα-CD
(サイクロデキストリン)セファロースにかけて該酵素
を吸着させた後、0.2% γ-CD,50mM酢酸緩衝液(pH5.
5)にて溶出し、活性を持つ画分を分取した。
Then, the solution is concentrated by ultrafiltration to obtain a debranching enzyme concentrate. The resulting concentrated debranching enzyme solution is α-CD
(Cyclodextrin) Sepharose to adsorb the enzyme, and then 0.2% γ-CD, 50 mM acetate buffer (pH 5.
Elution was carried out in 5) and the active fraction was collected.

【0053】得られた溶離液を10mM リン酸(KH2PO4-K2
HPO4)緩衝液(pH6.0)に対して一夜、透析した後MonoQ
カラム(ファルマシア社製)に吸着させ、NaCl 60〜200
mMのリニアグラディエントで溶出した。
The obtained eluent was mixed with 10 mM phosphoric acid (KH 2 PO 4 -K 2
MonoQ after dialysis against HPO 4 ) buffer (pH 6.0) overnight
Adsorbed on a column (Pharmacia), NaCl 60-200
Elution was performed with a linear gradient of mM.

【0054】主ピークを回収し、得られた溶離液につい
て10mM 酢酸緩衝液(pH5.5)に対して透析を行い、精製
枝切り酵素を得た。得られた枝切り酵素についてSDS-ポ
リアクリルアミドゲル電気泳動を行ったところ、単一の
バンドであることが確認された。
The main peak was collected, and the obtained eluate was dialyzed against 10 mM acetate buffer (pH 5.5) to obtain a purified debranching enzyme. When the obtained debranching enzyme was subjected to SDS-polyacrylamide gel electrophoresis, it was confirmed to be a single band.

【0055】実施例2 バチルス・エスピー APC-9603
の産生する枝切り酵素遺伝子のクローニング α-1,6-グルコシダーゼの生産菌であるバチルス・エス
ピー APC-9603(FREMBP-4204)を1% ミーストP1G
(アサヒビール社製)、1.5% 分岐デキストリン(参松
工業社製)、0.1% リン酸1カリウム、0.05% 硫酸マ
グネシウム・7水塩、0.01% 硫酸第一鉄・7水塩、0.0
25% 硫酸アンモニウム(pH5.2)からなる培地100mlを
用いて37℃、24時間振盪培養した。
Example 2 Bacillus sp. APC-9603
Cloning of Debranching Enzyme Gene Produced by Bacillus sp. APC-9603 (FREMBP-4204), a α-1,6-Glucosidase-Producing Bacterium
(Manufactured by Asahi Breweries), 1.5% branched dextrin (manufactured by Sanmatsu Kogyo Co., Ltd.), 0.1% potassium phosphate, 0.05% magnesium sulfate heptahydrate, 0.01% ferrous sulfate heptahydrate, 0.0
100 ml of a medium consisting of 25% ammonium sulfate (pH 5.2) was used and cultured with shaking at 37 ° C. for 24 hours.

【0056】培養終了後、遠心分離により集菌して得た
菌体からSaito等の方法〔Biochim.Biophys. Acta、72
619-629(1963)〕によって染色体DNAを得た。
After the completion of the culture, the cells obtained by collecting the cells by centrifugation are subjected to the method of Saito et al. [Biochim. Biophys. Acta, 72 ,
619-629 (1963)] to obtain chromosomal DNA.

【0057】得られた染色体DNAを制限酵素Sau3AI
(宝酒造社製)で部分分解して得たDNAと、制限酵素
BamHI(宝酒造社製)で分解後脱リン酸化して得たpUC11
8(宝酒造社製)をDNAライゲーションキット(宝酒
造社製)により連結した。
The obtained chromosomal DNA was digested with the restriction enzyme Sau3AI
DNA partially digested with (Takara Shuzo) and restriction enzyme
PUC11 obtained by dephosphorylation after digestion with BamHI (Takara Shuzo)
8 (Takara Shuzo) was ligated with a DNA ligation kit (Takara Shuzo).

【0058】この連結反応産物を用いて、大腸菌DH5
を形質転換し、アンピシリン耐性形質転換体を得た。得
られたアンピシリン耐性形質転換コロニーを滅菌したろ
紙(アドバンテック東洋社製)に移した後、Tsukagoshi
等の方法〔Mol. Gen. Genet.、193、58-63(1984)〕によ
り溶菌させた後、Rinder Knecht等の方法〔Experimenti
a、23、805(1967)〕に準じて作成したプルランの着色誘
導体(プルランレッド)1%を含む寒天平板培地に重層
した後、37℃で一晩放置し、プルランレッドを分解して
ハローを形成する形質転換株を得た。この形質転換株の
保持するプラスミドをpBC24と命名した。
Using this ligation product, E. coli DH5
Was transformed to obtain an ampicillin-resistant transformant. The obtained ampicillin-resistant transformed colonies were transferred to sterilized filter paper (manufactured by Advantech Toyo Co., Ltd.), and then Tsukagoshi
And the like [Mol. Gen. Genet., 193 , 58-63 (1984)], followed by Rinder Knecht et al. [Experimenti
a, 23 , 805 (1967)], and layered on an agar plate medium containing 1% of a colored derivative of pullulan (pullulan red), and allowed to stand overnight at 37 ° C to decompose pullulan red to form halo. A transformant strain was obtained. The plasmid contained in this transformant was designated as pBC24.

【0059】実施例3 アミノ酸配列の決定 N末端アミノ酸配列の決定 実施例1において得られた精製枝切り酵素を、固相法に
よるプロテインシークエンサーによりアミノ酸配列を決
定した。決定された配列は、アミノ−カルボキシルの向
きに左から右に配列番号:3に示す通りである。
Example 3 Determination of amino acid sequence Determination of N-terminal amino acid sequence The purified debranching enzyme obtained in Example 1 was determined for its amino acid sequence by a protein sequencer by the solid phase method. The determined sequence is as shown in SEQ ID NO: 3 from left to right in the amino-carboxyl orientation.

【0060】枝切り酵素のアミノ酸配列の決定 実施例2で得られた枝切り酵素をコードする遺伝子を含
むプラスミドpBC24からSau3AIで切り出される約4.0Kbの
DNA断片のヌクレオチド配列をアプライドバイオシス
テムズ社製のDNAシークエンスキット及びDNAシー
クエンサー373Aを用いて決定した。
Determination of Amino Acid Sequence of Debranching Enzyme The nucleotide sequence of a DNA fragment of about 4.0 Kb which was excised with Sau3AI from the plasmid pBC24 containing the gene encoding the debranching enzyme obtained in Example 2 was prepared by Applied Biosystems. Determined using the DNA Sequence Kit and DNA Sequencer 373A.

【0061】この配列の解析からATGから始まり2853bas
esからなるオープンリーディングフレームの存在が示さ
れた。このオープンリーディングフレームを翻訳して得
られたアミノ酸配列中に枝切り酵素のN末端アミノ酸配
列と一致する配列が存在していることが確認された。こ
の結果から枝切り酵素は29個のアミノ酸からなるプレ配
列を持つ前駆体として合成されることが明らかとなっ
た。
Analysis of this sequence begins with ATG 2853bas
The existence of an open reading frame consisting of es was shown. It was confirmed that a sequence corresponding to the N-terminal amino acid sequence of the debranching enzyme was present in the amino acid sequence obtained by translating this open reading frame. From this result, it was revealed that the debranching enzyme was synthesized as a precursor having a pre-sequence consisting of 29 amino acids.

【0062】このプレ配列は蛋白質の細胞外への分泌に
関与する分泌シグナル配列の特徴を示している。〔Freu
dl, Journal of Biotechnology、23、231-240(199
2)〕。この29個のアミノ酸配列は配列番号:4に示す通
りである。
This pre-sequence is characteristic of the secretory signal sequence involved in the extracellular secretion of the protein. (Freu
dl, Journal of Biotechnology, 23 , 231-240 (199
2)]. The 29 amino acid sequence is shown in SEQ ID NO: 4.

【0063】実施例4 アミノ酸分布 枝切り酵素のアミノ酸配列(実施例3の)から求め
た、成熟枝切り酵素のアミノ酸分布を表4にまとめる。
Example 4 Amino Acid Distribution Table 4 summarizes the amino acid distribution of the mature debranching enzyme determined from the amino acid sequence of the debranching enzyme (of Example 3).

【0064】[0064]

【表4】 [Table 4]

【0065】実施例5 プラスミドの作成及び形質転換
体による枝切り酵素の生産 pBC24を制限酵素EcoRIで切断した後脱リン酸して得たpB
C24-RI-BAPと、pUB110(枯草菌用ベクター)をEcoRIで
切断して得たDNA断片をDNAライゲーションキット
(宝酒造社製)により連結した。連結反応液を用いて、
大腸菌DH5を形質転換し、得られたアンピシリン耐性
形質転換株から、大腸菌、枯草菌で複製可能で且つバチ
ルス・エスピー APC-9603由来の枝切り酵素遺伝子を含
むプラスミドpUBC24(図6)を得た。
Example 5 Construction of plasmid and production of debranching enzyme by transformant pB24 obtained by cleaving pBC24 with restriction enzyme EcoRI and dephosphorylating
A DNA fragment obtained by cleaving C24-RI-BAP and pUB110 (vector for Bacillus subtilis) with EcoRI was ligated with a DNA ligation kit (Takara Shuzo). Using the ligation reaction solution,
Escherichia coli DH5 was transformed, and a plasmid pUBC24 (FIG. 6) which was capable of replicating in Escherichia coli and Bacillus subtilis and which contained a debranching enzyme gene derived from Bacillus sp. APC-9603 was obtained from the obtained transformant resistant to ampicillin.

【0066】pUBC24を用いて枯草菌IA289株をプロトプ
ラスト法〔S. Chang, S.N.Choen, Mol.Gen. Genet.、16
8、111-115(1978)〕により形質転換し、組換え枯草菌IA
289(pUBC24)株を取得した。得られた組換え枯草菌IA289
(pUBC24)をTS培地〔1.0% トリプトン、0.75% SMSペプ
チド(不二製油社製)、0.5% NaCl、0.25% K2HPO4
0.02% MgSO4、0.75% グルコース(pH7.0)〕にて37℃
24時間振盪培養により、培地1mlあたり6.8単位の枝切
り酵素を生成した。
The Bacillus subtilis IA289 strain was subjected to the protoplast method using pUBC24 [S. Chang, SNChoen, Mol. Gen. Genet., 16
8 , 111-115 (1978)] and transformed into recombinant Bacillus subtilis IA
289 (pUBC24) strain was acquired. Obtained recombinant Bacillus subtilis IA289
(pUBC24) in TS medium [1.0% tryptone, 0.75% SMS peptide (manufactured by Fuji Oil Co., Ltd.), 0.5% NaCl, 0.25% K 2 HPO 4 ,
0.02% MgSO 4 , 0.75% glucose (pH 7.0)] at 37 ° C
Shaking culture for 24 hours produced 6.8 units of debranching enzyme per ml of medium.

