[go: up one dir, main page]

JPH09309947A - Aliphatic polyester having cholesterol group as side chain - Google Patents

Aliphatic polyester having cholesterol group as side chain

Info

Publication number
JPH09309947A
JPH09309947A JP12945096A JP12945096A JPH09309947A JP H09309947 A JPH09309947 A JP H09309947A JP 12945096 A JP12945096 A JP 12945096A JP 12945096 A JP12945096 A JP 12945096A JP H09309947 A JPH09309947 A JP H09309947A
Authority
JP
Japan
Prior art keywords
formula
mmol
aliphatic polyester
polyethylene glycol
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12945096A
Other languages
Japanese (ja)
Inventor
Naoyuki Koide
直之 小出
Takashi Ueki
俊 植木
Kazuhiko Ishihara
一彦 石原
Yasuhiko Iwasaki
泰彦 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12945096A priority Critical patent/JPH09309947A/en
Publication of JPH09309947A publication Critical patent/JPH09309947A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aliphatic polyester having cholesterol groups as side chains, which is used a biomaterial being excellent in mechanical compatibility and interfacial compatibility and degradable in the living body. SOLUTION: An aliphatic polyester (a) represented by formula I [wherein X is formula II, -O(CH2 CH2 )- (wherein (m) is 1-10), -O(CH2 )p - (wherein (p) is 2-30 or a bonding group; and (n) is 10 or above] is produced in a reaction route shown in formula III. A crosslinked polymer of compound (a) and a copolymer thereof with polyethylene glycol (the content of the polyethylene glycol is 0-40wt.% based on the copolymer) are also used for use the same as that of compound (a). An example of the process for producing compound (a) is described. below p-Hydroxybenzoic acid is acetylated with acetic anhydride, the product of acetylation is converted into a acid chloride by reaction with thionyl chloride, the acid chloride is reacted with cholesterol, the formed product is treated with sodium methylate, the treated product is glycidylated with chloromethyloxysilane, and the product of glycidylation is reacted with succinic anhydride.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生体材料として有用な
側鎖にコレステロール基を有する脂肪族ポリエステルに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aliphatic polyester having a cholesterol group in a side chain which is useful as a biomaterial.

【0002】[0002]

【従来の技術】多くの生体組織は、液晶と類似の秩序構
造を持っている。このため、液晶性を示す材料を生体材
料として用いると、高い生体適合性が得られる場合もあ
る。しかし、生体材料としての人工材料は、単なる構造
材料ではなく、生体に対する親和性を持ち合わせていな
ければならない。一般に、医療用材料の生体適合性を考
えるとき、考慮しなければならない要因として、力学的
な適合性や界面的な適合性が挙げられる。生体組織内に
埋植された材料は、必然的に組織から力学的な刺激を受
けるので、その刺激に適応するものでなければならな
い。また、埋め込まれた材料は必ず血液が材料と接触す
る界面が存在し、その接触した部位で血液が凝固したり
しないようにしなければならない。すなわち、材料表面
で血栓が形成しにくい血液適合性材料が必要になってく
る。更に、生体材料は生体内に埋入されても分解・代謝
されやがて消滅するのが理想的といえる。
2. Description of the Related Art Many living tissues have an ordered structure similar to liquid crystals. Therefore, when a material exhibiting liquid crystallinity is used as a biomaterial, high biocompatibility may be obtained in some cases. However, artificial materials as biomaterials must be compatible with living bodies, not just structural materials. Generally, factors to be considered when considering the biocompatibility of medical materials include mechanical compatibility and interface compatibility. The material implanted in the living tissue necessarily receives mechanical stimulation from the tissue and must be adapted to the stimulation. Also, the embedded material must have an interface where the blood comes in contact with the material so that the blood does not coagulate at the contact site. That is, a blood compatible material that is less likely to form a thrombus on the material surface is needed. Furthermore, it is ideal that biomaterials are degraded and metabolized and eventually disappear even if they are implanted in the living body.

【0003】このような生体材料として、セグメント化
ポリウレタンがある。これは力学特性に優れ、生体内で
分解される材料であるが、この材料が接触した部位で血
液が凝固するという欠点があった。
One such biomaterial is segmented polyurethane. Although this is a material excellent in mechanical properties and decomposed in vivo, it has a disadvantage that blood coagulates at the site where the material comes in contact.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、優れ
た力学的な適合性・界面的な適合性(すなわち、生体材
料が接触した部位で血液が凝固しない性質)を有し、し
かも生体内で分解されるポリマーを提供することにあ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to have excellent mechanical compatibility, interfacial compatibility (ie, the property that blood does not coagulate at a site where biomaterials come in contact), and It is to provide a polymer that is degraded in the body.

【0005】[0005]

【課題を解決するための手段】本発明者らは前記課題を
達成するために鋭意研究を進めた結果、側鎖にコレステ
ロール基を有するある種の脂肪族ポリエステル、その橋
架けポリマー、及びそのポリエチレングリコールとの共
重合体が力学的な適合性・界面的な適合性を有し、しか
も生体内で分解されることを見いだし、本発明を完成し
た。
SUMMARY OF THE INVENTION As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that some aliphatic polyesters having a cholesterol group in the side chain, their crosslinked polymers, and their polyethylenes. The inventors found that the copolymer with glycol has mechanical compatibility, interfacial compatibility, and decomposition in vivo, and completed the present invention.

