[go: up one dir, main page]

JPH09298847A - Non-contact charger - Google Patents

Non-contact charger

Info

Publication number
JPH09298847A
JPH09298847A JP8132646A JP13264696A JPH09298847A JP H09298847 A JPH09298847 A JP H09298847A JP 8132646 A JP8132646 A JP 8132646A JP 13264696 A JP13264696 A JP 13264696A JP H09298847 A JPH09298847 A JP H09298847A
Authority
JP
Japan
Prior art keywords
coil
voltage
circuit
frequency power
magnetic force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8132646A
Other languages
Japanese (ja)
Inventor
Yoji Chiba
洋治 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8132646A priority Critical patent/JPH09298847A/en
Publication of JPH09298847A publication Critical patent/JPH09298847A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact charger whereby its conversion efficiency from an AC power into a DC power can be improved and both the maximum allowable current of its element and its loss can be reduced. SOLUTION: In a non-contact charger 1, an inverter 4 converts a DC voltage fed from a constant-voltage circuit 3 into a high-frequency voltage according to the control of a control circuit 5 to generate a magnetic line of force by a magnetic-force generating coil L1. On the other hand, in a slave machine 10, a coupling coil L2 takes out a high-frequency power from the magnetic line of force of the foregoing magnetic-force generating coil L1 by an electromagnetic induction, and after rectifying the high-frequency power by a rectification circuit 11, a rectified DC voltage is fed to a charging circuit 12 to charge a battery 13 by the rectified DC voltage. Also, a pickup coil L3 takes out the leakage magnetic flux generated between the magnetic-force generating coil L1 and the coupling coil L2 to feed it to a feedback circuit 6. After the high-frequency power in response to the foregoing leakage magnetic flux is converted into a DC voltage, the feedback circuit 6 feeds back it to the constant-voltage circuit 3. A light emitting diode LED is lit by the DC voltage obtained from the leakage magnetic flux to indicating that the battery 13 is being charged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、コードレス電話機
の子機等に内蔵されたバッテリを充電する通信機用非接
触充電器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact charger for a communication device that charges a battery built in a cordless telephone handset or the like.

【0002】[0002]

【従来の技術】近年、PHSやセルラ、または家庭で用
いられるコードレス電話機等では、その使用環境から防
水性が必須となっている。そこで、機構面で考えた場
合、問題となるのが、充電用に設けられた、筐体外部に
露出する充電器とのコンタクト用端子部であり、これを
回避し、全体の防水性能を向上させるために、非接触充
電方式が普及してきた。
2. Description of the Related Art In recent years, waterproofness has become essential in PHS, cellular phones, cordless telephones used at home, etc. due to the environment in which they are used. Therefore, from a mechanical perspective, the problem is the contact terminal that is provided for charging and that contacts the charger that is exposed to the outside of the housing. Avoiding this and improving the overall waterproof performance For this reason, the non-contact charging method has become popular.

【0003】上記非接触充電器では、充電器側のインバ
ータ回路で発生した高周波電力を磁力発生コイル(L
1)に供給し、充電される電話機側に内蔵された結合用
コイル(L2)によって上記高周波電力を電磁誘導によ
り取り出し、整流した直流電圧によりバッテリを充電す
るようになっている。
In the above non-contact charger, the high frequency power generated in the inverter circuit on the charger side is applied to the magnetic force generating coil (L
The high frequency power is taken out by electromagnetic induction by the coupling coil (L2) built in the telephone which is supplied to and charged in 1), and the battery is charged by the rectified DC voltage.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
非接触充電器では、磁力発生コイル(L1)と結合用コ
イル(L2)の結合係数kがかなり小さいため、所定の
電流で電話機側のバッテリを充電するためには、損失分
も含めて、充電器で多大な電力が必要となり、商用交流
電源から見た場合の交流→直流の変換効率を悪化させて
いる。仮に、充電器にACアダプタを接続するタイプで
あっても、直流電流をかなり必要とするため、アダプタ
それ自体の定格容量をアップしなければならず、コスト
アップにつながるという問題があった。
However, in the conventional non-contact charger, since the coupling coefficient k between the magnetic force generating coil (L1) and the coupling coil (L2) is considerably small, the battery on the telephone side can be charged with a predetermined current. In order to charge the battery, a large amount of power is required in the charger, including the loss, which deteriorates the conversion efficiency from AC to DC when viewed from a commercial AC power supply. Even if it is a type in which an AC adapter is connected to the charger, a considerable amount of direct current is required, and therefore the rated capacity of the adapter itself must be increased, which causes a problem of cost increase.