【0067】実施例6 セルラーゼ遺伝子のクローニン
グ バチルス・エスピー N-2(FERM P-8809)を1% トリ
プトン(ディフコ社製)、0.5% 酵母エキス(ディフコ
社製)、0.05M Sucrose、1% Na2CO3からなる培地200m
lを用いて37℃で16時間振盪培養した。
Example 6 Cloning of Cellulase Gene Bacillus sp. N-2 (FERM P-8809) was supplemented with 1% tryptone (manufactured by Difco), 0.5% yeast extract (manufactured by Difco), 0.05M Sucrose, 1% Na 2 200 m of CO 3 medium
The cells were cultivated with shaking at 37 ° C. for 16 hours.

【0068】培養終了後、遠心分離(KUBOTA RA6、8000
rpm, 10min)して集めた菌体から実施例2と同様にSait
o等の方法によって染色体DNAを得た。
After culturing, centrifugation (KUBOTA RA6, 8000
rpm, 10 min) and collected from the bacterial cells in the same manner as in Example 2.
Chromosomal DNA was obtained by the method described in o.

【0069】得られた染色体DNA 5μgを制限酵素Hi
ndIII(宝酒造社製)で部分分解した。次いでこれをHin
dIIIで分解後脱リン酸したプラスミドpBR322 1μgと混
合し、DNAライゲーションキット(宝酒造社製)によ
り連結反応を行った。
5 μg of the obtained chromosomal DNA was digested with the restriction enzyme Hi.
Partially decomposed with ndIII (Takara Shuzo). Then this is Hin
The mixture was mixed with 1 μg of plasmid pBR322 that had been dephosphorylated after digestion with dIII and ligated using a DNA ligation kit (Takara Shuzo).

【0070】この連結反応物を用いて大腸菌HB101株をH
anahan等の方法〔Douglas Hanahan,DNA Cloning、、1
09-135〕に従って形質転換・処理した。処理後の菌液を
100μg/ml アンピシリン(シグマ社製)を含むLB寒天培
地〔1% トリプトン(ディフコ社製)、0.5% 酵母エ
キス(ディフコ社製)、1.0% NaCl、1.5% 寒天(和光
純薬工業社製)〕に塗布し、37℃で一晩培養した。
The ligation product was used to transform E. coli HB101 strain into H
anahan et al. [Douglas Hanahan, DNA Cloning, 1 , 1
09-135]. Bacterial fluid after treatment
LB agar medium containing 100 μg / ml ampicillin (manufactured by Sigma) [1% tryptone (manufactured by Difco), 0.5% yeast extract (manufactured by Difco), 1.0% NaCl, 1.5% agar (manufactured by Wako Pure Chemical Industries)] And was cultured overnight at 37 ° C.

【0071】出現したアンピシリン耐性形質転換株のコ
ロニーをLB・CMC・寒天培地〔LB寒天、1% カルボキシメ
チルセルロース(CMC)(東京化成社製)、100μg/ml
アンピシリン〕にレプリカし、37℃で16時間培養し、コ
ロニー周辺のCMCの分解をコンゴーレッド法〔R.M.Teath
er, P.J.Wood., Appl. Environ. Microbiol.、43、777-
780(1982)〕を用いて確認し、セルラーゼ遺伝子をクロ
ーン化した大腸菌形質転換株を得た。
A colony of the ampicillin-resistant transformant that appeared was LB / CMC / agar medium [LB agar, 1% carboxymethyl cellulose (CMC) (manufactured by Tokyo Kasei), 100 μg / ml.
Ampicillin] and cultured at 37 ° C for 16 hours to decompose CMC around the colony using the Congo red method [RM Teath
er, PJWood., Appl. Environ. Microbiol., 43 , 777-
780 (1982)], and an Escherichia coli transformant in which the cellulase gene was cloned was obtained.

【0072】実施例7 実施例6で得た組換え大腸菌の保持する組換えプラスミ
ドを常法〔例えば、T.Maniatis等, Molecular Cloning,
Spring Cold Harbar Laboratry(1982)〕に従って分離
し、各種制限酵素の認識部位の解析をアガロースゲル電
気泳動法〔J.A.Meyer等, J.Bacteriol.、127、1529-153
7(1976)〕により行うとともにサブクローニングを行っ
た結果、セルラーゼ遺伝子がHindIII-ScaIで切り出され
る約1.7KbのDNA断片上に存在することが明らかとな
った。
Example 7 The recombinant plasmid harbored by the recombinant Escherichia coli obtained in Example 6 was prepared by a conventional method [eg, T. Maniatis et al., Molecular Cloning,
Spring Cold Harbar Laboratry (1982)] and analyzed the recognition sites of various restriction enzymes by agarose gel electrophoresis [JA Meyer et al., J. Bacteriol., 127 , 1529-153.
7 (1976)] and subcloning, it was revealed that the cellulase gene exists on a DNA fragment of about 1.7 Kb cut out with HindIII-ScaI.

【0073】このDNA断片を含むプラスミドをpCN21
2、pCN212を保持する大腸菌HB101株をHB101(pCN212)株
と命名した。
The plasmid containing this DNA fragment was designated as pCN21.
2. The E. coli HB101 strain retaining pCN212 was designated as HB101 (pCN212) strain.

【0074】pCN212の挿入DNA断片約1.7Kb HindIII-
ScaI領域をサンガー法〔F.Sanger等, Proc. Natl. Aca
d. Sci. U.S.A.、74、5463-5467(1977)〕により決定
し、1227bpからなるセルラーゼの構造遺伝子を見い出し
た。
Inserted DNA fragment of pCN212 About 1.7 Kb HindIII-
The ScaI region was modified by the Sanger method [F. Sanger et al., Proc. Natl. Aca
d. Sci. USA, 74 , 5463-5467 (1977)] and found a structural gene of cellulase consisting of 1227 bp.

【0075】この構造遺伝子から推定されるアミノ酸配
列のN末端には分泌型蛋白質に特徴的なシグナルペプチ
ド様の配列が認められた。又、翻訳開始点(ATG)上流
にはリボゾーム結合部位(SD配列)が認められた。
At the N-terminal of the amino acid sequence deduced from this structural gene, a signal peptide-like sequence characteristic of a secretory protein was observed. A ribosome binding site (SD sequence) was found upstream of the translation initiation point (ATG).

【0076】実施例8 セルラーゼ遺伝子の枯草菌での
発現 実施例6で示されたScaI−HindIIIで切り出される約1.7
Kbのセルラーゼ遺伝子を含むDNA断片をpUBH1〔F.Kaw
amura, R.H.Doi, J. Bacteriol.、160(1)、422-444(198
4)〕のHindIII-EcoRV部位に挿入連結した。得られた枯
草菌RM125株(hsdR, hsdM, arg15, leuB8)の形質転換
をプロトプラスト法〔S.Chang, S.N.Choen., Mol.Gen.
Gent.、168、111-115(1978)〕に従って行い、300μg/ml
のカナマイシンを含むプロトプラスト再生用培地、DM3
培地〔0.5% コハク酸ナトリウム(pH7.3)、0.5% カ
ザミノ酸(ディフコ社製)、0.5% 酵母エキス(ディフ
コ社製)、0.35% K2HPO4、0.15% KH2PO4、0.5%グル
コース、20mM MgCl2,0.01% 牛血清アルブミン(シグ
マ社製)〕を用いて、形質転換した。この結果、組換え
プラスミドを含む組換え枯草菌RM125(pCNU212)株を取
得した。
Example 8 Expression of Cellulase Gene in Bacillus subtilis About 1.7 excised with ScaI-HindIII shown in Example 6
A DNA fragment containing the Kb cellulase gene was cloned into pUBH1 [F.Kaw
amura, RHDoi, J. Bacteriol., 160 (1), 422-444 (198
4)] was inserted and ligated into the HindIII-EcoRV site. Transformation of the obtained Bacillus subtilis RM125 strain (hsdR, hsdM, arg15, leuB8) was carried out by the protoplast method [S. Chang, SNChoen., Mol. Gen.
Gent., 168 , 111-115 (1978)], 300 μg / ml
DM3, a protoplast regeneration medium containing kanamycin
Medium [0.5% sodium succinate (pH 7.3), 0.5% casamino acid (manufactured by Difco), 0.5% yeast extract (manufactured by Difco), 0.35% K 2 HPO 4 , 0.15% KH 2 PO 4 , 0.5% glucose] , 20 mM MgCl 2 , 0.01% bovine serum albumin (manufactured by Sigma)]. As a result, a recombinant Bacillus subtilis RM125 (pCNU212) strain containing the recombinant plasmid was obtained.

【0077】得られたRM125(pCNU212)株及びプラスミ
ドベクターpUBH1を保持するRM125(pUBH1)株を5μg/m
lのカナマイシンを含む培地〔5.0% 溶性デンプン、2.0
%ポリペプトン、2.0% プロテンF(味の素社製)、0.
5% 肉エキス、0.2% 酵母エキス、0.3% KH2PO4、1%
K2HPO4、0.2% NaCl、0.1% MgSO4(pH7.0)〕にて37
℃で48時間振盪培養し、培養液中のセルラーゼ活性を測
定したところ、RM125(pCNU212)株はRM125(pUBH1)株
の270倍のセルラーゼ生産性を示した。
The obtained RM125 (pCNU212) strain and RM125 (pUBH1) strain carrying the plasmid vector pUBH1 were added at 5 μg / m 2.
Medium containing l kanamycin [5.0% soluble starch, 2.0
% Polypeptone, 2.0% Proten F (manufactured by Ajinomoto Co.), 0.
5% meat extract, 0.2% yeast extract, 0.3% KH 2 PO 4 , 1%
K 2 HPO 4 , 0.2% NaCl, 0.1% MgSO 4 (pH 7.0)] 37
When the cellulase activity in the culture solution was measured by shaking culture at 48 ° C. for 48 hours, the RM125 (pCNU212) strain showed 270 times more cellulase productivity than the RM125 (pUBH1) strain.

【0078】[0078]

【表5】 [Table 5]

【0079】この結果から、バチルス・エスピー N-2
のセルラーゼ遺伝子は、枯草菌において自身のプロモー
ターにより効率よく発現し、その遺伝子産物を分泌する
ことが明らかになった。
From these results, Bacillus sp. N-2
It was revealed that the cellulase gene of Bacillus subtilis was efficiently expressed in Bacillus subtilis by its promoter and secreted the gene product.

【0080】実施例9 バチルス・エスピー N-2株由来のセルラーゼ遺伝子プ
ロモーター及びシグナルペプチド下流に、バチルス・エ
スピー APC-9603株由来の枝切り酵素遺伝子の成熟蛋白
をコードする領域を連結する目的で、セルラーゼ遺伝子
及び枝切り酵素遺伝子内部に新しく制限酵素Aor51HI認
識部位を構築する。
Example 9 For the purpose of linking the region encoding the mature protein of the debranching enzyme gene derived from Bacillus sp. APC-9603 strain, to the downstream of the cellulase gene promoter and signal peptide derived from Bacillus sp. N-2 strain, A new restriction enzyme Aor51HI recognition site is constructed inside the cellulase gene and debranching enzyme gene.

【0081】それぞれの遺伝子に変異を起こさせるオリ
ゴヌクレオチド(セルラーゼ遺伝子用:ヌクレオチド
1、枝切り酵素遺伝子用:ヌクレオチド2)は以下の様
に作成した。
Oligonucleotides (for cellulase gene: nucleotide 1, for debranching enzyme gene: nucleotide 2) for mutating each gene were prepared as follows.

