JPH09314458A - Precision grinding method for crystalline glass - Google Patents
Precision grinding method for crystalline glassInfo
- Publication number
- JPH09314458A JPH09314458A JP8154986A JP15498696A JPH09314458A JP H09314458 A JPH09314458 A JP H09314458A JP 8154986 A JP8154986 A JP 8154986A JP 15498696 A JP15498696 A JP 15498696A JP H09314458 A JPH09314458 A JP H09314458A
- Authority
- JP
- Japan
- Prior art keywords
- crystallized glass
- polishing
- organic solvent
- glass
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011521 glass Substances 0.000 title claims abstract description 123
- 238000000034 method Methods 0.000 title claims description 41
- 239000007788 liquid Substances 0.000 claims abstract description 43
- 239000003960 organic solvent Substances 0.000 claims abstract description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 29
- 239000002612 dispersion medium Substances 0.000 claims abstract description 23
- 239000006061 abrasive grain Substances 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 238000009835 boiling Methods 0.000 claims abstract description 10
- 238000005498 polishing Methods 0.000 claims description 122
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 23
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical class OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims description 22
- -1 glycol ethers Chemical class 0.000 claims description 7
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 6
- 150000002334 glycols Chemical class 0.000 claims description 5
- 150000001408 amides Chemical class 0.000 claims description 4
- 150000002596 lactones Chemical class 0.000 claims description 4
- 150000003464 sulfur compounds Chemical class 0.000 claims description 4
- 150000001298 alcohols Chemical class 0.000 claims description 3
- 150000004651 carbonic acid esters Chemical class 0.000 claims description 3
- 150000002314 glycerols Chemical class 0.000 claims description 3
- 150000003014 phosphoric acid esters Chemical class 0.000 claims description 3
- 150000004072 triols Chemical class 0.000 claims description 3
- 239000013078 crystal Substances 0.000 abstract description 47
- 239000000203 mixture Substances 0.000 abstract description 11
- 238000002425 crystallisation Methods 0.000 abstract description 4
- 230000008025 crystallization Effects 0.000 abstract description 4
- 230000000052 comparative effect Effects 0.000 description 11
- 239000000126 substance Substances 0.000 description 10
- CNLWCVNCHLKFHK-UHFFFAOYSA-N aluminum;lithium;dioxido(oxo)silane Chemical group [Li+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O CNLWCVNCHLKFHK-UHFFFAOYSA-N 0.000 description 9
- 229910052642 spodumene Inorganic materials 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 8
- 229910010271 silicon carbide Inorganic materials 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- 230000003746 surface roughness Effects 0.000 description 7
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 229920002635 polyurethane Polymers 0.000 description 6
- 239000004814 polyurethane Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 229910021489 α-quartz Inorganic materials 0.000 description 6
- OJMOMXZKOWKUTA-UHFFFAOYSA-N aluminum;borate Chemical compound [Al+3].[O-]B([O-])[O-] OJMOMXZKOWKUTA-UHFFFAOYSA-N 0.000 description 5
- 229910000420 cerium oxide Inorganic materials 0.000 description 5
- WVMPCBWWBLZKPD-UHFFFAOYSA-N dilithium oxido-[oxido(oxo)silyl]oxy-oxosilane Chemical compound [Li+].[Li+].[O-][Si](=O)O[Si]([O-])=O WVMPCBWWBLZKPD-UHFFFAOYSA-N 0.000 description 5
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 5
- 229910052863 mullite Inorganic materials 0.000 description 5
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 5
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 4