【0005】また、上述したように、充電器における電
流が大となるため、電圧レギュレータを含めた制御素子
の電流定格値を大きくしなければならず、コストアップ
につながるという問題があた。また、ほとんどの充電器
には、充電/非充電をユーザに認知させるために、例え
ば、スイッチング素子等によって制御されるLED等の
点灯装置が設けられているが、回路構成が複雑になると
ともに、部品点数が増えるため、コストアップにつなが
るという問題があった。
Further, as described above, since the current in the charger becomes large, it is necessary to increase the current rating value of the control element including the voltage regulator, which causes a problem of cost increase. Further, most chargers are provided with a lighting device such as an LED controlled by a switching element or the like in order to make the user recognize charging / non-charging, but the circuit configuration becomes complicated, and Since the number of parts is increased, there is a problem that the cost is increased.

【0006】そこで本発明は、交流→直流への変換効率
を向上させることができ、また、素子の最大許容電流値
や損失を低減することができ、さらに、特別な回路を用
いることなく、充電/非充電を表示できる非接触充電器
を提供することを目的としている。
Therefore, the present invention can improve the conversion efficiency from AC to DC, reduce the maximum allowable current value and loss of the element, and charge without using any special circuit. / It aims at providing the non-contact charger which can display non-charge.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、この発明による非接触充電器は、電子機器のバッテ
リを充電する充電器であって、電子機器側に設けられた
結合コイルに高周波電力を誘導する磁力発生コイルを有
し、前記磁力発生コイルと前記結合コイル間の電磁誘導
によって非接触で前記電子機器に充電電力を供給する非
接触充電器において、前記磁力発生コイル近傍に配置さ
れ、前記磁力発生コイルと前記結合コイル間における漏
洩磁束による高周波電力を取り出すピックアップコイル
と、前記ピックアップコイルによって取り出した高周波
電力を定電圧制御回路系の電源としてフィードバックす
るフィードバック手段とを具備することを特徴とする。
In order to achieve the above object, a contactless charger according to the present invention is a charger for charging a battery of an electronic device, and a high frequency power is supplied to a coupling coil provided on the electronic device side. In a non-contact charger that supplies a charging power to the electronic device in a non-contact manner by electromagnetic induction between the magnetic force generation coil and the coupling coil, the magnetic force generation coil is arranged in the vicinity of the magnetic force generation coil. A pickup coil for extracting high frequency power due to a leakage magnetic flux between the magnetic force generating coil and the coupling coil; and a feedback unit for feeding back the high frequency power extracted by the pickup coil as a power source of a constant voltage control circuit system. To do.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】A.実施の形態 A−1.実施の形態の構成 図1は本発明の実施の形態による非接触充電器と該非接
触充電器で充電される電話機の子機の略構成を示す回路
図であり、図2は、非接触充電器の断面図である。図に
おいて、非接触充電器1は、整流回路2、定電圧回路
3、インバータ回路4、制御回路5、磁力発生コイルL
1、ピックアップコイルL3、およびフィードバック回
路6から構成されている。整流回路2は、ダイオードD
1〜D4からなるブリッジ回路より構成され、商用電源
ACを整流し、定電圧回路(レギュレータ)3に供給す
る。
A. Embodiment A-1. Configuration of Embodiment FIG. 1 is a circuit diagram showing a schematic configuration of a non-contact charger according to an embodiment of the present invention and a slave unit of a telephone charged by the non-contact charger, and FIG. 2 is a non-contact charger. FIG. In the figure, the non-contact charger 1 includes a rectifier circuit 2, a constant voltage circuit 3, an inverter circuit 4, a control circuit 5, and a magnetic force generation coil L.
1, a pickup coil L3, and a feedback circuit 6. The rectifier circuit 2 is a diode D
It is composed of a bridge circuit composed of 1 to D4, rectifies the commercial power supply AC, and supplies it to the constant voltage circuit (regulator) 3.