【0082】ヌクレオチド1:5'-ATAGGAAACACGAGCGCTG
CTGATGATTATTC-3' ヌクレオチド2:5'-TTTCAAAGGCCAGCGCTCATGCGGACGGAAC
G-3'
Nucleotide 1: 5'-ATAGGAAACACGAGCGCTG
CTGATGATTATTC-3 'nucleotide 2: 5'-TTTCAAAGGCCAGCGCTCATGCGGACGGAAC
G-3 '

【0083】これら2種のオリゴヌクレオチドを用い
て、KunKel法によりそれぞれの遺伝子に変異を導入した
〔Kunkel,T.A.等, Methods in Enzymology、154、367(1
987)〕。KunKel法は、Mutan-Kキット(宝酒造社製)を
用いて行い、操作はそのプロトコールに従った。
Mutations were introduced into each gene by the KunKel method using these two kinds of oligonucleotides [Kunkel, TA et al., Methods in Enzymology, 154 , 367 (1).
987)]. The KunKel method was carried out using a Mutan-K kit (manufactured by Takara Shuzo Co., Ltd.), and the operation followed the protocol.

【0084】即ち、実施例2で得たpBC24をBamHI-HindI
IIで切断し、枝切り酵素遺伝子のプロモーターとN末端
領域を含む937bpのDNA断片をM13mp19ファージDNAに
クローン化した後、常法に従って、一本鎖DNAを調整
し、これを鋳型としてヌクレオチド2を用いて変異を導
入した。
That is, pBC24 obtained in Example 2 was replaced with BamHI-HindI.
After cutting with II, a 937 bp DNA fragment containing the promoter of the debranching enzyme gene and the N-terminal region was cloned into M13mp19 phage DNA, and single-stranded DNA was prepared according to a conventional method. Was used to introduce mutations.

【0085】又、実施例7で得たpCN212から得られる42
6bpのEcoRI-BamHI消化断片をM13ファージmp19にクロー
ン化し、常法により一本鎖DNAを得た。得られた一本
鎖DNAとヌクレオチド1とを用いて、セルラーゼ遺伝
子内に変異を導入した。
42 obtained from pCN212 obtained in Example 7
A 6 bp EcoRI-BamHI digested fragment was cloned into M13 phage mp19, and single-stranded DNA was obtained by a conventional method. A mutation was introduced into the cellulase gene using the obtained single-stranded DNA and nucleotide 1.

【0086】変異を含むDNA断片をそれぞれpUC118と連
結して、pMCP1(変異セルラーゼ)、pMBCP1(変異枝切
り酵素)を得た。
Each of the DNA fragments containing the mutation was ligated to pUC118 to obtain pMCP1 (mutant cellulase) and pMBCP1 (mutant debranching enzyme).

【0087】pMCP1を制限酵素Aor51HIとHindIIIで二重
切断して得た約3440bpの断片と、pMBCP1をAor51HIとHin
dIIIで二重切断して得た375bpのDNA断片を連結しpCB
N1を得た。
A fragment of about 3440 bp obtained by double-cutting pMCP1 with restriction enzymes Aor51HI and HindIII, and pMBCP1 with Aor51HI and Hin.
A 375 bp DNA fragment obtained by double-cutting with dIII was ligated into pCB
I got N1.

【0088】pCBN1をEcoRI-HindIIIで二重切断して得ら
れる約650bpのDNA断片、pBC24をHindIII-ClaIで二重
消化して得られる約3.0KbpのDNA断片及びpCNU212をE
coRI-ClaIで二重消化して得られる約4.0KbのDNA断片
を、DNAライゲーションキット(宝酒造社製)により
連結して得た連結液を用いて実施例5と同様に枯草菌IA
289株をプロトプラスト法により形質転換しIA289(pUBC
32)株を得た。pUBC32の構造を図6に示す。
A DNA fragment of about 650 bp obtained by double-cutting pCBN1 with EcoRI-HindIII, a DNA fragment of about 3.0 Kbp obtained by double-digesting pBC24 with HindIII-ClaI, and pCNU212.
Using a ligation solution obtained by ligating a DNA fragment of about 4.0 Kb obtained by double digestion with coRI-ClaI with a DNA ligation kit (Takara Shuzo), in the same manner as in Example 5, Bacillus subtilis IA
The 289 strain was transformed by the protoplast method and transformed into IA289 (pUBC
32) A strain was obtained. The structure of pUBC32 is shown in FIG.

【0089】実施例10 実施例5で得られたIA289(pUBC24)と実施例9で得ら
れたIA289(pUBC32)をカナマイシン(5μg/ml)を含
む培地〔6% パインデックス#3(松谷化学社製)、
2.0% SMSペプチド(不二製油社製)、0.2% ミーストp
1G(アサヒビール社製)、1.0% グルタミン酸ソーダ
(味の素社製)、0.5% K2HPO4、0.05% MgSO4・7H2O、
0.01% FeSO4・7H2O(pH7.2)〕にて37℃で48時間振盪培
養を行った。それぞれの培養液中の枝切り酵素活性は、
IA289(pUBC32)株は、IA289(pUBC24)株の約9.6倍の
枝切り酵素生産性を示した。
Example 10 IA289 (pUBC24) obtained in Example 5 and IA289 (pUBC32) obtained in Example 9 were added to a medium containing kanamycin (5 μg / ml) [6% Paindex # 3 (Matsuya Chemical Co., Ltd. Made),
2.0% SMS peptide (manufactured by Fuji Oil Co., Ltd.), 0.2% Meast p
1G (manufactured by Asahi Breweries, Ltd.), (manufactured by Ajinomoto Co.) 1.0% sodium glutamate, 0.5% K 2 HPO 4, 0.05% MgSO 4 · 7H 2 O,
0.01% FeSO 4 .7H 2 O (pH 7.2)] was shake-cultured at 37 ° C. for 48 hours. The debranching enzyme activity in each culture is
The IA289 (pUBC32) strain showed about 9.6 times the debranching enzyme productivity of the IA289 (pUBC24) strain.

【0090】[0090]

【表6】 [Table 6]

【0091】実施例11 枯草菌IA289(pUBC32)をカナマイシン(5μg/ml)を
含む培地〔6% パインデックス#3、2.0% SMSペプチ
ド、0.2% ミーストp1G、1.0% グルタミン酸ソーダ、
0.5% K2HPO4、0.05% MgSO4・7H2O、0.01% FeSO4・7H2O
(pH7.2)〕にて37℃48時間振盪培養した後、遠心分離
(KUBOTA RA6、8000rpm, 10min)により菌体及び固形物
を除去し、遠心上清を得た。遠心上清を限外ろ過により
濃縮した後、実施例1と同様にα−CDセファロースカラ
ムクロマトグラフ及びMonoQカラムクロマトグラフによ
り枝切り酵素を精製した。
Example 11 Bacillus subtilis IA289 (pUBC32) in a medium containing kanamycin (5 μg / ml) [6% pa index # 3, 2.0% SMS peptide, 0.2% meest p1G, 1.0% sodium glutamate,
0.5% K 2 HPO 4, 0.05 % MgSO 4 · 7H 2 O, 0.01% FeSO 4 · 7H 2 O
(PH7.2)], the cells were cultured by shaking at 37 ° C. for 48 hours, and then the cells and solids were removed by centrifugation (KUBOTA RA6, 8000 rpm, 10 min) to obtain a centrifugation supernatant. After the centrifugal supernatant was concentrated by ultrafiltration, the debranching enzyme was purified by α-CD sepharose column chromatography and MonoQ column chromatography in the same manner as in Example 1.

【0092】得られた組換え精製酵素を固相法によるプ
ロテインシークエンサーによりN末端のアミノ酸配列を
決定した。この配列は、実施例3で決定したバチルス・
エスピー APC-9603由来の枝切り酵素及び枝切り酵素遺
伝子から求められたN末端のアミノ酸配列と一致した。
The N-terminal amino acid sequence of the obtained recombinant purified enzyme was determined by a protein sequencer by the solid phase method. This sequence is based on the Bacillus
The debranching enzyme derived from SPC APC-9603 and the N-terminal amino acid sequence determined from the debranching enzyme gene were identical.

【0093】[0093]

【発明の効果】以上、説明したように、本発明は、耐熱
性であり、酸性領域で働き、更に基質特異性の広い枝切
り酵素を組換えDNA技術により大規模且つ効率的に生
産する道を拓くものである。しかも、この発明による形
質転換体より生産される酵素は、全アミノ酸配列まで明
らかにされた酵素であり、基質特異性あるいは熱・pHに
対する安定性等の点でいっそう利用価値の高いものへ誘
導することも可能となる。
INDUSTRIAL APPLICABILITY As described above, the present invention provides a large-scale and efficient method for producing a debranching enzyme that is thermostable, works in an acidic region, and has broad substrate specificity by recombinant DNA technology. It opens up. Moreover, the enzyme produced from the transformant according to the present invention is an enzyme whose entire amino acid sequence has been clarified, and induces a enzyme with higher utility value in terms of substrate specificity or stability against heat and pH. It is also possible.

【0094】[0094]

【配列表】[Sequence list]