【0006】すなわち、本発明は、式That is, the present invention

【0007】[0007]

【化3】 [Chemical formula 3]

【0008】[式中、Xは式[Wherein X is the formula

【0009】[0009]

【化4】 [Chemical formula 4]

【0010】で表される基、式 −O(CH2CH2)m
− (式中、mは1〜10の整数を示す。)で表される
基もしくは式 −O(CH2)p− (式中、pは2〜3
0の整数を示す。)で表される基を示すか、または結合
子を示し、nは10以上の整数を示す。]で表される側
鎖にコレステロール基を有する脂肪族ポリエステルであ
り、また本発明は、式(I)のポリマーの橋架けポリマ
ーであり、更に本発明は、式(I)のポリマーとポリエ
チレングリコールとの共重合体である。
A group represented by the formula: -O (CH 2 CH 2 ) m
-(In the formula, m represents an integer of 1 to 10) or a group represented by the formula -O (CH 2 ) p-(wherein p is 2 to 3)
Indicates an integer of 0. Or a bond, and n represents an integer of 10 or more. And the present invention is a crosslinked polymer of the polymer of the formula (I), and the present invention further comprises the polymer of the formula (I) and polyethylene glycol And copolymers thereof.

【0011】本発明の式(I)のポリマーの中では、X
が結合子であるポリマーが最も好ましい性質を有する。
本発明の式(I)のポリマーは、例えば下記反応スキー
ムにより製造することができる。
Among the polymers of the formula (I) according to the invention,
The polymer in which is a connector has the most desirable properties.
The polymer of the formula (I) of the present invention can be produced, for example, by the following reaction scheme.

【0012】[0012]

【化5】 [Chemical formula 5]

【0013】(反応スキーム中、X及びnは前記と同意
義である。) また、式(I)のポリマーの橋架けポリマーは、例えば
下記反応スキームにより製造することができる。
(In the reaction scheme, X and n are as defined above.) Further, a crosslinked polymer of the polymer of the formula (I) can be produced, for example, by the following reaction scheme.

【0014】[0014]

【化6】 [Chemical formula 6]

【0015】更に、式(I)のポリマーとポリエチレン
グリコールとの共重合体は、例えば下記反応スキームに
より製造することができる。
Furthermore, a copolymer of the polymer of the formula (I) and polyethylene glycol can be produced, for example, according to the following reaction scheme.

【0016】[0016]

【化7】 [Chemical formula 7]

【0017】式(I)のポリマーとポリエチレングリコ
ールとの共重合体は、共重合体中のポリエチレングリコ
ールの含有量が0〜40重量%となるようにすることが
好ましい。
The copolymer of the polymer of the formula (I) and polyethylene glycol is preferably such that the content of polyethylene glycol in the copolymer is 0 to 40% by weight.

【0018】なお、式(III)においてXが式(II)の
基であるポリマーは、以下の反応スキームにて合成する
ことができる。
Polymers in which X is a group of formula (II) in formula (III) can be synthesized by the following reaction scheme.

【0019】[0019]

【化8】 [Image 8]

【0020】また、式(III)においてXが式 −O
(CH2)p− で表される基のポリマーは、以下の反応
スキームにて合成することができる。
Also, in the formula (III), X is a group of the formula -O
The polymer of the group represented by (CH 2 ) p-can be synthesized by the following reaction scheme.

【0021】[0021]

【化9】 Embedded image

【0022】[0022]

【発明の効果】本発明により、優れた力学的な適合性・
界面的な適合性を有し、しかも生体内で分解されるポリ
マーを提供することが可能になった。従って、血栓など
を生じることもなく、安全に生体材料に利用できる。
According to the present invention, excellent mechanical compatibility
It has become possible to provide polymers which have interfacial compatibility and which are degraded in vivo. Therefore, it can be safely used as a biomaterial without causing thrombus and the like.

【0023】[0023]

【実施例】以下、実施例および試験例を示して本発明を
更に詳細に説明する。 (実施例1)式(I)において、Xが式(II)の基であるポリマーの
合成
EXAMPLES The present invention will be described in more detail with reference to the following Examples and Test Examples. Example 1 In a polymer of formula (I), X is a group of formula (II)
Synthesis

【0024】[0024]

【化10】 [Image 10]

【0025】1) p−ヒドロキシ安息香酸50.0g
(0.36mol)を4規定の水酸化カリウム水溶液2
00mlに溶かし、アイスバス上で攪拌した。ここに、
無水酢酸67.5g(0.66mol)を加え、冷水3
00mlで希釈しながら1時間攪拌した。この水溶液を
塩酸でpH3に酸性化し、引続き1時間攪拌した。析出
した固体を濾過し、更に濾液が中性になるまで水で洗浄
した後、メタノールで再結晶を行い、p−アセトキシ安
息香酸61.3gを得た。
1) 50.0 g of p-hydroxybenzoic acid
(0.36 mol) in 4 N aqueous solution of potassium hydroxide 2
It was dissolved in 00 ml and stirred on an ice bath. here,
Add 67.5 g (0.66 mol) of acetic anhydride,
Stir for 1 hour while diluting with 00 ml. The aqueous solution was acidified to pH 3 with hydrochloric acid and subsequently stirred for 1 hour. The precipitated solid was filtered, washed with water until the filtrate was neutral, and then recrystallized with methanol to obtain 61.3 g of p-acetoxybenzoic acid.