- 229910001928 zirconium oxide Inorganic materials 0.000 description 4
- 229910018068 Li 2 O Inorganic materials 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 2
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 2
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 2
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N ethylene glycol monomethyl ether acetate Natural products COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- MKUWVMRNQOOSAT-UHFFFAOYSA-N methylvinylmethanol Natural products CC(O)C=C MKUWVMRNQOOSAT-UHFFFAOYSA-N 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical compound CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 2
- ZWVMLYRJXORSEP-UHFFFAOYSA-N 1,2,6-Hexanetriol Chemical compound OCCCCC(O)CO ZWVMLYRJXORSEP-UHFFFAOYSA-N 0.000 description 1
- QWOZZTWBWQMEPD-UHFFFAOYSA-N 1-(2-ethoxypropoxy)propan-2-ol Chemical compound CCOC(C)COCC(C)O QWOZZTWBWQMEPD-UHFFFAOYSA-N 0.000 description 1
- RRQYJINTUHWNHW-UHFFFAOYSA-N 1-ethoxy-2-(2-ethoxyethoxy)ethane Chemical compound CCOCCOCCOCC RRQYJINTUHWNHW-UHFFFAOYSA-N 0.000 description 1
- KMZHZAAOEWVPSE-UHFFFAOYSA-N 2,3-dihydroxypropyl acetate Chemical compound CC(=O)OCC(O)CO KMZHZAAOEWVPSE-UHFFFAOYSA-N 0.000 description 1
- FPZWZCWUIYYYBU-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical compound CCOCCOCCOC(C)=O FPZWZCWUIYYYBU-UHFFFAOYSA-N 0.000 description 1
- INFFATMFXZFLAO-UHFFFAOYSA-N 2-(methoxymethoxy)ethanol Chemical compound COCOCCO INFFATMFXZFLAO-UHFFFAOYSA-N 0.000 description 1
- WAEVWDZKMBQDEJ-UHFFFAOYSA-N 2-[2-(2-methoxypropoxy)propoxy]propan-1-ol Chemical compound COC(C)COC(C)COC(C)CO WAEVWDZKMBQDEJ-UHFFFAOYSA-N 0.000 description 1
- HXDLWJWIAHWIKI-UHFFFAOYSA-N 2-hydroxyethyl acetate Chemical compound CC(=O)OCCO HXDLWJWIAHWIKI-UHFFFAOYSA-N 0.000 description 1
- QCAHUFWKIQLBNB-UHFFFAOYSA-N 3-(3-methoxypropoxy)propan-1-ol Chemical compound COCCCOCCCO QCAHUFWKIQLBNB-UHFFFAOYSA-N 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004348 Glyceryl diacetate Substances 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004630 atomic force microscopy Methods 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910001597 celsian Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 239000010730 cutting oil Substances 0.000 description 1
- 229940019778 diethylene glycol diethyl ether Drugs 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229910052634 enstatite Inorganic materials 0.000 description 1
- 229910052839 forsterite Inorganic materials 0.000 description 1
- 235000019443 glyceryl diacetate Nutrition 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 description 1
- 229910052912 lithium silicate Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-IGMARMGPSA-N lithium-7 atom Chemical compound [7Li] WHXSMMKQMYFTQS-IGMARMGPSA-N 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- BBCCCLINBSELLX-UHFFFAOYSA-N magnesium;dihydroxy(oxo)silane Chemical compound [Mg+2].O[Si](O)=O BBCCCLINBSELLX-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- UWJJYHHHVWZFEP-UHFFFAOYSA-N pentane-1,1-diol Chemical compound CCCCC(O)O UWJJYHHHVWZFEP-UHFFFAOYSA-N 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 1
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910000500 β-quartz Inorganic materials 0.000 description 1
Landscapes
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、結晶化ガラスの精
密研磨方法に関する。さらに詳しくは、本発明は、結晶
化ガラスの結晶サイズの大小にかかわらず、安定して優
れた表面平滑性を付与することができる、特に磁気ディ
スク基板用結晶化ガラスの研磨に適した結晶化ガラスの
精密研磨方法に関する。TECHNICAL FIELD The present invention relates to a method for precisely polishing crystallized glass. More specifically, the present invention can stably impart excellent surface smoothness regardless of the crystal size of the crystallized glass, and is particularly suitable for polishing crystallized glass for magnetic disk substrates. The present invention relates to a precision polishing method for glass.