【0010】定電圧回路3は、整流された直流電圧を平
滑化するとともに、所定電圧となるように制御し、イン
バータ回路4に供給する。インバータ回路4は、上記直
流電圧を高周波に変換し、磁力発生コイルL1によっ
て、磁力線を発生させる。制御回路5は、上記インバー
タ回路4を制御し、所定高周波を発生させる。ピックア
ップコイルL3は、磁力発生コイルL1と後述する子機
側の結合コイルL1とによって電磁結合されなかった漏
洩磁束を取り出し、フィードバック回路6に供給する。
The constant voltage circuit 3 smoothes the rectified DC voltage and controls it so that it becomes a predetermined voltage, and supplies it to the inverter circuit 4. The inverter circuit 4 converts the DC voltage into a high frequency, and causes the magnetic force generation coil L1 to generate magnetic force lines. The control circuit 5 controls the inverter circuit 4 to generate a predetermined high frequency. The pickup coil L3 takes out a leakage magnetic flux that is not electromagnetically coupled by the magnetic force generation coil L1 and a slave unit side coupling coil L1 to be described later, and supplies it to the feedback circuit 6.

【0011】フィードバック回路6は、抵抗器R1、ツ
ェナーダイオードZD、ダイオードD5、コンデンサC
1、抵抗器R2、発光ダイオードLEDから構成されて
おり、上記漏洩磁束をダイオードD5により直流電圧に
変換した後、コンデンサC1により平滑化し、定電圧回
路3にフィードバックするとともに、抵抗器R2、発光
ダイオードLEDを点灯させる。したがって、充電中の
間は、ピックアップコイルL3によって漏洩磁束が取り
出されるので、発光ダイオードLEDが点灯することに
なる。また、漏洩した分の電力は、直流電圧源に供給す
ることで、交流(AC)→直流(DC)への変換効率を
向上させることができる。
The feedback circuit 6 includes a resistor R1, a Zener diode ZD, a diode D5 and a capacitor C.
1, a resistor R2 and a light emitting diode LED. The leakage magnetic flux is converted into a DC voltage by the diode D5, smoothed by the capacitor C1 and fed back to the constant voltage circuit 3, and the resistor R2 and the light emitting diode are also provided. Turn on the LED. Therefore, during the charging, the leakage magnetic flux is taken out by the pickup coil L3, so that the light emitting diode LED is turned on. In addition, the efficiency of conversion from alternating current (AC) to direct current (DC) can be improved by supplying the leaked power to the direct current voltage source.

【0012】一方、子機(ハンドセット)10は、結合
コイルL2、整流回路11、充電回路12、バッテリ1
3、主電源回路14を備えている。結合コイルL2は、
上記非接触充電器1の磁力発生コイルL1に対して電磁
誘導により結合し、高周波電力を取り出し、整流回路1
1に供給する。整流回路11は、ダイオードD6および
コンデンサC2から構成されており、ダイオードD6に
より上記高周波電力を整流し、コンデンサC2で平滑化
した後、充電回路12に供給する。充電回路12は、上
記直流電圧によりバッテリを13を充電する。主電源回
路14は、バッテリ13の出力電圧から図示しない通信
関連の回路を駆動するための駆動電圧を生成し、各部に
供給する。
On the other hand, the slave unit (handset) 10 includes a coupling coil L2, a rectifying circuit 11, a charging circuit 12, and a battery 1.
3, the main power supply circuit 14 is provided. The coupling coil L2 is
The rectifier circuit 1 is coupled to the magnetic force generation coil L1 of the non-contact charger 1 by electromagnetic induction to extract high frequency power.
Feed to 1. The rectifier circuit 11 is composed of a diode D6 and a capacitor C2. The high frequency power is rectified by the diode D6, smoothed by the capacitor C2, and then supplied to the charging circuit 12. The charging circuit 12 charges the battery 13 with the DC voltage. The main power supply circuit 14 generates a drive voltage for driving a communication-related circuit (not shown) from the output voltage of the battery 13 and supplies it to each unit.

【0013】上述した磁力発生コイルL1およびピック
アップコイルL3は、図2に示すように、子機10が充
電時に非接触充電器1に載置される面の内側に同心円状
に配置されている。また、結合コイルL2も同様に、図
2に示すように、上記磁力発生コイルL1に対向するよ
うに、同心円状に配置されている。
As shown in FIG. 2, the magnetic force generating coil L1 and the pickup coil L3 described above are arranged concentrically inside the surface on which the cordless handset 10 is placed on the non-contact charger 1 during charging. Similarly, as shown in FIG. 2, the coupling coil L2 is also concentrically arranged so as to face the magnetic force generation coil L1.