【0026】2) 1)で得た化合物7.2g(40.
0mmol)を塩化チオニル20mlに溶解し、触媒量
のN,N−ジメチルホルムアミドを加え、室温で2時
間、更に引続き50℃で2時間攪拌した。その後、過剰
量の塩化チオニルを減圧留去し、酸塩化物を得た。次に
コレステロール15.0g(38.8mmol)とトリ
エチルアミン10.1g(100mmol)の乾燥テト
ラヒドロフラン溶液60mlに、先に合成した酸塩化物
の乾燥テトラヒドロフラン溶液40mlを氷浴上でゆっ
くり滴下し、室温で一晩攪拌した。溶媒を減圧留去し、
得られた残留物を水で2回、更にメタノールで2回洗浄
した。得られた粗生成物をアセトンで再結晶し、分離精
製し、コレステリル−p−アセトキシ安息香酸15.3
gを得た。 NMR(CDCl3)δ(ppm);8.2〜7.3
(4H,m),5.5(1H,s),2.9〜0.6
(47H,m)。
2) 7.2 g of the compound obtained in 1) (40.
0 mmol) was dissolved in 20 ml of thionyl chloride, a catalytic amount of N, N-dimethylformamide was added, and the mixture was stirred at room temperature for 2 hours and then at 50 ° C. for 2 hours. Thereafter, excess thionyl chloride was distilled off under reduced pressure to obtain an acid chloride. Next, 40 ml of a dry tetrahydrofuran solution of the acid chloride synthesized above was slowly added dropwise to 60 ml of a dry tetrahydrofuran solution of 15.0 g (38.8 mmol) of cholesterol and 10.1 g (100 mmol) of triethylamine on an ice bath. Stir overnight. Remove the solvent under reduced pressure,
The resulting residue was washed twice with water and twice with methanol. The obtained crude product is recrystallized with acetone, separated and purified, and cholesteryl-p-acetoxybenzoic acid 15.3.
I got g. NMR (CDCl 3 ) δ (ppm); 8.2 to 7.3
(4H, m), 5.5 (1 H, s), 2.9 to 0.6
(47 H, m).

【0027】3) 2)で得た化合物9.5g(17.
3mmol)をテトラヒドロフラン50mlに溶解し、
室温で攪拌した。この溶液に、ナトリウムメチラートの
メタノール溶液(28重量%)3.4g(1当量)を滴
下した。10分後、反応溶液を500mlの水に投入
し、水溶液をpH5位まで塩酸で酸性化した。析出して
きた固体を濾過し、メタノールで洗浄した後、酢酸エチ
ルで再結晶してコレステリル−p−ヒドロキシベンゾエ
ート7.9gを得た。 IR(KBr);3600〜3200cm-1(-OH フ
ェノール),2940〜2850cm-1(C-H アルカ
ン),1670cm-1(C=O エステル),1610c
-1,1510cm-1(C-H 芳香族)。
3) 9.5 g of the compound obtained in 2) (17.
3 mmol) is dissolved in 50 ml of tetrahydrofuran,
Stir at room temperature. To this solution was dropped 3.4 g (1 equivalent) of a methanol solution of sodium methylate (28% by weight). After 10 minutes, the reaction solution was poured into 500 ml of water and the aqueous solution was acidified to pH 5 with hydrochloric acid. The precipitated solid was filtered, washed with methanol and recrystallized from ethyl acetate to obtain 7.9 g of cholesteryl-p-hydroxybenzoate. IR (KBr); 3600-3200 cm -1 (-OH phenol), 2940-2850 cm -1 (CH alkane), 1670 cm -1 (C = O ester), 1610 c
m -1 , 1510 cm -1 (CH 2 aromatic).

【0028】4) 3)で得た化合物5.1g(10.
1mmol)をクロロメチルオキシラン50mlとテト
ラヒドロフラン10mlの混合液に溶解し、ここに粉末
状の水酸化ナトリウム0.8g(20mmol)を加え
て100℃で30分間攪拌した。反応溶液をテトラヒド
ロフラン100mlで希釈し不溶物を濾別した。濾液を
乾固した後、残留物をヘキサンで洗浄し、アセトンで再
結晶してコレステリル−p−グリシジルオキシベンゾエ
ート4.0gを得た。 NMR(CDCl3)δ(ppm);8.2〜7.2
(4H,m),5.6(1H,s),4.3(2H,
m),3.5(1H,m),3.0(2H,m),2.
6〜0.6(44H,m)。
4) 5.1 g of the compound obtained in 3) (10.
1 mmol) was dissolved in a mixture of 50 ml of chloromethyl oxirane and 10 ml of tetrahydrofuran, 0.8 g (20 mmol) of powdered sodium hydroxide was added thereto, and the mixture was stirred at 100 ° C. for 30 minutes. The reaction solution was diluted with 100 ml of tetrahydrofuran and the insolubles were separated by filtration. After the filtrate was evaporated to dryness, the residue was washed with hexane and recrystallized with acetone to obtain 4.0 g of cholesteryl-p-glycidyloxybenzoate. NMR (CDCl 3 ) δ (ppm); 8.2 to 7.2
(4H, m), 5.6 (1 H, s), 4.3 (2 H,
m), 3.5 (1 H, m), 3.0 (2 H, m), 2. m.
6 to 0.6 (44 H, m).

【0029】5) 4)で得た化合物1.00g(1.
78mmol)と無水コハク酸0.18g(1.78m
mol)及び触媒として3.6mg(1mol%)のア
ルミニウムトリイソプロポキシドを、溶媒として0.7
mlのトルエンをガラス製アンプル中に導入した。これ
を窒素雰囲気下で封管し、110℃で24時間反応させ
た。生成物に少量のクロロホルムを加えて溶解させ、メ
タノール中に再沈澱させ、標記ポリマー1.0gを得
た。
5) 1.00 g of the compound obtained in 4) (1.
78 mmol) and 0.18 g (1.78 m) of succinic anhydride
mol) and 3.6 mg (1 mol%) of aluminum triisopropoxide as catalyst, 0.7 as solvent
ml of toluene was introduced into a glass ampoule. The tube was sealed under a nitrogen atmosphere and allowed to react at 110 ° C. for 24 hours. The product was dissolved in a small amount of chloroform and reprecipitated in methanol to obtain 1.0 g of the title polymer.