【0002】[0002]
【従来の技術】磁気ディスクは、主としてコンピュータ
のハードディスク用として使用されている。近年、磁気
ディスクの小型化、薄型化、高記録密度化の流れの中
で、磁気ディスク表面の高平坦性、高平滑性への要望が
高まっている。特に平滑性に関しては、研磨後のガラス
ディスク基板において、JIS B 0601−1994
に従って求めた表面の算術平均粗さ(Ra)が、15Å
以下、特に10Å以下であることが求められている。R
aをこの範囲にすることにより、磁気ヘッドの低浮上化
が可能となり、高記録密度化への対応が可能となる。従
来の磁気ディスク基板用結晶化ガラスの研磨方法は、例
えば、特開昭61−48123号公報や、特開昭61−
132576号公報に記載されている、純水中に粒径
0.1μm以下のSiO2、MgO、CeO2、Al2O3
などの砥粒を懸濁した研磨液を用いるものである。ま
た、磁気ヘッド基板用結晶化ガラスの研磨方法として
は、例えば、特公昭63−31343号公報に、粒径3
20Å以下の球状無水アルミナ粉末を純水中に懸濁させ
たpH4〜5の研磨液を用いる方法が提案されている。し
かし、研磨液の分散媒に純水を用いると、物理的な研磨
のみならず、化学的な研磨が同時に進行し、結晶化ガラ
ス中の結晶部分とマトリックスガラス部分の研磨速度に
差が生じるので、ディスク基板表面の表面粗さが大きく
なるという現象を引き起こす。このため、表面粗さを小
さくし、表面平滑性に優れた磁気ディスク基板を得るた
めには、結晶化ガラス中に結晶サイズの小さい結晶を析
出させる必要があり、ガラス組成物の組成や結晶化条件
に制約を受けていた。2. Description of the Related Art Magnetic disks are mainly used for computer hard disks. In recent years, with the trend toward miniaturization, thinning and high recording density of magnetic disks, there is an increasing demand for high flatness and high smoothness of the magnetic disk surface. Particularly, regarding the smoothness, in a glass disk substrate after polishing, JIS B 0601-1994
The arithmetic mean roughness (R a ) of the surface obtained according to
In particular, it is required to be 10 Å or less. R
By setting a within this range, it is possible to reduce the flying height of the magnetic head and to cope with higher recording density. A conventional method for polishing crystallized glass for a magnetic disk substrate is disclosed in, for example, JP-A-61-48123 or JP-A-61-48123.
In JP-A-132576, SiO 2 , MgO, CeO 2 , and Al 2 O 3 having a particle size of 0.1 μm or less in pure water.
A polishing liquid in which abrasive grains such as the above are suspended is used. A method for polishing crystallized glass for a magnetic head substrate is disclosed in, for example, Japanese Examined Patent Publication No. 63-31343, and the grain size is 3
A method has been proposed in which a spherical anhydrous alumina powder having a particle size of 20 Å or less is suspended in pure water to use a polishing liquid having a pH of 4 to 5. However, when pure water is used as the dispersion medium of the polishing liquid, not only physical polishing but also chemical polishing proceeds at the same time, which causes a difference in polishing rate between the crystal part in the crystallized glass and the matrix glass part. This causes a phenomenon that the surface roughness of the disk substrate surface becomes large. Therefore, in order to reduce the surface roughness and obtain a magnetic disk substrate having excellent surface smoothness, it is necessary to precipitate crystals with a small crystal size in the crystallized glass. It was constrained by the conditions.
【0003】[0003]
【発明が解決しようとする課題】本発明は、結晶化ガラ
ス、特に磁気ディスク基板用結晶化ガラスにおいて、ガ
ラス組成物の組成や結晶化条件によって制限を受けるこ
とが少なく、結晶サイズの大きい結晶化ガラスからも平
滑性に優れた表面を有し、磁気ディスクの高記録密度化
に対応可能な基板を得ることができる、結晶化ガラスの
精密研磨方法を提供することを目的としてなされたもの
である。DISCLOSURE OF THE INVENTION The present invention relates to a crystallized glass, particularly a crystallized glass for a magnetic disk substrate, which is less restricted by the composition of the glass composition and the crystallization conditions and has a large crystal size. The object of the present invention is to provide a precision polishing method for crystallized glass, which has a surface having excellent smoothness even from glass and can obtain a substrate which can cope with high recording density of magnetic disks. .