【0014】B.実施の形態の動作 次に、上述した非接触充電器の動作について説明する。
非接触充電器1では、商用電力ACが整流回路2により
直流電圧に変換され、定電圧回路3により所定電圧に制
御された後、インバータ4に供給される。該直流電圧
は、インバータ4により、制御回路5の制御の従って高
周波に変換され、磁力発生コイルL1に供給される。こ
の結果、磁力発生コイルL1からは磁力線が発生する。
一方、子機10では、結合コイルL2によって電磁誘導
により上記磁力発生コイルL1の磁力線から高周波電力
が取り出される。該高周波電力は、整流回路11により
整流された後、充電回路12に供給される。充電回路1
2では、整流された直流電圧によりバッテリ13が充電
される。
B. Operation of Embodiment Next, the operation of the above-described non-contact charger will be described.
In the non-contact charger 1, the commercial power AC is converted into a DC voltage by the rectifier circuit 2, controlled to a predetermined voltage by the constant voltage circuit 3, and then supplied to the inverter 4. The DC voltage is converted into a high frequency by the inverter 4 under the control of the control circuit 5 and supplied to the magnetic force generating coil L1. As a result, magnetic force lines are generated from the magnetic force generation coil L1.
On the other hand, in the handset 10, the coupling coil L2 extracts high frequency power from the magnetic force lines of the magnetic force generation coil L1 by electromagnetic induction. The high frequency power is rectified by the rectifier circuit 11 and then supplied to the charging circuit 12. Charging circuit 1
In 2, the battery 13 is charged with the rectified DC voltage.

【0015】上記充電動作において、磁力発生コイルL
1と結合コイルL2間で結合しきなかった漏洩磁束がピ
ックアップコイルL3によって取り出され、フィードバ
ック回路6に供給される。上記漏洩磁束に応じた高周波
電力は、フィードバック回路6のダイオードD5によっ
て整流され、コンデンサC1により平滑化されて、定電
圧回路3にフィードバックされる。このとき、発光ダイ
オードLEDが点灯することで、充電中であることが表
示される。
In the above charging operation, the magnetic force generating coil L
The leakage magnetic flux that is not completely coupled between 1 and the coupling coil L2 is taken out by the pickup coil L3 and supplied to the feedback circuit 6. The high frequency power corresponding to the leakage magnetic flux is rectified by the diode D5 of the feedback circuit 6, smoothed by the capacitor C1, and fed back to the constant voltage circuit 3. At this time, the light emitting diode LED lights up, which indicates that the battery is being charged.

【0016】このように、上述した実施の形態では、非
接触充電器1にピックアップコイルL3を設け、該ピッ
クアップコイルL3で取りだした漏洩磁束に応じた高周
波電力を、フィードバック回路6によって直流電圧に変
換した後、直流電圧源にフィードバックすることによ
り、非接触充電器1における交流(AC)→直流(D
C)への変換効率を向上させることができる。また、ピ
ックアップコイルL3によって取り出され、漏洩磁束に
応じた直流電圧によって点灯する発光ダイオードLED
を設けることにより、特別なスイッチング素子を用いる
ことなく、充電中であることを表示することができる。
また、漏洩磁束に応じた電力を直流電圧源にフィードバ
ックすることにより、例えば、定電圧回路の素子の供給
電流を削減することができるので、同一電源で同等の磁
力線を発生させる場合、素子の最大許容電流値や損失を
低めに設定でき、コストダウンを図ることができる。
As described above, in the above-described embodiment, the non-contact charger 1 is provided with the pickup coil L3, and the high frequency power corresponding to the leakage magnetic flux extracted by the pickup coil L3 is converted into the DC voltage by the feedback circuit 6. After that, by feeding back to the DC voltage source, alternating current (AC) → direct current (D
The conversion efficiency to C) can be improved. Further, a light emitting diode LED that is taken out by the pickup coil L3 and is turned on by a DC voltage according to the leakage magnetic flux.
By providing, it is possible to display that the battery is being charged without using a special switching element.
Also, by feeding back the power corresponding to the leakage magnetic flux to the DC voltage source, for example, the supply current of the element of the constant voltage circuit can be reduced. The allowable current value and the loss can be set to be low, and the cost can be reduced.