【0030】IR(KBr);3000〜2800cm
-1(C-H アルカン),1750cm-1(C=O 脂肪族エ
ステル),1670cm-1(C=O 芳香族エステル),
1610cm-1,1510cm-1(C-H 芳香族)。
IR (KBr); 3000-2800 cm
-1 (CH alkane), 1750 cm -1 (C = O aliphatic ester), 1670 cm -1 (C = O aromatic ester),
1610 cm -1 , 1510 cm -1 (CH 2 aromatic).

【0031】(実施例2)式(I)において、Xが結合子であるポリマーの合成 EXAMPLE 2 Synthesis of a Polymer of the Formula (I) Where X is a Connector

【0032】[0032]

【化11】 [Image 11]

【0033】1) コレステロール25.0g(64.
6mmol)をエピブロモヒドリン40mlとテトラヒ
ドロフラン20mlの混合液に溶解し、粉末状の水酸化
ナトリウムを8.0g(200ml)と硫酸水素テトラ
−n−ブチルアンモニウム1.0gを加えて100℃で
3時間攪拌した。反応溶液を200mlのテトラヒドロ
フランで希釈し、不溶物を濾別し、濾液を乾固した。こ
の粗生成物をシリカゲルカラムクロマトグラフィー(展
開溶媒;酢酸エチル:ヘキサン=1:9)により分離精
製し、コレステリルグリシジルエーテル8.3gを得
た。 NMR(CDCl3)δ(ppm);5.5(1H,
s),3.7(2H,m),3.2(1H,m),2.
7(2H,m),2.6〜0.6(52H,m)。 2) 1)で得た化合物0.92g(2.0mmol)
と無水コハク酸0.20g(2.0mmol)、及び触
媒として4.1mg(1mol%)のアルミニウムトリ
イソプロポキシドを、溶媒として0.5mlのトルエン
をガラス製アンプル中に導入した。これを窒素雰囲気下
で封管し、110℃で24時間反応させた。生成物を少
量のクロロホルムを用いて希釈し、メタノール中へ再沈
澱させた。加えて溶解させ、メタノール中に再沈澱さ
せ、標記ポリマー0.75gを得た。 IR(KBr);2950〜2850cm-1,1460
cm-1(C-H アルカン),1740cm-1(C=O 脂肪
族エステル),1100cm-1(C-O エーテル)。
1) Cholesterol 25.0 g (64.
6 mmol) is dissolved in a mixture of 40 ml of epibromohydrin and 20 ml of tetrahydrofuran, and 8.0 g (200 ml) of powdered sodium hydroxide and 1.0 g of tetra-n-butylammonium hydrogen sulfate are added and the mixture is heated to 100 ° C. Stir for hours. The reaction solution was diluted with 200 ml of tetrahydrofuran, the insolubles were filtered off, and the filtrate was evaporated to dryness. The crude product was separated and purified by silica gel column chromatography (developing solvent; ethyl acetate: hexane = 1: 9) to obtain 8.3 g of cholesteryl glycidyl ether. NMR (CDCl 3 ) δ (ppm); 5.5 (1 H,
s), 3.7 (2 H, m), 3.2 (1 H, m), 2.
7 (2H, m), 2.6 to 0.6 (52 H, m). 2) 0.92 g (2.0 mmol) of the compound obtained in 1)
And 0.20 g (2.0 mmol) of succinic anhydride, and 4.1 mg (1 mol%) of aluminum triisopropoxide as a catalyst, and 0.5 ml of toluene as a solvent were introduced into a glass ampoule. The tube was sealed under a nitrogen atmosphere and allowed to react at 110 ° C. for 24 hours. The product was diluted with a small amount of chloroform and reprecipitated into methanol. In addition, it was dissolved and reprecipitated in methanol to obtain 0.75 g of the title polymer. IR (KBr); 2950 to 2850 cm -1 , 1460
cm- 1 (CH2 alkane), 1740 cm- 1 (C = O aliphatic ester), 1100 cm- 1 (CO2 ether).

【0034】(実施例3)式(I)において、Xが式 −O(CH 2)p− で表さ
れる基であるポリマーの合成
EXAMPLE 3 In the formula (I), X is represented by the formula -O (CH 2 ) p-
Of polymers that are

【0035】[0035]

【化12】 [Chemical formula 12]

【0036】1) コレステロール23.2g(60.
0mmol)をピリジン120mlに溶解し、氷浴上で
攪拌した。この溶液に、塩化−p−トルエンスルホニル
22.8g(120mmol)のテトラヒドロフラン溶
液30mlをゆっくり滴下した後、室温で一晩攪拌し
た。次にこの反応溶液を1lの水に投入し、析出物を濾
過した。濾物を再度水で洗浄した後、更にメタノールで
二度洗浄し、アセトンで再結晶してコレステリルトシレ
ート26.8gを得た。 NMR(CDCl3)δ(ppm);7.8〜7.4
(4H,m),5.4(1H,s),2.5(3H,
s),2.6〜0.6(44H,m)。
1) 23.2 g of cholesterol (60.
0 mmol) was dissolved in 120 ml of pyridine and stirred on an ice bath. After 30 ml of a tetrahydrofuran solution of 22.8 g (120 mmol) of p-toluenesulfonyl chloride was slowly added dropwise to this solution, the mixture was stirred overnight at room temperature. The reaction solution was then poured into 1 l of water and the precipitate was filtered off. The filtrate was again washed with water, then twice with methanol and recrystallized with acetone to obtain 26.8 g of cholesteryl tosylate. NMR (CDCl 3 ) δ (ppm); 7.8 to 7.4
(4H, m), 5.4 (1 H, s), 2.5 (3 H,
s), 2.6 to 0.6 (44 H, m).