【0004】[0004]
【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を重ねた結果、研磨砥粒と分散
媒としての有機溶媒を含む研磨液を用いて研磨すること
により、結晶化ガラスの結晶サイズにかかわりなく、安
定して平滑性に優れた表面が得られることを見いだし、
この知見に基づいて本発明を完成するに至った。すなわ
ち、本発明は、(1)研磨砥粒と分散媒としての有機溶
媒を含む研磨液を用いることを特徴とする結晶化ガラス
の精密研磨方法、(2)有機溶媒が水溶性であり、かつ
沸点が60℃以上である第(1)項記載の結晶化ガラスの
精密研磨方法、(3)有機溶媒が、アルコール類、グリ
コール類、トリオール類、グリコールエーテル類、グリ
コールエステル類、グリコールエーテルエステル類、グ
リセリンエステル類、リン酸エステル類、炭酸エステル
類、アミド類、ラクトン類、硫黄化合物類の内の少なく
とも1種を含む第(1)項又は第(2)項記載の結晶化ガラ
スの精密研磨方法、(4)分散媒が、40重量%以下の
水を含有する第(1)項ないし第(3)項のいずれかに記載
の結晶化ガラスの精密研磨方法、及び、(5)結晶化ガ
ラスが、磁気ディスク基板用結晶化ガラスである第(1)
項ないし第(4)項のいずれかに記載の結晶化ガラスの精
密研磨方法、を提供するものである。さらに、本発明の
好ましい態様として、(6)研磨砥粒の粒度が、0.0
1〜1μmである第(1)項ないし第(5)項のいずれかに
記載の結晶化ガラスの精密研磨方法、(7)研磨液中の
研磨砥粒の含有量が、0.5〜20重量%である第(1)
項ないし第(6)項のいずれかに記載の結晶化ガラスの精
密研磨方法、及び、(8)研磨液の25℃における粘度
が、2cp〜10kcpである第(1)項ないし第(7)項のい
ずれかに記載の結晶化ガラスの精密研磨方法、を挙げる
ことができる。Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that by polishing with a polishing liquid containing polishing abrasive grains and an organic solvent as a dispersion medium. Found that a stable and smooth surface can be obtained regardless of the crystal size of crystallized glass.
Based on this finding, the present invention has been completed. That is, the present invention provides (1) a precision polishing method for crystallized glass, which comprises using a polishing liquid containing polishing abrasive grains and an organic solvent as a dispersion medium, (2) the organic solvent is water-soluble, and The method for precisely polishing crystallized glass according to item (1), which has a boiling point of 60 ° C. or higher, and (3) the organic solvent is an alcohol, glycol, triol, glycol ether, glycol ester, glycol ether ester. Precision polishing of crystallized glass according to item (1) or (2), which comprises at least one of the following: glycerol ester, phosphoric ester, carbonate ester, amide, lactone, and sulfur compound. The method, (4) the precision polishing method for crystallized glass according to any one of (1) to (3), wherein the dispersion medium contains 40% by weight or less of water, and (5) crystallization. The glass has a magnetic Crystallized glass for disc substrates (1)
The present invention provides a method for precisely polishing crystallized glass according to any one of items (4) to (4). Furthermore, as a preferred embodiment of the present invention, (6) the grain size of the abrasive grains is 0.0
The method for precision polishing crystallized glass according to any one of the items (1) to (5), wherein the polishing abrasive has a content of 0.5 to 20. % By weight (1)
Item 8. The method for precisely polishing crystallized glass according to any one of items 1 to 6, and (8) the viscosity of the polishing liquid at 25 ° C. is 2 cp to 10 kcp. The precision polishing method for crystallized glass as recited in any one of the above items.
【0005】[0005]
【発明の実施の形態】本発明方法は、結晶化ガラスの精
密研磨に適用することができる。本発明方法を適用する
結晶化ガラスとしては、例えば、主結晶相がスポジュー
メン、ムライト、ホウ酸アルミニウム系結晶、β−石英
固溶体、α−クオーツ、コージェライト、エンスタタイ
ト、セルシアン、ウォラストナイト、アノーサイト、フ
ォルステライト、リチウムメタシリケート、リチウムダ
イシリケートなどである結晶化ガラスを挙げることがで
きる。本発明方法は、これらの中で、主結晶相がスポジ
ューメン、ムライト又はホウ酸アルミニウム系結晶であ
る磁気ディスク基板用結晶化ガラスの精密研磨に、特に
好適に適用することができる。本発明の精密研磨方法の
適用に先だって、結晶化ガラスをラッピングすることが
好ましい。ラッピングは、ラップ皿の表面に結晶化ガラ
スの被加工面を接触させ、酸化アルミニウム砥粒、炭化