【0017】[0017]

【発明の効果】以上説明したように、この発明によれ
ば、電子機器のバッテリを充電する充電器であって、電
子機器側に設けられた結合コイルに高周波電力を誘導す
る磁力発生コイルを有し、前記磁力発生コイルと前記結
合コイル間の電磁誘導によって非接触で前記電子機器に
充電電力を供給する非接触充電器において、前記磁力発
生コイル近傍に配置され、前記磁力発生コイルと前記結
合コイル間における漏洩磁束による高周波電力を取り出
すピックアップコイルと、前記ピックアップコイルによ
って取り出した高周波電力を定電圧制御回路系の電源と
してフィードバックするフィードバック手段とを具備す
るようにしたことにより、交流→直流への変換効率を向
上させることができ、また、素子の最大許容電流値や損
失を低減することができるという利点が得られる。
As described above, according to the present invention, the charger for charging the battery of the electronic device has the magnetic force generating coil for inducing high frequency power in the coupling coil provided on the electronic device side. A non-contact charger that supplies charging power to the electronic device in a contactless manner by electromagnetic induction between the magnetic force generating coil and the coupling coil, the magnetic force generating coil and the coupling coil being disposed in the vicinity of the magnetic force generating coil. Conversion from AC to DC is provided by providing a pickup coil for extracting the high frequency power due to the leakage magnetic flux between the two and a feedback means for feeding back the high frequency power extracted by the pickup coil as a power source of the constant voltage control circuit system. It is possible to improve the efficiency and reduce the maximum allowable current value and loss of the device. The advantage that wear is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態による非接触充電器と該非
接触充電器により充電される子機(ハンドセット)の略
構成を示す回路図である。
FIG. 1 is a circuit diagram showing a schematic configuration of a non-contact charger and a handset (handset) charged by the non-contact charger according to an embodiment of the present invention.

【図2】非接触充電器と該非接触充電器により充電され
る子機(ハンドセット)の断面図である。
FIG. 2 is a cross-sectional view of a non-contact charger and a slave unit (handset) charged by the non-contact charger.

【符号の説明】[Explanation of symbols]

1……非接触充電器、2……整流回路、3……定電圧回
路、4……インバータ回路、5……制御回路、6……フ
ィードバック回路(フィードバック手段)、10……子
機、11……整流回路、12……充電回路、13……バ
ッテリ、14……主電源回路、L1……磁力発生コイ
ル、L2……結合コイル、L3……ピックアップコイ
ル、D5……ダイオード(整流手段)、LED……発光
ダイオード(表示手段)。
1 ... Non-contact charger, 2 ... Rectifier circuit, 3 ... Constant voltage circuit, 4 ... Inverter circuit, 5 ... Control circuit, 6 ... Feedback circuit (feedback means), 10 ... Slave unit, 11 ...... Rectifier circuit, 12 ... Charging circuit, 13 ... Battery, 14 ... Main power circuit, L1 ... Magnetic force generating coil, L2 ... Coupling coil, L3 ... Pickup coil, D5 ... Diode (rectifying means) , LED ... Light emitting diode (display means).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02J 17/00 H02J 17/00 B H04M 1/00 H04M 1/00 N ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication H02J 17/00 H02J 17/00 B H04M 1/00 H04M 1/00 N

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電子機器のバッテリを充電する充電器で
あって、電子機器側に設けられた結合コイルに高周波電
力を誘導する磁力発生コイルを有し、前記磁力発生コイ
ルと前記結合コイル間の電磁誘導によって非接触で前記
電子機器に充電電力を供給する非接触充電器において、 前記磁力発生コイル近傍に配置され、前記磁力発生コイ
ルと前記結合コイル間における漏洩磁束による高周波電
力を取り出すピックアップコイルと、 前記ピックアップコイルによって取り出した高周波電力
を定電圧制御回路系の電源としてフィードバックするフ
ィードバック手段とを具備することを特徴とする非接触
充電器。
1. A charger for charging a battery of an electronic device, comprising a magnetic force generating coil for inducing high-frequency power in a coupling coil provided on the electronic device side, and between the magnetic force generating coil and the coupling coil. A contactless charger that supplies charging power to the electronic device in a contactless manner by electromagnetic induction, a pickup coil that is disposed in the vicinity of the magnetic force generation coil and that extracts high-frequency power by leakage magnetic flux between the magnetic force generation coil and the coupling coil. And a feedback means for feeding back the high frequency power extracted by the pickup coil as a power source of a constant voltage control circuit system.
【請求項2】 前記ピックアップコイルによって取り出
した高周波電力によって点灯する表示手段を具備するこ
とを特徴とする請求項1記載の非接触充電器。
2. The non-contact charger according to claim 1, further comprising a display unit that is turned on by the high frequency power extracted by the pickup coil.
【請求項3】 前記フィードバック手段は、前記高周波
電力を直流に変換する整流手段を具備することを特徴と
する請求項1記載の非接触充電器。
3. The contactless charger according to claim 1, wherein the feedback unit includes a rectifying unit that converts the high frequency power into a direct current.
JP8132646A 1996-04-30 1996-04-30 Non-contact charger Pending JPH09298847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8132646A JPH09298847A (en) 1996-04-30 1996-04-30 Non-contact charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8132646A JPH09298847A (en) 1996-04-30 1996-04-30 Non-contact charger