【0037】2) 1)で得た化合物5.4g(10.
0mmol)とヘキサメチレングリコール16.7g
(150mmol)を1,4−ジオキサン100mlに
溶解し、100℃で30時間反応させた。溶媒を減圧留
去し、残留物を300mlのヘキサンで3回洗浄した。
濾液を濃縮して得た粗生成物をシリカゲルカラムクロマ
トグラフィー(展開溶媒;酢酸エチル:ヘキサン=1:
5)により分離精製して6−ヒドロキシヘキシルコレス
テリルエーテル3.5gを得た。 NMR(CDCl3)δ(ppm);5.5(1H,
s),4.0(5H,m),2.8〜0.6(52H,
m)。
2) 5.4 g of the compound obtained in 1) (10.
0 mmol) and 16.7 g of hexamethylene glycol
(150 mmol) was dissolved in 100 ml of 1,4-dioxane and allowed to react at 100 ° C. for 30 hours. The solvent was evaporated under reduced pressure and the residue was washed 3 times with 300 ml of hexane.
The crude product obtained by concentrating the filtrate is subjected to silica gel column chromatography (developing solvent; ethyl acetate: hexane = 1: 1
5) to obtain 3.5 g of 6-hydroxyhexyl cholesteryl ether. NMR (CDCl 3 ) δ (ppm); 5.5 (1 H,
s), 4.0 (5 H, m), 2.8 to 0.6 (52 H,
m).

【0038】3) 2)で得た化合物5.0g(10.
3mmol)をエピブロモヒドリン30mlに溶解し、
粉末状の水酸化ナトリウムを1.6g(40.0mmo
l)と硫酸水素テトラ−n−ブチルアンモニウム0.3
gを加えて100℃で3時間攪拌した。反応溶液を10
0mlのテトラヒドロフランで希釈し、不溶物を濾別
し、濾液を乾固した。この粗生成物をシリカゲルカラム
クロマトグラフィー(展開溶媒;酢酸エチル:ヘキサン
=1:9)により分離精製してコレステリルオキシヘキ
シルグリシジルエーテル1.2gを得た。 NMR(CDCl3)δ(ppm);5.4(1H,
s),4.0〜3.4(6H,m),3.2(1H,
m),2.8(2H,m),2.5〜0.6(52H,
m)。
3) 5.0 g of the compound obtained in 2) (10.
3 mmol) is dissolved in 30 ml of epibromohydrin,
1.6 g (40.0 mmo) of powdered sodium hydroxide
l) and tetra-n-butylammonium hydrogen sulfate 0.3
g was added and stirred at 100 ° C. for 3 hours. 10 reaction solutions
Dilute with 0 ml of tetrahydrofuran, filter off the insolubles and dry the filtrate. The crude product was separated and purified by silica gel column chromatography (developing solvent; ethyl acetate: hexane = 1: 9) to obtain 1.2 g of cholesteryloxyhexyl glycidyl ether. NMR (CDCl 3 ) δ (ppm); 5.4 (1 H,
s), 4.0 to 3.4 (6 H, m), 3.2 (1 H,
m), 2.8 (2 H, m), 2.5 to 0.6 (52 H,
m).

【0039】4) 3)で得た化合物1.09g(2.
0mmol)と無水コハク酸0.20g(2.0mmo
l)及び触媒として0.5mlのトルエンをガラス製ア
ンプル中に導入した。これを窒素雰囲気下で封管し、1
10℃で24時間反応させた。生成物を少量のクロロホ
ルムを用いて希釈し、メタノール中へ再沈澱させた。加
えて溶解させ、メタノール中に再沈澱させ、標記ポリマ
ー0.7gを得た。
4) 1.09 g of the compound obtained in 3) (2.
0 mmol) and 0.20 g of succinic anhydride (2.0 mmo)
l) and 0.5 ml of toluene as catalyst were introduced into a glass ampoule. Seal this in a nitrogen atmosphere, 1
The reaction was allowed to proceed at 10 ° C. for 24 hours. The product was diluted with a small amount of chloroform and reprecipitated into methanol. In addition, it was dissolved and reprecipitated in methanol to obtain 0.7 g of the title polymer.

【0040】IR(KBr);2950〜2850cm
-1,1460cm-1(C-H アルカン),1740cm
-1(C=O 脂肪族エステル),1110cm-1(C-O エ
ーテル)。
IR (KBr); 2950 to 2850 cm
-1 , 1460 cm -1 (CH alkane), 1740 cm
-1 (C = O aliphatic ester), 1110 cm -1 (CO 2 ether).

【0041】(実施例4)Example 4

【0042】[0042]

【化13】 Embedded image

【0043】実施例2で得たポリマー(以下、PESと
称する)0.81g(1.76mmol)、無水コハク
酸0.20g(2.0mmol)、1,4−ブタンジオ
ールジグリシジルエーテル25mg(0.12mmo
l)及び触媒として4.1mg(1mol%)のアルミ
ニウムトリイソプロポキシド、溶媒としてトルエン0.
7mlをガラス製アンプル中に導入した。これを窒素雰
囲気下で封管し、110℃で24時間反応させた。生成
物に30mlのクロロホルムを加えて不溶物を取り除
き、濾液を濃縮してメタノール中へ再沈澱させ、PES
の橋架けポリマー0.5gを得た。 IR(KBr);2950〜2850cm-1,1470
cm-1(C-H アルカン),1740cm-1(C=O 脂肪
族エステル),1110cm-1(C-O エーテル)。
0.81 g (1.76 mmol) of the polymer obtained in Example 2 (hereinafter referred to as PES), 0.20 g (2.0 mmol) of succinic anhydride, 25 mg of 1,4-butanediol diglycidyl ether .12 mmo
l) and 4.1 mg (1 mol%) of aluminum triisopropoxide as catalyst, toluene 0. 1 as solvent.
7 ml was introduced into a glass ampoule. The tube was sealed under a nitrogen atmosphere and allowed to react at 110 ° C. for 24 hours. To the product is added 30 ml of chloroform to remove insolubles, the filtrate is concentrated and reprecipitated into methanol, PES
0.5 g of crosslinked polymer was obtained. IR (KBr); 2950 to 2850 cm -1 , 1470
cm- 1 (CH2 alkane), 1740 cm- 1 (C = O aliphatic ester), 1110 cm- 1 (CO2 ether).