配列番号:1 配列の長さ:922 配列の型:アミノ酸 配列 Asp Gly Thr Thr Thr Asn Val Ile Val His Tyr Phe Arg Pro Gly 15 Gly Asp Tyr Gln Ser Trp Ser Leu Trp Met Trp Pro Glu Gly Gly 30 Asp Gly Asn Asn Tyr Asn Phe Asn Gly Thr Asp Ser Tyr Gly Glu 45 Ile Ala Asn Val Ser Ile Pro Gly Ser Pro Ser Lys Val Gly Ile 60 Ile Val Arg Thr Gln Asp Trp Ala Lys Asp Val Ser Gln Asp Arg 75 Tyr Ile Asp Leu Ser Lys Gly His Glu Val Trp Leu Val Gln Gly 90 Asn Ser Gln Ile Phe Tyr Asn Glu Lys Asp Ala Glu Asp Ala Ala 105 Glu Pro Ala Val Ser Asn Ala Tyr Leu Asp Ala Pro Asn Lys Val 120 Leu Val Lys Leu Ser Gln Pro Phe Thr Leu Gly Glu Gly Ala Ser 135 Gly Phe Thr Val His Asp Asp Thr Ala Asn Gly Asp Ile Pro Val 150 Thr Lys Val Lys Asn Ala Asn Lys Val Glu Asp Val Thr Ala Ile 165 Leu Ala Gly Thr Phe Gln His Ile Phe Gly Gly Ser Asp Trp Ala 180 Pro Asp Asn His Ser Thr Gln Leu Lys Lys Val Asn Asp Asn Leu 195 Tyr Gln Phe Ser Gly Glu Leu Pro Gly Gly Ser Tyr Gln Tyr Lys 210 Val Ala Leu Asn Asp Ser Trp Asn Ser Ser Tyr Pro Ser Asp Asn 225 Ile Asn Leu Thr Val Pro Asp Gly Gly Ala His Val Thr Phe Ser 240 Tyr Val Pro Ser Thr His Ala Val Tyr Asp Thr Ile Asn Asn Pro 255 Gly Ala Asn Leu Pro Leu Asp Gly Ser Gly Ile Lys Thr Asp Leu 270 Val Thr Val Thr Leu Gly Glu Asn Pro Asp Val Ser His Thr Leu 285 Ser Ile Gln Thr Asp Gly Phe Lys Thr Gly Arg Val Ile Pro Arg 300 Asn Val Leu Asp Phe Ser Gln Tyr Tyr Tyr Ser Gly Glu Asp Leu 315 Gly Asn Thr Tyr Thr Lys Lys Ala Thr Thr Phe Lys Val Trp Ala 330 Pro Thr Ser Thr Lys Val Asn Val Leu Leu Tyr Asn Lys Ala Ala 345 Gly Ala Leu Thr Lys Thr Val Pro Met Lys Ala Ser Gly His Gly 360 Val Trp Ser Val Thr Val Pro Gln Asn Leu Glu Asn Trp Tyr Tyr 375 Leu Tyr Glu Val Thr Gly Gln Gly Ser Thr Arg Thr Ala Val Asp 390 Pro Tyr Ala Thr Ala Ile Ala Pro Asn Gly Thr Arg Gly Met Val 405 Val Asp Leu Ala Lys Thr Asn Pro Thr Gly Trp Lys Ser Asp Lys 420 His Met Thr Pro Lys Asn Ile Glu Asp Glu Val Ile Tyr Glu Met 435 His Val Arg Asp Phe Ser Ile Asp Ser Asn Ser Gly Met Thr Asn 450 Lys Gly Lys Tyr Leu Ala Leu Thr Glu Lys Gly Thr Lys Gly Pro 465 Glu Asn Val Lys Thr Gly Val Asp Ser Leu Lys Gln Leu Gly Ile 480 Thr His Val Gln Leu Gln Pro Val Phe Ala Phe Asn Ser Val Asp 495 Glu Thr Asp Pro Thr Gln Tyr Asn Trp Gly Tyr Asp Pro Arg Asn 510 Tyr Asn Val Pro Glu Gly Gln Tyr Ala Thr Asp Ala Asn Gly Thr 525 Thr Arg Ile Lys Glu Phe Lys Glu Met Val Leu Ser Leu His Arg 540 Asn His Ile Gly Val Asn Met Asp Val Val Tyr Asn His Thr Phe 555 Ala Thr Gln Ile Ser Asp Phe Asp Lys Ile Val Pro Gln Tyr Tyr 570 Tyr Arg Thr Asp Asp Ala Gly Asn Tyr Thr Asn Gly Ser Gly Thr 585 Gly Asn Glu Val Ala Ala Glu Arg Pro Met Val Gln Lys Phe Ile 600 Ile Asp Ser Leu Lys Tyr Trp Val Asn Glu Tyr His Ile Asp Gly 615 Phe Arg Phe Asp Leu Met Ala Leu Leu Gly Lys Asp Thr Met Ala 630 Lys Ala Ala Gln Glu Leu His Ala Ile Asp Pro Gly Ile Ala Leu 645 Tyr Gly Glu Pro Trp Thr Gly Gly Thr Ser Ala Leu Pro Thr Asp 660 Gln Leu Leu Thr Lys Gly Val Gln Lys Gly Met Gly Val Ala Val 675 Phe Asn Asp Asn Leu Arg Asn Gly Leu Asp Gly Asn Val Phe Asp 690 Ala Ser Ser Gln Gly Phe Ala Thr Gly Ala Thr Gly Leu Thr Asp 705 Val Ile Lys Lys Gly Val Glu Gly Ser Ile Asn Asp Phe Thr Ser 720 Ser Pro Gly Glu Thr Ile Asn Tyr Val Thr Ser His Asp Asn Tyr 735 Thr Leu Trp Asp Lys Ile Ala Gln Ser Asn Pro Asn Asp Ser Glu 750 Ala Asp Arg Ile Lys Met Asp Glu Leu Ala Gln Ala Val Val Val 765 Thr Ser Gln Gly Val Pro Phe Met Gln Gly Gly Glu Glu Met Leu 780 Arg Thr Lys Gly Gly Asn Ser Asn Ser Tyr Asn Ala Gly Asp Ala 795 Val Asn Glu Phe Asp Trp Ser Arg Lys Ala Gln Tyr Ser Asp Val 810 Phe Asn Tyr Tyr Ser Gly Leu Ile His Leu Arg Leu Ala His Pro 825 Ala Phe Arg Met Thr Thr Ala Asn Gln Ile Lys Glu His Leu Gln 840 Phe Ile Asp Ser Pro Asp Asn Thr Val Ala Tyr Glu Leu Thr Asn 855 His Ala Asn Lys Asp Lys Trp Gly Asn Ile Val Val Ile Tyr Asn 870 Pro Asn Lys Thr Ala Glu Thr Val Asn Leu Pro Ser Gly Lys Trp 885 Ala Ile Asn Ala Thr Asn Gly Lys Ile Gly Glu Ser Thr Leu Ser 900 His Ala Glu Gly His Val Gln Val Pro Gly Ile Ser Met Met Ile 915 Leu His Gln Glu Thr Asn Lys 922 SEQ ID NO: 1 Sequence length: 922 Sequence type: Amino acid sequence Asp Gly Thr Thr Thr Asn Val Ile Val His Tyr Phe Arg Pro Gly 15 Gly Asp Tyr Gln Ser Trp Ser Leu Trp Met Trp Pro Glu Gly Gly 30 Asp Gly Asn Asn Tyr Asn Phe Asn Gly Thr Asp Ser Tyr Gly Glu 45 Ile Ala Asn Val Ser Ile Pro Gly Ser Pro Ser Lys Val Gly Ile 60 Ile Val Arg Thr Gln Asp Trp Ala Lys Asp Val Ser Gln Asp Arg 75 Tyr Ile Asp Leu Ser Lys Gly His Glu Val Trp Leu Val Gln Gly 90 Asn Ser Gln Ile Phe Tyr Asn Glu Lys Asp Ala Glu Asp Ala Ala 105 Glu Pro Ala Val Ser Asn Ala Tyr Leu Asp Ala Pro Asn Lys Val 120 Leu Val Lys Leu Ser Gln Pro Phe Thr Leu Gly Glu Gly Ala Ser 135 Gly Phe Thr Val His Asp Asp Thr Ala Asn Gly Asp Ile Pro Val 150 Thr Lys Val Lys Asn Ala Asn Lys Val Glu Asp Val Thr Ala Ile 165 Leu Ala Gly Thr Phe Gln His Ile Phe Gly Gly Ser Asp Trp Ala 180 Pro Asp Asn His Ser Thr Gln Leu Lys Lys Val Asn Asp Asn Leu 195 Tyr Gln Phe Ser Gly Glu Leu Pro Gly Gly Ser Tyr Gln Tyr Lys 210 Val Ala Leu Asn Asp Ser Trp Asn Ser Ser Tyr Pro Ser Asp Asn 225 Ile Asn Leu Thr Val Pro Asp Gly Gly Ala His Val Thr Phe Ser 240 Tyr Val Pro Ser Thr His Ala Val Tyr Asp Thr Ile Asn Asn Pro 255 Gly Ala Asn Leu Pro Leu Asp Gly Ser Gly Ile Lys Thr Asp Leu 270 Val Thr Val Thr Leu Gly Glu Asn Pro Asp Val Ser His Thr Leu 285 Ser Ile Gln Thr Asp Gly Phe Lys Thr Gly Arg Val Ile Pro Arg 300 Asn Val Leu Asp Phe Ser Gln Tyr Tyr Tyr Ser Gly Glu Asp Leu 315 Gly Asn Thr Tyr Thr Lys Lys Ala Thr Thr Phe Lys Val Trp Ala 330 Pro Thr Ser Thr Lys Val Asn Val Leu Leu Tyr Asn Lys Ala Ala 345 Gly Ala Leu Thr Lys Thr Val Pro Met Lys Ala Ser Gly His Gly 360 Val Trp Ser Val Thr Val Pro Gln Asn Leu Glu Asn Trp Tyr Tyr 375 Leu Tyr Glu Val Thr Gly Gln Gly Ser Thr Arg Thr Ala Val Asp 390 Pro Tyr Ala Thr Ala Ile Ala Pro Asn Gly Thr Arg Gly Met Val 405 Val Asp Leu Ala Lys Thr Asn Pro Thr Gly Trp Lys Ser Asp Lys 420 His Met Thr Pro Lys Asn Ile Glu Asp Glu Val Ile Tyr Glu Met 435 His Val Arg Asp Phe Ser Ile Asp Ser Asn Ser Gly Met Thr Asn 450 LysGly Lys Tyr Leu Ala Leu Thr Glu Lys Gly Thr Lys Gly Pro 465 Glu Asn Val Lys Thr Gly Val Asp Ser Leu Lys Gln Leu Gly Ile 480 Thr His Val Gln Leu Gln Pro Val Phe Ala Phe Asn Ser Val Asp 495 Glu Thr Asp Pro Thr Gln Tyr Asn Trp Gly Tyr Asp Pro Arg Asn 510 Tyr Asn Val Pro Glu Gly Gln Tyr Ala Thr Asp Ala Asn Gly Thr 525 Thr Arg Ile Lys Glu Phe Lys Glu Met Val Leu Ser Leu His Arg 540 Asn His Ile Gly Val Asn Met Asp Val Val Tyr Asn His Thr Phe 555 Ala Thr Gln Ile Ser Asp Phe Asp Lys Ile Val Pro Gln Tyr Tyr 570 Tyr Arg Thr Asp Asp Ala Gly Asn Tyr Thr Asn Gly Ser Gly Thr 585 Gly Asn Glu Val Ala Ala Glu Arg Pro Met Val Gln Lys Phe Ile 600 Ile Asp Ser Leu Lys Tyr Trp Val Asn Glu Tyr His Ile Asp Gly 615 Phe Arg Phe Asp Leu Met Ala Leu Leu Gly Lys Asp Thr Met Ala 630 Lys Ala Ala Gln Glu Leu His Ala Ile Asp Pro Gly Ile Ala Leu 645 Tyr Gly Glu Pro Trp Thr Gly Gly Thr Ser Ala Leu Pro Thr Asp 660 Gln Leu Leu Thr Lys Gly Val Gln Lys Gly Met Gly Val Ala Val 675 Phe Asn Asp Asn Leu Arg Asn Gly Leu Asp Gly Asn Val Phe Asp 690 Ala Ser Ser Gln Gly Phe Ala Thr Gly Ala Thr Gly Leu Thr Asp 705 Val Ile Lys Lys Gly Val Glu Gly Ser Ile Asn Asp Phe Thr Ser 720 Ser Pro Gly Glu Thr Ile Asn Tyr Val Thr Ser His Asp Asn Tyr 735 Thr Leu Trp Asp Lys Ile Ala Gln Ser Asn Pro Asn Asp Ser Glu 750 Ala Asp Arg Ile Lys Met Asp Glu Leu Ala Gln Ala Val Val Val 765 Thr Ser Gln Gly Val Pro Phe Met Gln Gly Gly Glu Glu Met Leu 780 Arg Thr Lys Gly Gly Asn Ser Asn Ser Tyr Asn Ala Gly Asp Ala 795 Val Asn Glu Phe Asp Trp Ser Arg Lys Ala Gln Tyr Ser Asp Val 810 Phe Asn Tyr Tyr Ser Gly Leu Ile His Leu Arg Leu Ala His Pro 825 Ala Phe Arg Met Thr Thr Ala Asn Gln Ile Lys Glu His Leu Gln 840 Phe Ile Asp Ser Pro Asp Asn Thr Val Ala Tyr Glu Leu Thr Asn 855 His Ala Asn Lys Asp Lys Trp Gly Asn Ile Val Val Ile Tyr Asn 870 Pro Asn Lys Thr Ala Glu Thr Val Asn Leu Pro Ser Gly Lys Trp 885 Ala Ile Asn Ala Thr Asn Gly Lys Ile Gly Glu Ser Thr Leu Ser 900 His Ala Glu Gly His Val Gln Val Pro Gly Ile Ser Met Met Ile 915 Leu His Gln Glu Thr Asn Lys 922