Publications (1)

Publication Number Publication Date
JPH09298847A true JPH09298847A (en) 1997-11-18

Family

ID=15086200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8132646A Pending JPH09298847A (en) 1996-04-30 1996-04-30 Non-contact charger

Country Status (1)

Country Link
JP (1) JPH09298847A (en)

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325333B1 (en) * 1997-03-14 2002-07-12 이구택 Solid-state contactor with protection circuit
KR100432369B1 (en) * 2001-09-05 2004-05-28 (주)청파이엠티 Noncontact type battery pack charger
JP2010239838A (en) * 2009-03-31 2010-10-21 Fujitsu Ltd Power transmission equipment
EP2267864A2 (en) 2009-06-25 2010-12-29 Panasonic Electric Works Co., Ltd. Non-contact charger with an indicator
EP2267865A2 (en) 2009-06-25 2010-12-29 Panasonic Electric Works Co., Ltd. Chargeable electric device
WO2013020138A3 (en) * 2011-08-04 2013-04-04 Witricity Corporation Tunable wireless power architectures
JP2013212043A (en) * 2012-02-28 2013-10-10 Hitachi Maxell Ltd Small electrical apparatus having non-contact charging device and non-contact type charging system
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
WO2014132486A1 (en) * 2013-02-27 2014-09-04 日立マクセル株式会社 Small electric device provided with non-contact charger and non-contact charging system
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
JP2015100161A (en) * 2013-11-18 2015-05-28 株式会社Ihi Non-contact power supply system
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US9065286B2 (en) 2005-07-12 2015-06-23 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
JP2015139257A (en) * 2014-01-21 2015-07-30 株式会社Ihi Non-contact power feeding system
US9095729B2 (en) 2007-06-01 2015-08-04 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9831682B2 (en) 2008-10-01 2017-11-28 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10218224B2 (en) 2008-09-27 2019-02-26 Witricity Corporation Tunable wireless energy transfer systems
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems
US10410789B2 (en) 2008-09-27 2019-09-10 Witricity Corporation Integrated resonator-shield structures
US10424976B2 (en) 2011-09-12 2019-09-24 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
US11031818B2 (en) 2017-06-29 2021-06-08 Witricity Corporation Protection and control of wireless power systems