【0044】(実施例5)Embodiment 5

【0045】[0045]

【化14】 [Image 14]

【0046】実施例3で得たポリマー0.96g(1.
76mmol)、無水コハク酸0.20g(2.0mm
ol)、1,4−ブタンジオールジグリシジルエーテル
25mg(0.12mmol)及び触媒として4.1m
g(1mol%)のアルミニウムトリイソプロポキシ
ド、溶媒としてトルエン0.7mlをガラス製アンプル
中に導入した。これを窒素雰囲気下で封管し、110℃
で24時間反応させた。生成物に30mlのクロロホル
ムを加えて不溶物を取り除き、濾液を濃縮してメタノー
ル中へ再沈澱させ、実施例3で得たポリマーの橋架けポ
リマー0.4gを得た。 IR(KBr);2950〜2850cm-1,1470
cm-1(C-H アルカン),1740cm-1(C=O 脂肪
族エステル),1110cm-1(C-O エーテル)。
0.96 g of polymer obtained in Example 3 (1.
76 mmol), 0.20 g of succinic anhydride (2.0 mm)
ol), 25 mg (0.12 mmol) of 1,4-butanediol diglycidyl ether and 4.1 m as a catalyst
g (1 mol%) of aluminum triisopropoxide, 0.7 ml of toluene as solvent was introduced into a glass ampoule. The tube is sealed in a nitrogen atmosphere and heated to 110 ° C.
Reaction for 24 hours. To the product, 30 ml of chloroform was added to remove insolubles, and the filtrate was concentrated and reprecipitated into methanol to obtain 0.4 g of a crosslinked polymer of the polymer obtained in Example 3. IR (KBr); 2950 to 2850 cm -1 , 1470
cm- 1 (CH2 alkane), 1740 cm- 1 (C = O aliphatic ester), 1110 cm- 1 (CO2 ether).

【0047】(実施例6)PESと、ポリエチレングリコール(3000)の共重
合体の合成
EXAMPLE 6 Co-weight of PES and polyethylene glycol (3000)
Coalescing synthesis

【0048】[0048]

【化15】 [Image 15]

【0049】実施例2(1)で得た化合物0.92g
(2.0mmol)、無水コハク酸0.20g(2.0
mmol)、数平均分子量3000のポリエチレングリ
コール0.20g、及び触媒として9.1mg(0.0
45mmol)のアルミニウムトリイソプロポキシド、
溶媒としてトルエン0.5mlをガラス製アンプル中に
導入した。これを窒素雰囲気下で封管し、110℃で2
4時間反応させた。生成物をクロロホルムで希釈し、メ
タノール中へ再沈澱して標記ポリマー4.9gを得た。
IR(KBr);2950〜2850cm-1,146
0cm-1(C-H アルカン),1740cm-1(C=O 脂
肪族エステル),1240cm-1(C-O ポリエチレン
グリコール),1110cm-1(C-O エーテル)。
0.92 g of the compound obtained in Example 2 (1)
(2.0 mmol), succinic anhydride 0.20 g (2.0
mmol), 0.20 g of polyethylene glycol having a number average molecular weight of 3000, and 9.1 mg (0.03) as a catalyst
45 mmol) of aluminum triisopropoxide,
As a solvent, 0.5 ml of toluene was introduced into a glass ampoule. The tube is sealed in a nitrogen atmosphere and
It was allowed to react for 4 hours. The product was diluted with chloroform and reprecipitated into methanol to give 4.9 g of the title polymer.
IR (KBr); 2950 to 2850 cm -1 , 146
0 cm -1 (CH alkane), 1740 cm -1 (C = O aliphatic ester), 1240 cm -1 (CO polyethylene glycol), 1110 cm -1 (CO ether).

【0050】(実施例7)PESと、ポリエチレングリコール(13000)の共
重合体の合成
EXAMPLE 7 Joint of PES and Polyethylene Glycol (13000)
Polymer synthesis

【0051】[0051]

【化16】 Embedded image

【0052】実施例2(1)で得た化合物0.69g
(1.5mmol)、無水コハク酸0.15g(1.5
mmol)、数平均分子量13000のポリエチレング
リコール0.59g、及び触媒として6.1mg(0.
030mmol)のアルミニウムトリイソプロポキシ
ド、溶媒としてトルエン0.7mlをガラス製アンプル
中に導入した。これを窒素雰囲気下で封管し、110℃
で24時間反応させた。生成物をクロロホルムで希釈
し、メタノール中へ再沈澱して標記ポリマー1.2gを
得た。IR(KBr);2950〜2850cm-1,1
460cm-1(C-H アルカン),1740cm-1(C=O
脂肪族エステル),1240cm-1(C-O ポリエチ
レングリコール),1110cm-1(C-O エーテ
ル)。
0.69 g of the compound obtained in Example 2 (1)
(1.5 mmol), succinic anhydride 0.15 g (1.5
mmol), 0.59 g of polyethylene glycol having a number average molecular weight of 13,000, and 6.1 mg (0.
030 mmol) of aluminum triisopropoxide, 0.7 ml of toluene as solvent were introduced into a glass ampoule. The tube is sealed in a nitrogen atmosphere and heated to 110 ° C.
Reaction for 24 hours. The product was diluted with chloroform and reprecipitated into methanol to give 1.2 g of the title polymer. IR (KBr); 2950 to 2850 cm -1 , 1
460 cm -1 (CH alkane), 1740 cm -1 (C = O
Aliphatic ester), 1240 cm -1 (CO 2 polyethylene glycol), 1110 cm -1 (CO 2 ether).