【0095】配列番号:2 配列の長さ:3934 配列の型:核酸 配列 GATCCTTTTT TGACTACAAA ATTTCAAATT GGAGTGAAGG TCAATCTTGA AACTCTCAGG 60 GGGGAAAAAC AGCGAATGGC AATAGCATGG ATGTTCCTTA AAAAACCACC GTTCGTTGAT 120 AAATAAAAGA AGGAGCACTC ACTCACACTG GTGCCTTCCT TTTGTATATG AGCTGTGCTT 180 AATAGTTTTT GTTCGAGATA TTTATAAAAA GTAGGTATGA CTTTAGAACT ATGGTACGGA 240 GTTATGAGGT GGACTAAAGT AGGTTTTTTG AAAAAATGGG ACTCTGTCCT TTCATTCGAC 300 AGTTTTTTTA AAAGAATGAC GGTATAATTG AAATCGGTGT AAGCGCTTTA TAATCAAATG 360 GAGGGGGGAG CCGTTTGAAA TATAAAAGTG TTTTTTGAGA AAGATTTGCT TTCTTTAATC 420 ATTAAGTGCA ACCGGTTGCC TTTTGTGCTA TTTAATGCAA CCGATTGCAT ATAGGAGGAC 480 AC ATG ATG AAA AAA GTA ATT TAC GTG CTT TTA AGT TTA TGT TTA GTG 527 Met Met Lys Lys Val Ile Tyr Val Leu Leu Ser Leu Cys Leu Val -15 TTG TCA TGG GCT TTT AAT TTC AAA GGC CAG TCT GCT CAT GCG GAC 572 Leu Ser Trp Ala Phe Asn Phe Lys Gly Gln Ser Ala His Ala Asp 1 GGA ACG ACA ACA AAC GTC ATT GTT CAT TAT TTT CGG CCA GGT GGT 617 Gly Thr Thr Thr Asn Val Ile Val His Tyr Phe Arg Pro Gly Gly 16 GAT TAC CAA TCA TGG AGT CTT TGG ATG TGG CCA GAA GGT GGT GAT 662 Asp Tyr Gln Ser Trp Ser Leu Trp Met Trp Pro Glu Gly Gly Asp 31 GGG AAC AAT TAT AAT TTT AAT GGA ACA GAT TCG TAT GGG GAA ATT 707 Gly Asn Asn Tyr Asn Phe Asn Gly Thr Asp Ser Tyr Gly Glu Ile 46 GCC AAT GTT TCG ATT CCA GGG AGT CCA AGT AAG GTT GGA ATT ATT 752 Ala Asn Val Ser Ile Pro Gly Ser Pro Ser Lys Val Gly Ile Ile 61 GTT CGC ACC CAG GAT TGG GCA AAA GAT GTG AGT CAA GAC CGC TAC 797 Val Arg Thr Gln Asp Trp Ala Lys Asp Val Ser Gln Asp Arg Tyr 76 ATA GAT CTT AGC AAA GGT CAT GAG GTT TGG CTT GTC CAG GGA AAT 842 Ile Asp Leu Ser Lys Gly His Glu Val Trp Leu Val Gln Gly Asn 91 AGC CAA ATT TTT TAT AAT GAA AAG GAT GCT GAA GAT GCC GCC GAG 887 Ser Gln Ile Phe Tyr Asn Glu Lys Asp Ala Glu Asp Ala Ala Glu 106 CCC GCT GTG AGC AAT GCT TAT TTA GAT GCG CCA AAT AAG GTA TTG 932 Pro Ala Val Ser Asn Ala Tyr Leu Asp Ala Pro Asn Lys Val Leu 121 GTT AAG CTT AGT CAG CCG TTT ACT CTT GGT GAA GGG GCT AGC GGT 997 Val Lys Leu Ser Gln Pro Phe Thr Leu Gly Glu Gly Ala Ser Gly 136 TTT ACG GTT CAC GAT GAC ACT GCA AAT GGG GAT ATC CCG GTT ACT 1022 Phe Thr Val His Asp Asp Thr Ala Asn Gly Asp Ile Pro Val Thr 151 AAG GTG AAG AAT GCC AAT AAG GTC GAG GAT GTT ACC GCC ATT CTT 1067 Lys Val Lys Asn Ala Asn Lys Val Glu Asp Val Thr Ala Ile Leu 166 GCA GGG ACC TTC CAA CAT ATT TTT GGT GGT TCC GAT TGG GCA CCT 1112 Ala Gly Thr Phe Gln His Ile Phe Gly Gly Ser Asp Trp Ala Pro 181 GAT AAT CAT AGT ACG CAG CTT AAA AAA GTA AAT GAT AAC CTT TAC 1157 Asp Asn His Ser Thr Gln Leu Lys Lys Val Asn Asp Asn Leu Tyr 196 CAA TTT TCC GGT GAG TTG CCA GGG GGG AGT TAC CAA TAT AAA GTG 1202 Gln Phe Ser Gly Glu Leu Pro Gly Gly Ser Tyr Gln Tyr Lys Val 211 GCA TTA AAT GAT AGC TGG AAT AGT AGC TAC CCA TCT GAC AAC ATT 1247 Ala Leu Asn Asp Ser Trp Asn Ser Ser Tyr Pro Ser Asp Asn Ile 226 AAT TTA ACT GTA CCG GAT GGA GGC GCA CAT GTG ACG TTC TCT TAT 1292 Asn Leu Thr Val Pro Asp Gly Gly Ala His Val Thr Phe Ser Tyr 241 GTC CCG TCC ACC CAT GCT GTA TAT GAC ACG ATT AAT AAT CCA GGA 1337 Val Pro Ser Thr His Ala Val Tyr Asp Thr Ile Asn Asn Pro Gly 256 GCT AAT TTA CCT TTA GAT GGG AGC GGT ATC AAA ACA GAT CTA GTA 1382 Ala Asn Leu Pro Leu Asp Gly Ser Gly Ile Lys Thr Asp Leu Val 271 ACG GTG ACT TTG GGA GAA AAC CCA GAT GTC TCG CAT ACC CTT TCT 1427 Thr Val Thr Leu Gly Glu Asn Pro Asp Val Ser His Thr Leu Ser 286 ATC CAA ACA GAC GGT TTT AAG ACA GGA AGG GTC ATC CCT CGA AAT 1472 Ile Gln Thr Asp Gly Phe Lys Thr Gly Arg Val Ile Pro Arg Asn 301 GTG CTG GAC TTC TCT CAA TAT TAT TAT TCA GGA GAG GAT CTT GGG 1517 Val Leu Asp Phe Ser Gln Tyr Tyr Tyr Ser Gly Glu Asp Leu Gly 316 AAC ACC TAT ACA AAG AAA GCA ACA ACC TTT AAA GTG TGG GCT CCA 1562 Asn Thr Tyr Thr Lys Lys Ala Thr Thr Phe Lys Val Trp Ala Pro 331 ACT TCT ACT AAG GTG AAT GTT CTG CTT TAT AAC AAA GCA GCG GGT 1607 Thr Ser Thr Lys Val Asn Val Leu Leu Tyr Asn Lys Ala Ala Gly 346 GCT CTT ACA AAG ACT GTT CCT ATG AAG GCA TCA GGA CAT GGC GTG 1652 Ala Leu Thr Lys Thr Val Pro Met Lys Ala Ser Gly His Gly Val 361 TGG TCA GTG ACC GTT CCA CAA AAC CTA GAA AAT TGG TAT TAC TTG 1697 Trp Ser Val Thr Val Pro Gln Asn Leu Glu Asn Trp Tyr Tyr Leu 376 TAT GAG GTA ACT GGT CAA GGC TCT ACC CGA ACA GCG GTT GAC CCT 1742 Tyr Glu Val Thr Gly Gln Gly Ser Thr Arg Thr Ala Val Asp Pro 391 TAT GCC ACC GCA ATC GCA CCA AAT GGA ACG AGA GGC ATG GTT GTT 1787 Tyr Ala Thr Ala Ile Ala Pro Asn Gly Thr Arg Gly Met Val Val 406 GAC CTA GCC AAA ACA AAC CCG ACT GGT TGG AAG AGC GAC AAA CAT 1832 Asp Leu Ala Lys Thr Asn Pro Thr Gly Trp Lys Ser Asp Lys His 421 ATG ACA CCG AAG AAC ATA GAG GAT GAA GTT ATT TAT GAA ATG CAT 1877 Met Thr Pro Lys Asn Ile Glu Asp Glu Val Ile Tyr Glu Met His 436 GTC CGA GAC TTC TCC ATT GAT TCC AAT TCA GGT ATG ACA AAT AAA 1922 Val Arg Asp Phe Ser Ile Asp Ser Asn Ser Gly Met Thr Asn Lys 451 GGG AAG TAC TTA GCC CTT ACT GAA AAA GGG ACC AAA GGC CCT GAA 1967 Gly Lys Tyr Leu Ala Leu Thr Glu Lys Gly Thr Lys Gly Pro Glu 466 AAT GTC AAA ACA GGT GTG GAT TCA TTG AAG CAG CTT GGC ATT ACC 2012 Asn Val Lys Thr Gly Val Asp Ser Leu Lys Gln Leu Gly Ile Thr 481 CAT GTT CAG CTT CAG CCT GTC TTC GCC TTT AAC AGC GTT GAT GAA 2057 His Val Gln Leu Gln Pro Val Phe Ala Phe Asn Ser Val Asp Glu 496 ACG GAT CCC ACC CAA TAT AAC TGG GGC TAT GAT CCT CGT AAC TAT 2102 Thr Asp Pro Thr Gln Tyr Asn Trp Gly Tyr Asp Pro Arg Asn Tyr 511 AAT GTT CCG GAA GGG CAG TAT GCA ACG GAT GCA AAC GGC ACA ACT 2147 Asn Val Pro Glu Gly Gln Tyr Ala Thr Asp Ala Asn Gly Thr Thr 526 CGG ATT AAA GAG TTT AAA GAA ATG GTT CTT TCC CTC CAT CGA AAC 2192 Arg Ile Lys Glu Phe Lys Glu Met Val Leu Ser Leu His Arg Asn 541 CAC ATT GGA GTC AAC ATG GAT GTG GTG TAT AAT CAT ACC TTT GCC 2237 His Ile Gly Val Asn Met Asp Val Val Tyr Asn His Thr Phe Ala 556 ACA CAA ATA TCT GAC TTT GAT AAG ATT GTC CCG CAA TAT TAT TAC 2282 Thr Gln Ile Ser Asp Phe Asp Lys Ile Val Pro Gln Tyr Tyr Tyr 571 CGG ACA GAT GAT GCG GGG AAC TAC ACC AAT GGG TCA GGT ACA GGA 2327 Arg Thr Asp Asp Ala Gly Asn Tyr Thr Asn Gly Ser Gly Thr Gly 586 AAC GAA GTG GCA GCT GAA CGG CCA ATG GTT CAA AAA TTT ATT ATT 2372 Asn Glu Val Ala Ala Glu Arg Pro Met Val Gln Lys Phe Ile Ile 601 GAT TCA CTT AAG TAT TGG GTG AAT GAG TAC CAT ATT GAC GGC TTC 2417 Asp Ser Leu Lys Tyr Trp Val Asn Glu Tyr His Ile Asp Gly Phe 616 CGG TTT GAC TTA ATG GCA TTA CTT GGA AAA GAT ACA ATG GCA AAA 2462 Arg Phe Asp Leu Met Ala Leu Leu Gly Lys Asp Thr Met Ala Lys 631 GCG GCA CAA GAG CTT CAT GCG ATA GAT CCA GGG ATT GCC CTT TAT 2507 Ala Ala Gln Glu Leu His Ala Ile Asp Pro Gly Ile Ala Leu Tyr 646 GGT GAG CCT TGG ACG GGA GGC ACA TCA GCG CTA CCA ACC GAT CAG 2552 Gly Glu Pro Trp Thr Gly Gly Thr Ser Ala Leu Pro Thr Asp Gln 661 CTT TTA ACA AAA GGC GTT CAG AAA GGC ATG GGT GTG GCT GTG TTT 2597 Leu Leu Thr Lys Gly Val Gln Lys Gly Met Gly Val Ala Val Phe 676 AAT GAC AAT CTG CGA AAC GGG CTG GAT GGC AAC GTT TTT GAT GCC 2642 Asn Asp Asn Leu Arg Asn Gly Leu Asp Gly Asn Val Phe Asp Ala 691 TCC TCT CAG GGC TTT GCC ACA GGG GCA ACA GGC TTA ACA GAT GTT 2687 Ser Ser Gln Gly Phe Ala Thr Gly Ala Thr Gly Leu Thr Asp Val 706 ATT AAA AAG GGT GTT GAA GGG AGT ATC AAT GAC TTC ACC TCG TCA 2732 Ile Lys Lys Gly Val Glu Gly Ser Ile Asn Asp Phe Thr Ser Ser 721 CCA GGT GAG ACA ATC AAC TAT GTC ACA AGT CAT GAT AAC TAT ACG 2777 Pro Gly Glu Thr Ile Asn Tyr Val Thr Ser His Asp Asn Tyr Thr 736 CTC TGG GAT AAG ATT GCT CAA AGT AAT CCT AAC GAT TCT GAA GCG 2822 Leu Trp Asp Lys Ile Ala Gln Ser Asn Pro Asn Asp Ser Glu Ala 751 GAT CGA ATA AAA ATG GAT GAA CTG GCT CAA GCT GTC GTG GTG ACG 2867 Asp Arg Ile Lys Met Asp Glu Leu Ala Gln Ala Val Val Val Thr 766 TCA CAA GGG GTT CCG TTC ATG CAG GGG GGG GAA GAG ATG CTT CGC 2912 Ser Gln Gly Val Pro Phe Met Gln Gly Gly Glu Glu Met Leu Arg 781 ACG AAA GGT GGA AAC AGT AAT AGC TAT AAT GCA GGT GAT GCG GTC 2957 Thr Lys Gly Gly Asn Ser Asn Ser Tyr Asn Ala Gly Asp Ala Val 796 AAT GAA TTT GAT TGG AGC CGA AAA GCC CAA TAC TCA GAT GTT TTC 3002 Asn Glu Phe Asp Trp Ser Arg Lys Ala Gln Tyr Ser Asp Val Phe 811 AAC TAT TAT AGC GGA CTC ATC CAC CTT CGT CTT GCT CAC CCC GCC 3047 Asn Tyr Tyr Ser Gly Leu Ile His Leu Arg Leu Ala His Pro Ala 826 TTC CGT ATG ACG ACA GCG AAT CAA ATA AAA GAG CAT CTC CAA TTC 3092 Phe Arg Met Thr Thr Ala Asn Gln Ile Lys Glu His Leu Gln Phe 841 ATA GAT AGC CCG GAC AAT ACC GTT GCT TAT GAG TTA ACG AAT CAT 3137 Ile Asp Ser Pro Asp Asn Thr Val Ala Tyr Glu Leu Thr Asn His 856 GCA AAC AAA GAC AAA TGG GGA AAT ATT GTG GTT ATA TAT AAT CCC 3182 Ala Asn Lys Asp Lys Trp Gly Asn Ile Val Val Ile Tyr Asn Pro 871 AAT AAA ACA GCA GAA ACG GTG AAT TTA CCG AGT GGA AAA TGG GCC 3227 Asn Lys Thr Ala Glu Thr Val Asn Leu Pro Ser Gly Lys Trp Ala 886 ATT AAT GCT ACA AAT GGA AAA ATT GGA GAA TCC ACT CTA AGT CAT 3272 Ile Asn Ala Thr Asn Gly Lys Ile Gly Glu Ser Thr Leu Ser His 901 GCA GAG GGG CAC GTT CAA GTC CCA GGC ATT TCT ATG ATG ATT CTT 3317 Ala Glu Gly His Val Gln Val Pro Gly Ile Ser Met Met Ile Leu 916 CAT CAA GAA ACG AAT AAA TGAAT AAAAAGTAAA AGAGACTTAA TCCCCAAAAA 3370 His Gln Glu Thr Asn Lys 922 ACCTCTTATG GAATAATCCA TAAGAGGTTT TTGGGGTGAC TTTAGTTATA AAAAAACGTA 3430 GAGTTTTTCT GTGTAATTCT CTATTCAGTA GAAGGGGTGG CAAAAAGTTC TGTTAGAAGA 3490 AGGGAGACTG AACCTATGAC GGTGGCCTTC TCACCTAATT CTGAAATCAG AATCTGAGTT 3550 TGTTTGGCTT TTTCCGTTAA GACATGTTGG GCAATAGTCG CTTTTAAGCT ATTCATAATA 3610 TAGGGACCAG ATTTAGCGAC GCCTCCTCCA ATAATGATCC GCTCTGGATT CAACGTGTGA 3670 ATGAGGTTCG TGATTCCAAT ACCAAGATAA ATTCCCGTTT GACTTAAAAC CTTACATGCA 3730 AGCGGATCTC CCAGTTTAGC CGCTTCATAA ACGATTTCAC CTGAAATTTG CGACAGATCC 3790 CCATGAACGA GTTCTTTTAT TAAGCTCTCT GTGCCTGACT CCAATTCTTT AATCGCTTTA 3850 CTAGCAATTG AGGGTCCAGA CGCAAGAGCT TGGAGGCACC CATGATTCCC ACAACTACAC 3910 CTAGGTCCAT CGATATCAAT GATC 3934[0095] SEQ ID NO: length of the