ケイ素砥粒などの一般砥粒を懸濁した水分散液をラップ
剤として供給しつつ、結晶化ガラスに荷重をかけて、ラ
ップ皿を回転することにより行うことができる。本発明
方法においては、結晶化ガラスを、研磨砥粒と分散媒と
しての有機溶媒を含む研磨液を用いて研磨する。使用す
る研磨砥粒には特に制限はなく、例えば、酸化ケイ素、
炭化ケイ素、酸化アルミニウム、酸化ジルコニウム、酸
化セリウム、合成ダイヤモンド、天然ダイヤモンド、炭
化ホウ素、c−BNなどの研磨砥粒を使用することがで
きる。研磨砥粒の粒径は、所望の高平滑な表面を得るた
めに、0.01〜1μmであることが好ましく、0.05
〜1μmであることがより好ましく、0.1〜0.8μm
であることがさらに好ましい。研磨液中の研磨砥粒の含
有量は、0.5〜20重量%であることが好ましく、2
〜15重量%であることがより好ましい。本発明方法に
おいては、結晶化ガラスの研磨を、研磨板表面に結晶化
ガラスの被研磨面を接触させ、研磨液を供給しつつ、結
晶化ガラスに荷重をかけて、研磨板と結晶化ガラスを相
対的に回転させることにより行うことができる。研磨板
の材質には特に制限はなく、例えば、ポリウレタン、セ
ラミック、錫、銅などを使用することができる。研磨液
は、研磨板上への滴下、スプレーなどにより供給するこ
とができる。BEST MODE FOR CARRYING OUT THE INVENTION The method of the present invention can be applied to precision polishing of crystallized glass. As the crystallized glass to which the method of the present invention is applied, for example, the main crystal phase is spodumene, mullite, aluminum borate-based crystal, β-quartz solid solution, α-quartz, cordierite, enstatite, celsian, wollastonite, and anodized. Crystallized glass such as sight, forsterite, lithium metasilicate, lithium disilicate and the like can be mentioned. Of these, the method of the present invention can be particularly suitably applied to precision polishing of crystallized glass for a magnetic disk substrate whose main crystal phase is spodumene, mullite or aluminum borate type crystal. Prior to applying the precision polishing method of the present invention, it is preferable to wrap the crystallized glass. Lapping is performed by bringing the surface of the crystallized glass into contact with the surface of the lapping dish and supplying an aqueous dispersion in which general abrasive grains such as aluminum oxide abrasive grains and silicon carbide abrasive grains are suspended as a lapping agent. This can be done by applying a load to the glass and rotating the lap dish. In the method of the present invention, crystallized glass is polished using a polishing liquid containing polishing abrasive grains and an organic solvent as a dispersion medium. There is no particular limitation on the abrasive grains used, for example, silicon oxide,
Abrasive grains such as silicon carbide, aluminum oxide, zirconium oxide, cerium oxide, synthetic diamond, natural diamond, boron carbide, and c-BN can be used. The particle size of the abrasive grains is preferably 0.01 to 1 μm in order to obtain a desired highly smooth surface, and 0.05
To 1 μm is more preferable, and 0.1 to 0.8 μm
Is more preferable. The content of polishing abrasive grains in the polishing liquid is preferably 0.5 to 20% by weight, and 2
More preferably, it is from about 15% by weight. In the method of the present invention, in polishing the crystallized glass, the surface of the crystallized glass is brought into contact with the surface of the crystallized plate, and a load is applied to the crystallized glass while supplying the polishing liquid to the crystallized glass and the crystallized glass. Can be performed by relatively rotating. The material of the polishing plate is not particularly limited, and for example, polyurethane, ceramics, tin, copper or the like can be used. The polishing liquid can be supplied by dropping on the polishing plate, spraying, or the like.