【0053】(実施例8)PESと、ポリエチレングリコール(27000)の共
重合体の合成
EXAMPLE 8 Joint of PES and polyethylene glycol (27000)
Polymer synthesis

【0054】[0054]

【化17】 [Image 17]

【0055】実施例2(1)で得た化合物0.46g
(1.0mmol)、無水コハク酸0.10g(1.0
mmol)、数平均分子量27000のポリエチレング
リコール0.56g、及び触媒として2.5mg(0.
013mmol)のアルミニウムトリイソプロポキシ
ド、溶媒としてトルエン0.5mlをガラス製アンプル
中に導入した。これを窒素雰囲気下で封管し、110℃
で24時間反応させた。生成物をクロロホルムで希釈
し、ヘキサン中へ再沈澱して標記ポリマー0.9gを得
た。IR(KBr);2950〜2850cm-1,14
60cm-1(C-H アルカン),1740cm-1(C=O
脂肪族エステル),1240cm-1(C-O ポリエチレ
ングリコール),1110cm-1(C-O エーテル)。
0.46 g of the compound obtained in Example 2 (1)
(1.0 mmol), succinic anhydride 0.10 g (1.0
mmol), 0.56 g of polyethylene glycol having a number average molecular weight of 27,000, and 2.5 mg (0.
013 mmol) aluminum triisopropoxide, 0.5 ml of toluene as solvent was introduced into a glass ampoule. The tube is sealed in a nitrogen atmosphere and heated to 110 ° C.
Reaction for 24 hours. The product was diluted with chloroform and reprecipitated into hexane to give 0.9 g of the title polymer. IR (KBr); 2950 to 2850 cm -1 , 14
60 cm -1 (CH alkane), 1740 cm -1 (C = O
Aliphatic ester), 1240 cm -1 (CO 2 polyethylene glycol), 1110 cm -1 (CO 2 ether).

【0056】(試験例)[血液接触試験] 直径14mmのPETディスクを各ポリマーの0.5w
t.%クロロホルム溶液を用いてコーティングし、自然乾
燥させた。このディスクを12時間減圧下で乾燥させて
試験用のサンプルを作成した。試験用ディスクを24穴
細胞培養シャーレ上にシリコンリングで固定し、0.7
mlのリン酸緩衝溶液(PBS,pH7.4 イオン強
度0.15M)に一晩浸した。PBSを除去後、0.7
mlのウサギのPRPを注入し、血液との接触試験を行
った。所定時間(60分、180分)後、PRPをアス
ピレーターで取り除き、入念にPBSで未粘着血小板を
洗い落とした。次に、グルタルアルデヒドの2.5vol.
%PBS溶液0.7mlを注入して室温で2時間放置
し、付着物を固定化した。ディスクを十分量の蒸留水で
洗浄した後、凍結乾燥させてSEM観察に用いた。な
お、試験の比較としてセグメント化ポリウレタン(SP
U,アップジョン社製)を用いた。
(Test Example) [Blood Contact Test] A PET disk of 14 mm in diameter was used with 0.5 w of each polymer.
t. Coated with chloroform solution and allowed to dry naturally. The disc was dried under vacuum for 12 hours to make a sample for testing. Fix the test disc with a silicon ring on a 24-well cell culture petri dish, 0.7
It was soaked overnight in ml of phosphate buffer solution (PBS, pH 7.4 ionic strength 0.15 M). After removing PBS, 0.7
The rabbit PRP was injected in ml, and the contact test with blood was performed. After a predetermined time (60 minutes, 180 minutes), PRP was removed with an aspirator and carefully washed off non-adherent platelets with PBS. Next, 2.5 vol.
0.7 ml of a% PBS solution was injected and left at room temperature for 2 hours to immobilize the deposit. After washing the disc with a sufficient amount of distilled water, it was freeze-dried and used for SEM observation. In addition, segmented polyurethane (SP as a comparison of the test
U, manufactured by Up John Co., Ltd.) was used.

【0057】その結果、SPU表面では血小板が多量に
凝集して粘着するのに対して本発明のポリマーでは血小
板の粘着が少なかった。また、その中でも疎水性の高い
PES/ポリエチレングリコール(100/0)や、親
水性の最も高いPES/PEG(50/50)よりは、
ある程度親水性を付与した共重合体PES/PEG(8
0/20),PES/PEG(59/41)において大
きな血小板粘着抑制効果が認められた(しかしながらS
PUよりは数団優れた結果が得られた。)。更に、拡大
した写真において粘着した血小板は偽足を出して大きく
変形し、凝集してしまっているのに対して、本発明の共
重合体表面上の血小板は元々の円盤状の形態を比較的保
っており、しかも凝集せずに単一で粘着していることが
わかる。
As a result, on the SPU surface, a large amount of platelets aggregated and adhered, whereas the polymer of the present invention showed less platelet adhesion. Also, among them, PES / polyethylene glycol (100/0) having high hydrophobicity, and PES / PEG (50/50) having high hydrophilicity,
Copolymer PES / PEG (8
0/20), PES / PEG (59/41) showed a large platelet adhesion inhibitory effect (but S
Several groups outperformed PU. ). Furthermore, the platelets adhered in the enlarged photograph are pseudopoded, greatly deformed and aggregated, whereas the platelets on the surface of the copolymer of the present invention have a relatively discoid shape relatively. It can be seen that it is maintained, and moreover, it adheres singly without aggregation.