two sequences: 3934 Type of sequence: nucleic acid sequence GATCCTTTTT TGACTACAAA ATTTCAAATT GGAGTGAAGG TCAATCTTGA AACTCTCAGG 60 GGGGAAAAAC AGCGAATGGC AATAGCATGG ATGTTCCTTA AAAAACCACC GTTCGTTGAT 120 AAATAAAAGA AGGAGCACTC ACTCACACTG GTGCCTTCCT TTTGTATATG AGCTGTGCTT 180 AATAGTTTTT GTTCGAGATA TTTATAAAAA GTAGGTATGA CTTTAGAACT ATGGTACGGA 240 GTTATGAGGT GGACTAAAGT AGGTTTTTTG AAAAAATGGG ACTCTGTCCT TTCATTCGAC 300 AGTTTTTTTA AAAGAATGAC GGTATAATTG AAATCGGTGT AAGCGCTTTA TAATCAAATG 360 GAGGGGGGAG CCGTTTGAAA TATAAAAGTG TTTTTTGAGA AAGATTTGCT TTCTTTAATC 420 ATTAAGTGCA ACCGGTTGCC TTTTGTGCTA TTTAATGCAA CCGATTGCAT ATAGGAGGAC 480 AC ATG ATG AAA AAA GTA ATT TAC GTG CTT TTA AGT TTA TGT TTA GTG 527 Met Met Lys Lys Val Ile Tyr Val Leu Leu Ser Leu Cys Leu Val -15 TTG TCA TGG GCT TTT AAT TTC AAA GGC CAG TCT GCT CAT GCG GAC 572 Leu Ser Trp Ala Phe Asn Phe Lys Gly Gln Ser Ala His Ala Asp 1 GGA ACG ACA ACA AAC GTC ATT GTT CAT TAT TTT CGG CCA GGT GGT 617 Gly Thr Thr Thr Asn Val Ile Val His Tyr Phe Arg Pro Gly Gly 16 GAT TAC CAA TCA TGG AGT CTT TGG ATG TGG CCA GAA GGT GGT GAT 662 Asp Tyr Gln Ser Trp Ser Leu Trp Met Trp Pro Glu Gly Gly Asp 31 GGG AAC AAT TAT AAT TTT AAT GGA ACA GAT TCG TAT GGG GAA ATT 707 Gly Asn Asn Tyr Asn Phe Asn Gly Thr Asp Ser Tyr Gly Glu Ile 46 GCC AAT GTT TCG ATT CCA GGG AGT CCA AGT AAG GTT GGA ATT ATT 752 Ala Asn Val Ser Ile Pro Gly Ser Pro Ser Lys Val Gly Ile Ile 61 GTT CGC ACC CAG GAT TGG GCA AAA GAT GTG AGT CAA GAC CGC TAC 797 Val Arg Thr Gln Asp Trp Ala Lys Asp Val Ser Gln Asp Arg Tyr 76 ATA GAT CTT AGC AAA GGT CAT GAG GTT TGG CTT GTC CAG GGA AAT 842 Ile Asp Leu Ser Lys Gly His Glu Val Trp Leu Val Gln Gly Asn 91 AGC CAA ATT TTT TAT AAT GAA AAG GAT GCT GAA GAT GCC GCC GAG 887 Ser Gln Ile Phe Tyr Asn Glu Lys Asp Ala Glu Asp Ala Ala Glu 106 CCC GCT GTG AGC AAT GCT TAT TTA GAT GCG CCA AAT AAG GTA TTG 932 Pro Ala Val Ser Asn Ala Tyr Leu Asp Ala Pro Asn Lys Val Leu 121 GTT AAG CTT AGT CAG CCG TTT ACT CTT GGT GAA GGG GCT AGC GGT 997 Val L ys Leu Ser Gln Pro Phe Thr Leu Gly Glu Gly Ala Ser Gly 136 TTT ACG GTT CAC GAT GAC ACT GCA AAT GGG GAT ATC CCG GTT ACT 1022 Phe Thr Val His Asp Asp Thr Ala Asn Gly Asp Ile Pro Val Thr 151 AAG GTG AAG AAT GCC AAT AAG GTC GAG GAT GTT ACC GCC ATT CTT 1067 Lys Val Lys Asn Ala Asn Lys Val Glu Asp Val Thr Ala Ile Leu 166 GCA GGG ACC TTC CAA CAT ATT TTT GGT GGT TCC GAT TGG GCA CCT 1112 Ala Gly Thr Phe Gln His Ile Phe Gly Gly Ser Asp Trp Ala Pro 181 GAT AAT CAT AGT ACG CAG CTT AAA AAA GTA AAT GAT AAC CTT TAC 1157 Asp Asn His Ser Thr Gln Leu Lys Lys Val Asn Asp Asn Leu Tyr 196 CAA TTT TCC GGT GAG TTG CCA GGG GGG AGT TAC CAA TAT AAA GTG 1202 Gln Phe Ser Gly Glu Leu Pro Gly Gly Ser Tyr Gln Tyr Lys Val 211 GCA TTA AAT GAT AGC TGG AAT AGT AGC TAC CCA TCT GAC AAC ATT 1247 Ala Leu Asn Asp Ser Trp Asn Ser Ser Tyr Pro Ser Asp Asn Ile 226 AAT TTA ACT GTA CCG GAT GGA GGC GCA CAT GTG ACG TTC TCT TAT 1292 Asn Leu Thr Val Pro Asp Gly Gly Ala His Val Thr Phe Ser Tyr 241 GTC CCG TCC ACC CAT GCT GTA TAT GAC AC G ATT AAT AAT CCA GGA 1337 Val Pro Ser Thr His Ala Val Tyr Asp Thr Ile Asn Asn Pro Gly 256 GCT AAT TTA CCT TTA GAT GGG AGC GGT ATC AAA ACA GAT CTA GTA 1382 Ala Asn Leu Pro Leu Asp Gly Ser Gly Ile Lys Thr Asp Leu Val 271 ACG GTG ACT TTG GGA GAA AAC CCA GAT GTC TCG CAT ACC ACC CTT TCT 1427 Thr Val Thr Leu Gly Glu Asn Pro Asp Val Ser His Thr Leu Ser 286 ATC CAA ACA GAC GGT TTT AAG ACA GGA AGG GTC ATC CCT CGA AAT 1472 Ile Gln Thr Asp Gly Phe Lys Thr Gly Arg Val Ile Pro Arg Asn 301 GTG CTG GAC TTC TCT CAA TAT TAT TAT TCA GGA GAG GAT CTT GGG 1517 Val Leu Asp Phe Ser Gln Tyr Tyr Tyr Ser Gly Glu Asp Leu Gly 316 AAC ACC TAT ACA AAG AAA GCA ACA ACC TTT AAA GTG TGG GCT CCA 1562 Asn Thr Tyr Thr Lys Lys Ala Thr Thr Phe Lys Val Trp Ala Pro 331 ACT TCT ACT AAG GTG AAT GTT CTG CTT TAT AAC AAA GCA GCG GGT 1607 Thr Ser Thr Lys Val Asn Val Leu Leu Tyr Asn Lys Ala Ala Gly 346 GCT CTT ACA AAG ACT GTT CCT ATG AAG GCA TCA GGA CAT GGC GTG 1652 Ala Leu Thr Lys Thr Val Pro Met Lys Ala Ser Gly His Gly Val 361 TGG TC A GTG ACC GTT CCA CAA AAC CTA GAA AAT TGG TAT TAC TTG 1697 Trp Ser Val Thr Val Pro Gln Asn Leu Glu Asn Trp Tyr Tyr Leu 376 TAT GAG GTA ACT GGT CAA GGC TCT ACC CGA ACA GCG GTT GAC CCT 1742 Tyr Glu Val Thr Gly Gln Gly Ser Thr Arg Thr Ala Val Asp Pro 391 TAT GCC ACC GCA ATC GCA CCA AAT GGA ACG AGA GGC ATG GTT GTT 1787 Tyr Ala Thr Ala Ile Ala Pro Asn Gly Thr Arg Gly Met Val Val 406 GAC CTA GCC AAA ACA AAC CCG ACT GGT TGG AAG AGC GAC AAA CAT 1832 Asp Leu Ala Lys Thr Asn Pro Thr Gly Trp Lys Ser Asp Lys His 421 ATG ACA CCG AAG AAC ATA GAG GAT GAA GTT ATT TAT GAA ATG CAT 1877 Met Thr Pro Lys Asn Ile Glu Asp Glu Val Ile Tyr Glu Met His 436 GTC CGA GAC TTC TCC ATT GAT TCC AAT TCA GGT ATG ACA AAT AAA 1922 Val Arg Asp Phe Ser Ile Asp Ser Asn Ser Gly Met Thr Asn Lys 451 GGG AAG TAC TTA GCC CTT ACT GAA AAA GGG ACC AAA GGC CCT GAA 1967 Gly Lys Tyr Leu Ala Leu Thr Glu Lys Gly Thr Lys Gly Pro Glu 466 AAT GTC AAA ACA GGT GTG GAT TCA TTG AAG CAG CTT GGC ATT ACC 2012 Asn Val Lys Thr Gly Val Asp Ser Leu Ly s Gln Leu Gly Ile Thr 481 CAT GTT CAG CTT CAG CCT GTC TTC GCC TTT AAC AGC GTT GAT GAA 2057 His Val Gln Leu Gln Pro Val Phe Ala Phe Asn Ser Val Asp Glu 496 ACG GAT CCC ACC CAA TAT AAC TGG GGC TAT GAT CCT CGT AAC TAT 2102 Thr Asp Pro Thr Gln Tyr Asn Trp Gly Tyr Asp Pro Arg Asn Tyr 511 AAT GTT CCG GAA GGG CAG TAT GCA ACG GAT GCA AAC GGC ACA ACT 2147 Asn Val Pro Glu Gly Gln Tyr Ala Thr Asp Ala Asn Gly Thr Thr 526 CGG ATT AAA GAG TTT AAA GAA ATG GTT CTT TCC CTC CAT CGA AAC 2192 Arg Ile Lys Glu Phe Lys Glu Met Val Leu Ser Leu His Arg Asn 541 CAC ATT GGA GTC AAC ATG GAT GTG GTG TAT AAT CAT ACC TTT GCC 2237 His Ile Gly Val Asn Met Asp Val Val Tyr Asn His Thr Phe Ala 556 ACA CAA ATA TCT GAC TTT GAT AAG ATT GTC CCG CAA TAT TAT TAC 2282 Thr Gln Ile Ser Asp Phe Asp Lys Ile Val Pro Gln Tyr Tyr Tyr 571 CGG ACA GAT GAT GCG GGG AAC TAC ACC AAT GGG TCA GGT ACA GGA 2327 Arg Thr Asp Asp Ala Gly Asn Tyr Thr Asn Gly Ser Gly Thr Gly 586 AAC GAA GTG GCA GCT GAA CGG CCA ATG GTT CAA AAA TTT ATT ATT 2372 Asn Gl u Val Ala Ala Glu Arg Pro Met Val Gln Lys Phe Ile Ile 601 GAT TCA CTT AAG TAT TGG GTG AAT GAG TAC CAT ATT GAC GGC TTC 2417 Asp Ser Leu Lys Tyr Trp Val Asn Glu Tyr His Ile Asp Gly Phe 616 CGG TTT GAC TTA ATG GCA TTA CTT GGA AAA GAT ACA ATG GCA AAA 2462 Arg Phe Asp Leu Met Ala Leu Leu Gly Lys Asp Thr Met Ala Lys 631 GCG GCA CAA GAG CTT CAT GCG ATA GAT CCA GGG ATT GCC CTT TAT 2507 Ala Ala Gln Glu Leu His Ala Ile Asp Pro Gly Ile Ala Leu Tyr 646 GGT GAG CCT TGG ACG GGA GGC ACA TCA GCG CTA CCA ACC GAT CAG 2552 Gly Glu Pro Trp Thr Gly Gly Thr Ser Ala Leu Pro Thr Asp Gln 661 CTT TTA ACA AAA GGC GTT CAG AAA GGC ATG GGT GTG GCT GTG TTT 2597 Leu Leu Thr Lys Gly Val Gln Lys Gly Met Gly Val Ala Val Phe 676 AAT GAC AAT CTG CGA AAC GGG CTG GAT GGC AAC GTT TTT GAT GCC 2642 Asn Asp Asn Leu Arg Asn Gly Leu Asp Asn Gly Asn Val Phe Asp Ala 691 TCC TCT CAG GGC TTT GCC ACA GGG GCA ACA GGC TTA ACA GAT GTT 2687 Ser Ser Gln Gly Phe Ala Thr Gly Ala Thr Gly Leu Thr Asp Val 706 ATT AAA AAG GGT GTT GAA GGG AGT ATC AAT GAC TTC ACC TCG TCA 2732 Ile Lys Lys Gly Val Glu Gly Ser Ile Asn Asp Phe Thr Ser Ser 721 CCA GGT GAG ACA ATC AAC TAT GTC ACA AGT CAT GAT AAC TAT ACG 2777 Pro Gly Glu Thr Ile Asn Tyr Val Thr Ser His Asp Asn Tyr Thr 736 CTC TGG GAT AAG ATT GCT CAA AGT AAT CCT AAC GAT TCT GAA GCG 2822 Leu Trp Asp Lys Ile Ala Gln Ser Asn Pro Asn Asp Ser Glu Ala 751 GAT CGA ATA AAA ATG GAT GAA CTG GCT CAA GCT GTC GTG GTG ACG 2867 Asp Arg Ile Lys Met Asp Glu Leu Ala Gln Ala Val Val Val Thr 766 TCA CAA GGG GTT CCG TTC ATG CAG GGG GGG GAA GAG ATG CTT CGC 2912 Ser Gln Gly Val Pro Phe Met Gln Gly Gly Glu Glu Met Leu Arg 781 ACG AAA GGT GGA AAC AGT AAT AGC TAT AAT GCA GGT GAT GCG GTC 2957 Thr Lys Gly Gly Asn Ser Asn Ser Tyr Asn Ala Gly Asp Ala Val 796 AAT GAA TTT GAT TGG AGC CGA AAA GCC CAA TAC TCA GAT GTT TTC 3002 Asn Glu Phe Asp Trp Ser Arg Lys Ala Gln Tyr Ser Asp Val Phe 811 AAC TAT TAT AGC GGA CTC ATC CAC CTT CGT CTT GCT CAC CCC GCC 3047 Asn Tyr Tyr Ser Gly Leu Ile His Leu Arg Leu Ala His Pro Ala 826 TTC CGT ATG ACG ACA GCG AAT CAA ATA AAA GAG CAT CTC CAA TTC 3092 Phe Arg Met Thr Thr Ala Asn Gln Ile Lys Glu His Leu Gln Phe 841 ATA GAT AGC CCG GAC AAT ACC GTT GCT TAT GAG TTA ACG AAT CAT 3137 Ile Asp Ser Pro Asp Asn Thr Val Ala Tyr Glu Leu Thr Asn His 856 GCA AAC AAA GAC AAA TGG GGA AAT ATT GTG GTT ATA TAT AAT CCC 3182 Ala Asn Lys Asp Lys Trp Gly Asn Ile Val Val Ile Tyr Asn Pro 871 AAT AAA ACA GCA GAA ACG GTG AAT TTA CCG AGT GGA AAA TGG GCC 3227 Asn Lys Thr Ala Glu Thr Val Asn Leu Pro Ser Gly Lys Trp Ala 886 ATT AAT GCT ACA AAT GGA AAA ATT GGA GAA TCC ACT CTA AGT CAT 3272 Ile Asn Ala Thr Asn Gly Lys Ile Gly Glu Ser Thr Leu Ser His 901 GCA GAG GGG CAC GTT CAA GTC CCA GGC ATT TCT ATG ATG ATT CTT 3317 Ala Glu Gly His Val Gln Val Pro Gly Ile Ser Met Met Ile Leu 916 CAT CAA GAA ACG AAT AAA TGAAT AAAAAGTAAA AGAGACTTAA TC 3370 His Gln Glu Thr Asn Lys 922 ACCTCTTATG GAATAATCCA TAAGAGGTTT TTGGGGTGAC TTTAGTTATA AAAAAACGTA 3430 GAGTTTTTCT GTGTAATTCT CTATTCAGTA GAAGGGGTGG CAAAAAGTTC TGTTAGAAGA 3490 AGGGAGACTG AACCTATGAC GGTGGCCTTC TCACCTAATT CTGAAATCAG AATCTGAGTT 3550 TGTTTGGCTT TTTCCGTTAA GACATGTTGG GCAATAGTCG CTTTTAAGCT ATTCATAATA 3610 TAGGGACCAG ATTTAGCGAC GCCTCCTCCA ATAATGATCC GCTCTGGATT CAACGTGTGA 3670 ATGAGGTTCG TGATTCCAAT ACCAAGATAA ATTCCCGTTT GACTTAAAAC CTTACATGCA 3730 AGCGGATCTC CCAGTTTAGC CGCTTCATAA ACGATTTCAC CTGAAATTTG CGACAGATCC 3790 CCATGAACGA GTTCTTTTAT TAAGCTCTCT GTGCCTGACT CCAATTCTTT AATCGCTTTA 3850 CTAGCAATTG AGGGTCCAGA CGCAAGAGCT TGGAGGCACC CATGATTCCC ACAACTACAC 3910 CTAGGTCCAT CGATATCAAT GATC 3934