Cited By (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325333B1 (en) * 1997-03-14 2002-07-12 이구택 Solid-state contactor with protection circuit
KR100432369B1 (en) * 2001-09-05 2004-05-28 (주)청파이엠티 Noncontact type battery pack charger
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US11685271B2 (en) 2005-07-12 2023-06-27 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US10666091B2 (en) 2005-07-12 2020-05-26 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9065286B2 (en) 2005-07-12 2015-06-23 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9509147B2 (en) 2005-07-12 2016-11-29 Massachusetts Institute Of Technology Wireless energy transfer
US11685270B2 (en) 2005-07-12 2023-06-27 Mit Wireless energy transfer
US10141790B2 (en) 2005-07-12 2018-11-27 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US10097044B2 (en) 2005-07-12 2018-10-09 Massachusetts Institute Of Technology Wireless energy transfer
US9450421B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9450422B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless energy transfer
US9831722B2 (en) 2005-07-12 2017-11-28 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US10420951B2 (en) 2007-06-01 2019-09-24 Witricity Corporation Power generation for implantable devices
US9843230B2 (en) 2007-06-01 2017-12-12 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9943697B2 (en) 2007-06-01 2018-04-17 Witricity Corporation Power generation for implantable devices
US10348136B2 (en) 2007-06-01 2019-07-09 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9318898B2 (en) 2007-06-01 2016-04-19 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9101777B2 (en) 2007-06-01 2015-08-11 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9095729B2 (en) 2007-06-01 2015-08-04 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US10340745B2 (en) 2008-09-27 2019-07-02 Witricity Corporation Wireless power sources and devices
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US12263743B2 (en) 2008-09-27 2025-04-01 Witricity Corporation Wireless power system modules
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US11958370B2 (en) 2008-09-27 2024-04-16 Witricity Corporation Wireless power system modules
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US10097011B2 (en) 2008-09-27 2018-10-09 Witricity Corporation Wireless energy transfer for photovoltaic panels
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US10218224B2 (en) 2008-09-27 2019-02-26 Witricity Corporation Tunable wireless energy transfer systems
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US11479132B2 (en) 2008-09-27 2022-10-25 Witricity Corporation Wireless power transmission system enabling bidirectional energy flow
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US10230243B2 (en) 2008-09-27 2019-03-12 Witricity Corporation Flexible resonator attachment
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US11114897B2 (en) 2008-09-27 2021-09-07 Witricity Corporation Wireless power transmission system enabling bidirectional energy flow
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US10264352B2 (en) 2008-09-27 2019-04-16 Witricity Corporation Wirelessly powered audio devices
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US11114896B2 (en) 2008-09-27 2021-09-07 Witricity Corporation Wireless power system modules
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US10300800B2 (en) 2008-09-27 2019-05-28 Witricity Corporation Shielding in vehicle wireless power systems
US9496719B2 (en) 2008-09-27 2016-11-15 Witricity Corporation Wireless energy transfer for implantable devices
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US9515495B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless energy transfer in lossy environments
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US10084348B2 (en) 2008-09-27 2018-09-25 Witricity Corporation Wireless energy transfer for implantable devices
US9584189B2 (en) 2008-09-27 2017-02-28 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9596005B2 (en) 2008-09-27 2017-03-14 Witricity Corporation Wireless energy transfer using variable size resonators and systems monitoring
US10410789B2 (en) 2008-09-27 2019-09-10 Witricity Corporation Integrated resonator-shield structures
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9662161B2 (en) 2008-09-27 2017-05-30 Witricity Corporation Wireless energy transfer for medical applications
US9698607B2 (en) 2008-09-27 2017-07-04 Witricity Corporation Secure wireless energy transfer
US9711991B2 (en) 2008-09-27 2017-07-18 Witricity Corporation Wireless energy transfer converters
US9742204B2 (en) 2008-09-27 2017-08-22 Witricity Corporation Wireless energy transfer in lossy environments
US9748039B2 (en) 2008-09-27 2017-08-29 Witricity Corporation Wireless energy transfer resonator thermal management
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US10673282B2 (en) 2008-09-27 2020-06-02 Witricity Corporation Tunable wireless energy transfer systems
US9780605B2 (en) 2008-09-27 2017-10-03 Witricity Corporation Wireless power system with associated impedance matching network
US9843228B2 (en) 2008-09-27 2017-12-12 Witricity Corporation Impedance matching in wireless power systems
US9806541B2 (en) 2008-09-27 2017-10-31 Witricity Corporation Flexible resonator attachment
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US10446317B2 (en) 2008-09-27 2019-10-15 Witricity Corporation Object and motion detection in wireless power transfer systems
US10559980B2 (en) 2008-09-27 2020-02-11 Witricity Corporation Signaling in wireless power systems
US10536034B2 (en) 2008-09-27 2020-01-14 Witricity Corporation Wireless energy transfer resonator thermal management
US9831682B2 (en) 2008-10-01 2017-11-28 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
JP2010239838A (en) * 2009-03-31 2010-10-21 Fujitsu Ltd Power transmission equipment
US8542018B2 (en) 2009-03-31 2013-09-24 Fujitsu Limited Power transmitting apparatus
EP2267865A2 (en) 2009-06-25 2010-12-29 Panasonic Electric Works Co., Ltd. Chargeable electric device
EP2267864A2 (en) 2009-06-25 2010-12-29 Panasonic Electric Works Co., Ltd. Non-contact charger with an indicator
EP2267864A3 (en) * 2009-06-25 2014-07-02 Panasonic Corporation Non-contact charger with an indicator
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
WO2013020138A3 (en) * 2011-08-04 2013-04-04 Witricity Corporation Tunable wireless power architectures
US9787141B2 (en) 2011-08-04 2017-10-10 Witricity Corporation Tunable wireless power architectures
US10734842B2 (en) 2011-08-04 2020-08-04 Witricity Corporation Tunable wireless power architectures
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US11621585B2 (en) 2011-08-04 2023-04-04 Witricity Corporation Tunable wireless power architectures
US10778047B2 (en) 2011-09-09 2020-09-15 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10027184B2 (en) 2011-09-09 2018-07-17 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10424976B2 (en) 2011-09-12 2019-09-24 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US11097618B2 (en) 2011-09-12 2021-08-24 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
JP2013212043A (en) * 2012-02-28 2013-10-10 Hitachi Maxell Ltd Small electrical apparatus having non-contact charging device and non-contact type charging system
US10158251B2 (en) 2012-06-27 2018-12-18 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10211681B2 (en) 2012-10-19 2019-02-19 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9465064B2 (en) 2012-10-19 2016-10-11 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10686337B2 (en) 2012-10-19 2020-06-16 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9842684B2 (en) 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US10186372B2 (en) 2012-11-16 2019-01-22 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
WO2014132486A1 (en) * 2013-02-27 2014-09-04 日立マクセル株式会社 Small electric device provided with non-contact charger and non-contact charging system
US11112814B2 (en) 2013-08-14 2021-09-07 Witricity Corporation Impedance adjustment in wireless power transmission systems and methods
US11720133B2 (en) 2013-08-14 2023-08-08 Witricity Corporation Impedance adjustment in wireless power transmission systems and methods
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
JP2015100161A (en) * 2013-11-18 2015-05-28 株式会社Ihi Non-contact power supply system
US10320243B2 (en) 2014-01-21 2019-06-11 Ihi Corporation Wireless power supply system
JP2015139257A (en) * 2014-01-21 2015-07-30 株式会社Ihi Non-contact power feeding system
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US10186373B2 (en) 2014-04-17 2019-01-22 Witricity Corporation Wireless power transfer systems with shield openings
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10371848B2 (en) 2014-05-07 2019-08-06 Witricity Corporation Foreign object detection in wireless energy transfer systems
US11637458B2 (en) 2014-06-20 2023-04-25 Witricity Corporation Wireless power transfer systems for surfaces
US10923921B2 (en) 2014-06-20 2021-02-16 Witricity Corporation Wireless power transfer systems for surfaces
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10651688B2 (en) 2015-10-22 2020-05-12 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10651689B2 (en) 2015-10-22 2020-05-12 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems
US10637292B2 (en) 2016-02-02 2020-04-28 Witricity Corporation Controlling wireless power transfer systems
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
US10913368B2 (en) 2016-02-08 2021-02-09 Witricity Corporation PWM capacitor control
US11807115B2 (en) 2016-02-08 2023-11-07 Witricity Corporation PWM capacitor control
US11031818B2 (en) 2017-06-29 2021-06-08 Witricity Corporation Protection and control of wireless power systems
US11637452B2 (en) 2017-06-29 2023-04-25 Witricity Corporation Protection and control of wireless power systems
US11588351B2 (en) 2017-06-29 2023-02-21 Witricity Corporation Protection and control of wireless power systems
US11043848B2 (en) 2017-06-29 2021-06-22 Witricity Corporation Protection and control of wireless power systems