Claims (5)

【特許請求の範囲】[Claim of claim] 【請求項1】 式 【化1】 [式中、Xは式 【化2】 で表される基、式 −O(CH2CH2)m− (式中、
mは1〜10の整数を示す。)で表される基もしくは式
−O(CH2)p− (式中、pは2〜30の整数を示
す。)で表される基を示すか、または結合子を示し、n
は10以上の整数を示す。]で表される側鎖にコレステ
ロール基を有する脂肪族ポリエステル。
Formula (1) [Wherein X is the formula A group represented by the formula -O (CH 2 CH 2 ) m-(wherein
m is an integer of 1 to 10; Or a group represented by the formula -O (CH 2 ) p-(wherein p represents an integer of 2 to 30) or a bond;
Represents an integer of 10 or more. Aliphatic polyester which has a cholesterol group in the side chain represented by these.
【請求項2】 Xが結合子である請求項1記載の側鎖に
コレステロール基を有する脂肪族ポリエステル。
2. An aliphatic polyester having a cholesterol group in a side chain according to claim 1, wherein X is a connector.
【請求項3】 請求項1または2記載の、側鎖にコレス
テロール基を有する脂肪族ポリエステルの橋架けポリマ
ー。
3. A crosslinked polymer of aliphatic polyester having cholesterol group in a side chain according to claim 1 or 2.
【請求項4】 請求項1または2記載の、側鎖にコレス
テロール基を有する脂肪族ポリエステルとポリエチレン
グリコールとの共重合体。
4. A copolymer of an aliphatic polyester having a cholesterol group in a side chain and polyethylene glycol according to claim 1 or 2.
【請求項5】 ポリエチレングリコール量が0〜40重
量%である、請求項4記載の共重合体。
5. A copolymer according to claim 4, wherein the amount of polyethylene glycol is from 0 to 40% by weight.
JP12945096A 1996-05-24 1996-05-24 Aliphatic polyester having cholesterol group as side chain Pending JPH09309947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12945096A JPH09309947A (en) 1996-05-24 1996-05-24 Aliphatic polyester having cholesterol group as side chain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12945096A JPH09309947A (en) 1996-05-24 1996-05-24 Aliphatic polyester having cholesterol group as side chain

Publications (1)

Publication Number Publication Date
JPH09309947A true JPH09309947A (en) 1997-12-02

Family

ID=15009789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12945096A Pending JPH09309947A (en) 1996-05-24 1996-05-24 Aliphatic polyester having cholesterol group as side chain

Country Status (1)

Country Link
JP (1) JPH09309947A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8349306B2 (en) 2003-10-10 2013-01-08 Samyang Biopharmaceuticals Corporation Amphiphilic block copolymer and polymeric composition comprising the same for drug delivery
JP2017088678A (en) * 2015-11-05 2017-05-25 花王株式会社 Aqueous ink
WO2020045611A1 (en) 2018-08-31 2020-03-05 東レ株式会社 Cylindrical member for implantation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8349306B2 (en) 2003-10-10 2013-01-08 Samyang Biopharmaceuticals Corporation Amphiphilic block copolymer and polymeric composition comprising the same for drug delivery
JP2017088678A (en) * 2015-11-05 2017-05-25 花王株式会社 Aqueous ink
WO2020045611A1 (en) 2018-08-31 2020-03-05 東レ株式会社 Cylindrical member for implantation
US12115285B2 (en) 2018-08-31 2024-10-15 Toray Industries, Inc. Cylindrical member for implantation

Similar Documents

Publication Publication Date Title
EP0531547B1 (en) Composite artificial blood vessel
JP2001516228A (en) Cell adhesive surface modified copolymer
JP2565363B2 (en) Method for producing a substrate that does not form thrombogen
EP0068385A1 (en) Thermoplastic elastomers for medical use as moulded articles brought into direct contact with blood
CN114907580B (en) Degradable double-component hydrogel and preparation method and application thereof
JP2554349B2 (en) polyester
Xu et al. Synthesis of polycarbonate urethanes with functional poly (ethylene glycol) side chains intended for bioconjugates
JPH09309947A (en) Aliphatic polyester having cholesterol group as side chain
EP3604275B1 (en) Sulfobetaine-group-containing reactive compound, polymer thereof, and method for producing polymer
CN101787047B (en) Fluorocarbon chain or/and hydrocarbon chain containing phosphatidylcholine blocking agent with hydroxyl or amino at tail end and polyurethane material for blocking same
CN108912305B (en) Cholesterol side chain liquid crystal polyurethane urea material and preparation method thereof
KR102687882B1 (en) Carbonate-linked surface-modifying macromolecules
KR100517097B1 (en) Porous Scaffolds for Tissue Engineering Made from the Biodegradable Lactide/ε-Caprolactone Copolymer
US10835637B2 (en) Biodegradable injectable gel
KR100285238B1 (en) Medical Polyurethane with Polydimethylsiloxane (PDMS) and Polyethylene Glycol (PEG)
CN117860953B (en) Tissue adhesive and preparation method thereof
JP2017203062A (en) New polymer
JPH0343424A (en) High-molecular material compatible with blood
JP4441032B2 (en) Bifunctional organophosphorus compounds, polymers, and applications
JPH0790080A (en) D-galactopyranosyl-gluconic acid derivative of poly-epsilon-substituted-l-lysine
JP2004131566A (en) Branched polyethylene oxide-synthetic polymer block copolymer
KR20250006530A (en) Loop-type oligomer derived initiator and composite material for bonding polymer brush and complex material for treating surface comprising the same
KR20240133407A (en) Loop-type oligomer and preparing method for manufacturing of the same and composite material for surface-modification and surface-modified medical article comprising the same
JPH07265338A (en) Artificial blood vessel
HK40034254A (en) Carbonate-linked surface modifying macromolecules