【0096】配列番号:3 配列の長さ:21 配列の型:アミノ酸 配列 Asp Gly Thr X X Asn Val Ile Val His Tyr Phe Arg Pro Gly 15 Gly Asp Tyr Gln X Trp 21 (Xは未同定)SEQ ID NO: 3 Sequence length: 21 Sequence type: Amino acid sequence Asp Gly Thr X X Asn Val Ile Val His Tyr Phe Arg Pro Gly 15 Gly Asp Tyr Gln X Trp 21 (X is unidentified)

【0097】配列番号:4 配列の長さ:29 配列の型:アミノ酸 配列 ATG ATG AAA AAA GTA ATT TAC GTG CTT TTA AGT TTA TGT TTA GTG 45 Met Met Lys Lys Val Ile Tyr Val Leu Leu Ser Leu Cys Leu Val 15 TTG TCA TGG GCT TTT AAT TTC AAA GGC CAG TCT GCT CAT GCG 87 Leu Ser Trp Ala Phe Asn Phe Lys Gly Gln Ser Ala His Ala 29SEQ ID NO: 4 Sequence length: 29 Sequence type: Amino acid sequence ATG ATG AAA AAA GTA ATT TAC GTG CTT TTA AGT TTA TGT TTA GTG 45 Met Met Lys Lys Val Ile Tyr Val Leu Leu Ser Leu Cys Leu Val 15 TTG TCA TGG GCT TTT AAT TTC AAA GGC CAG TCT GCT CAT GCG 87 Leu Ser Trp Ala Phe Asn Phe Lys Gly Gln Ser Ala His Ala 29