Similar Documents

Publication Publication Date Title
JPH09298847A (en) Non-contact charger
KR100566220B1 (en) Solid state battery charger
US6950320B2 (en) Portable charging apparatus having a charging battery built-in
US6057668A (en) Battery charging device for mobile phone
JP5550785B2 (en) Circuit of contactless inductive power transmission system
US20050162125A1 (en) Integrated induction battery charge apparatus
KR101197243B1 (en) Portable Power Supply Device
CN102035220A (en) Wireless power supply device
EP3790161B1 (en) Multi-level power compatible wireless power receiving apparatus
EP0960459A1 (en) Power transfer and voltage level conversion for a battery-powered electronic device
CN108879898B (en) Electronic device
CN104011960A (en) Electronics and Feed Systems
CN102005784A (en) Wireless charging system
JPH0739077A (en) Cordless power station
KR101251316B1 (en) Power supply for charging a battery
CN201533185U (en) Wireless supply unit
CN203278327U (en) A backup power supply charging and discharging control circuit
KR200473080Y1 (en) Wireless charging pad using design light
KR101261338B1 (en) Charger non-contact and contact charger and controlling method thereof
CN212210576U (en) Power supply circuit of low-power-consumption storage battery charger
CN201138850Y (en) Electricity supply apparatus for mobile communication terminal and mobile communication terminal thereof
KR20020092859A (en) Portable charging apparatus having a charging battery built-in
JPH11146569A (en) Noncontact power transmission system
CN212012242U (en) PD quick charger
JP2003047162A (en) Battery charger