【0098】配列番号:5 配列の長さ:10 配列の型:アミノ酸 配列 Asp Gly Thr Thr Asn Val Ile Val His 10SEQ ID NO: 5 Sequence length: 10 Sequence type: Amino acid sequence Asp Gly Thr Thr Asn Val Ile Val His 10

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で得られる枝切り酵素の至適pHを表す図
である。
FIG. 1 is a diagram showing the optimum pH of a debranching enzyme obtained in the present invention.

【図2】本発明で得られる枝切り酵素のpH安定性を表す
図である。
FIG. 2 is a diagram showing pH stability of the debranching enzyme obtained in the present invention.

【図3】本発明で得られる枝切り酵素の至適温度を表す
図である。
FIG. 3 is a diagram showing the optimum temperature of the debranching enzyme obtained in the present invention.

【図4】本発明で得られる枝切り酵素の温度安定性を表
す図である。
FIG. 4 is a diagram showing the temperature stability of the debranching enzyme obtained in the present invention.

【図5】本発明の枝切り酵素遺伝子を含むDNA断片の
制限酵素地図を表す図である。
FIG. 5 is a diagram showing a restriction enzyme map of a DNA fragment containing the debranching enzyme gene of the present invention.

【図6】本発明の枝切り酵素遺伝子を含むプラスミドpU
BC24を表す図である。
FIG. 6: Plasmid pU containing the debranching enzyme gene of the present invention
It is a figure showing BC24.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12R 1:07) (C12N 1/21 C12R 1:19) (C12N 1/21 C12R 1:07) (C12N 9/44 C12R 1:07) (C12N 9/44 C12R 1:19) Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C12R 1:07) (C12N 1/21 C12R 1:19) (C12N 1/21 C12R 1:07) (C12N 9 / 44 C12R 1:07) (C12N 9/44 C12R 1:19)

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】枝切り酵素遺伝子を含み、図5に示される
制限酵素地図を与えるDNA断片。
1. A DNA fragment containing a debranching enzyme gene and giving the restriction map shown in FIG.
【請求項2】配列表の配列番号:1に記載のアミノ酸配
列又はその一部及びそれらと相同的なアミノ酸配列を含
む枝切り酵素をコードするDNA断片。
2. A DNA fragment encoding a debranching enzyme containing the amino acid sequence set forth in SEQ ID NO: 1 of the Sequence Listing or a part thereof and an amino acid sequence homologous thereto.
【請求項3】配列表の配列番号:2に記載の塩基配列又
はそれらから誘導された修飾酵素を含むDNA断片。
3. A DNA fragment containing the nucleotide sequence set forth in SEQ ID NO: 2 of the Sequence Listing or a modification enzyme derived therefrom.
【請求項4】DNA断片がバチルス・エスピー APC-96
03株(FREM BP-4204)の産生する枝切り酵素をコードす
る塩基配列又はそれらから誘導された修飾酵素を含むD
NA断片。
4. The DNA fragment is Bacillus sp. APC-96.
D containing a nucleotide sequence encoding a debranching enzyme produced by strain 03 (FREM BP-4204) or a modification enzyme derived therefrom
NA fragment.
【請求項5】請求項1〜4のいずれかに記載のDNA断
片を含むことを特徴とするベクター。
5. A vector comprising the DNA fragment according to any one of claims 1 to 4.
【請求項6】請求項5のベクターがバチルス・エスピー
N-2(FERM P-8809)菌のセルラーゼ遺伝子のプロモー
ター領域及びシグナルペプチド領域をコードするDNA
断片の下流に、成熟枝切り酵素をコードするDNA断片
を連結して得たDNA断片を含むことを特徴とするベク
ター。
6. The vector of claim 5 is Bacillus sp.
DNA encoding the promoter region and signal peptide region of the cellulase gene of N-2 (FERM P-8809)
A vector comprising a DNA fragment obtained by ligating a DNA fragment encoding a mature debranching enzyme downstream of the fragment.
【請求項7】請求項5又は6に記載のDNAによって形
質転換された組換え微生物。
7. A recombinant microorganism transformed with the DNA according to claim 5 or 6.
【請求項8】微生物が枯草菌である請求項7記載の形質
転換された組換え微生物。
8. The transformed recombinant microorganism according to claim 7, wherein the microorganism is Bacillus subtilis.
【請求項9】請求項7又は8記載の微生物を培養し、培
養物から枝切り酵素を得ることを特徴とする枝切り酵素
の製造法。
9. A method for producing a debranching enzyme, which comprises culturing the microorganism according to claim 7 or 8 and obtaining a debranching enzyme from the culture.
JP8134492A 1996-04-01 1996-04-01 New dna fragments, plasmid and recombined microorganism holding these fragments and production of debranching enzyme therewith Pending JPH09271385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8134492A JPH09271385A (en) 1996-04-01 1996-04-01 New dna fragments, plasmid and recombined microorganism holding these fragments and production of debranching enzyme therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8134492A JPH09271385A (en) 1996-04-01 1996-04-01 New dna fragments, plasmid and recombined microorganism holding these fragments and production of debranching enzyme therewith

Publications (1)

Publication Number Publication Date
JPH09271385A true JPH09271385A (en) 1997-10-21

Family

ID=15129595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8134492A Pending JPH09271385A (en) 1996-04-01 1996-04-01 New dna fragments, plasmid and recombined microorganism holding these fragments and production of debranching enzyme therewith

Country Status (1)

Country Link
JP (1) JPH09271385A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2042593A3 (en) * 2000-01-12 2009-06-24 Novozymes A/S Pullulanase variants and methods for preparing such variants with predetermined properties

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2042593A3 (en) * 2000-01-12 2009-06-24 Novozymes A/S Pullulanase variants and methods for preparing such variants with predetermined properties
US7906306B2 (en) 2000-01-12 2011-03-15 Novozymes A/S Pullulanase variants and methods for preparing such variants with predetermined properties

Similar Documents

Publication Publication Date Title
CA1214407A (en) Maltogenic amylase enzyme, preparation and use thereof
US4904599A (en) DNA fragments containing alkaline cellulase gene, recombinant plasmids with said DNA fragments inserted therein, and recombinant microorganisms
US5204254A (en) Maltopentaose producing amylases
JPH06217770A (en) Pullulanase, microorganism producing the same, preparation method and use of the pullulanase
JP2000210081A (en) Thermostable alkaline cellulase gene
JP2002505108A (en) Modified form of pullulanase
JPWO2002068659A1 (en) Agarase and its genes
EP0648843A1 (en) DNA encoding a hyperthermostable alpha-amylase
US5306639A (en) DNA encoding glucanase enzymes
US6338959B1 (en) Gene for enzyme having both alkaline pullulanase and alkaline α-amylase activities
KR100261359B1 (en) Arthrolytic enzymes and preparation methods thereof
JPH09271385A (en) New dna fragments, plasmid and recombined microorganism holding these fragments and production of debranching enzyme therewith
Mizukami et al. Efficient production of thermostable Clostridium thermosulfurogenes β-amylase by Bacillus brevis
JP4340382B2 (en) Alkaline cellulase gene
WO1994013792A1 (en) NOVEL ACID- AND HEAT-RESISTANT α-AMYLASE, PROCESS FOR PRODUCING THE SAME, AND METHOD OF LIQUEFYING STARCH BY USING THE SAME
JP4372986B2 (en) Alkaline pullulanase
JP4358984B2 (en) Alkaline cellulase gene
JP2001258577A (en) Polygalacturonase
JP3516104B2 (en) Mutanase producing microorganism and mutanase
JP4438479B2 (en) Endo-1,4-β-glucanase
EP0261009B1 (en) DNA sequence exercizing a function characterized by an overproduction of extracellular proteins from different bacillus strains, and vectors containing this sequence
JP3516105B2 (en) Mutanase producing microorganism and mutanase
Kwan et al. Purification and properties of β-amylase from Bacillus circulans S31
JPH0565157B2 (en)
JP2913411B2 (en) Cellulase gene

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404