【0006】本発明方法においては、研磨液の分散媒と
して有機溶媒を使用する。有機溶媒を使用することによ
り、結晶化ガラスの結晶サイズの大小にかかわらず、平
滑性に優れた表面を得ることができる。研磨液の分散媒
として水を使用すると、結晶サイズが1μm以下である
結晶サイズの小さい結晶化ガラスからは平滑性の良好な
表面を得ることができるが、結晶サイズが1μmを超え
るような結晶サイズの大きい結晶化ガラスからは平滑性
の良好な表面を得ることができない。この理由は明らか
ではないが、分散媒として水を使用すると、機械的な研
磨のほかに水による化学的な研磨が並行して進行し、一
般的に化学的な研磨は結晶部よりもガラス部において速
やかに進行するので、結晶化ガラスの表面が粗となるも
のと推定される。研磨液の分散媒として有機溶媒を使用
すると、化学的な研磨はほとんど進行せず、研磨砥粒に
よる機械的な研磨のみが起こり、結晶部とガラス部にお
いて機械的な研磨の速度の差は大きくないので、平滑性
に優れた表面が得られるものと考えられる。結晶化ガラ
スの結晶サイズは、ガラス組成物の組成や結晶化のため
の熱処理条件によって決まるので、結晶サイズの小さい
結晶化ガラスを得ようとすると、組成面や熱処理条件面
で制約を受け、望ましい特性を有する結晶化ガラスを自
由に選ぶことが困難であった。本発明方法によれば、結
晶サイズにかかわりなく平滑性に優れた表面を得ること
ができるので、結晶化ガラスに必要な特性を付与するよ
う、ガラス組成や熱処理条件を自由に選定することがで
きる。In the method of the present invention, an organic solvent is used as a dispersion medium for the polishing liquid. By using the organic solvent, a surface having excellent smoothness can be obtained regardless of the crystal size of the crystallized glass. When water is used as the dispersion medium of the polishing liquid, a surface having good smoothness can be obtained from a crystallized glass having a small crystal size of 1 μm or less, but a crystal size exceeding 1 μm. It is not possible to obtain a surface having good smoothness from a crystallized glass having a large size. The reason for this is not clear, but when water is used as the dispersion medium, in addition to mechanical polishing, chemical polishing with water proceeds in parallel, and in general, chemical polishing is performed in the glass portion rather than the crystal portion. It is presumed that the surface of the crystallized glass becomes rough because it rapidly progresses. When an organic solvent is used as the dispersion medium of the polishing liquid, the chemical polishing hardly progresses, only mechanical polishing by polishing grains occurs, and the difference in mechanical polishing speed between the crystal part and the glass part is large. Therefore, it is considered that a surface having excellent smoothness can be obtained. Since the crystal size of the crystallized glass is determined by the composition of the glass composition and the heat treatment conditions for crystallization, it is desirable to obtain a crystallized glass having a small crystal size because of limitations in terms of composition and heat treatment conditions. It has been difficult to freely select a crystallized glass having characteristics. According to the method of the present invention, a surface having excellent smoothness can be obtained irrespective of the crystal size, so that the glass composition and the heat treatment conditions can be freely selected so as to impart the necessary properties to the crystallized glass. .
【0007】本発明方法に使用する有機溶媒は、水溶性
であることが好ましい。本発明において、水溶性の有機
溶媒とは、25℃における水に対する溶解度が20重量
%以上である有機溶媒をいう。有機溶媒が水溶性であれ
ば、研磨を終えたのちの結晶化ガラスを、水で洗浄する
ことにより、付着している研磨液などを容易に洗い流す
ことができる。有機溶媒が研磨された結晶化ガラスに付
着したまま残ると、後に表面に磁性膜層を形成すると
き、磁性膜層のはがれが生じたり、磁性膜特性が悪化し
たりするおそれがある。研磨液の分散媒として非水溶性
の有機溶媒を用い、研磨後に該有機溶媒及び水の双方に
溶解性を有する第二の有機溶媒で洗浄し、さらに、水を
用いて第二の有機溶媒を洗い流すことも可能であるが、
洗浄工程の数が増加する。本発明方法に使用する有機溶
媒は、25℃における水に対する溶解度が40重量%以
上であることがより好ましく、50重量%以上であるこ
とがさらに好ましい。本発明方法に使用する有機溶媒
は、沸点が60℃以上であることが好ましい。研磨作業
時には、結晶化ガラスと研磨板の摩擦により発熱を生ず
るので、有機溶媒の沸点が60℃未満であると、有機溶
媒が蒸発して研磨液の濃度が変動するおそれがある。研
磨液の濃度が変動すると、研磨液の特性を一定に維持す
ることが困難となり、研磨速度などが変化することによ
り、結晶化ガラスの表面特性の管理が困難となるおそれ
がある。本発明方法において、有機溶媒の沸点は、80
℃以上であることがより好ましく、100℃以上である
ことがさらに好ましい。本発明方法に使用する有機溶媒
は、さらに、毒性が低く、引火点の高い、安全性の面か
らも優れたものであることが好ましい。The organic solvent used in the method of the present invention is preferably water-soluble. In the present invention, the water-soluble organic solvent refers to an organic solvent having a solubility in water at 25 ° C. of 20% by weight or more. If the organic solvent is water-soluble, the crystallized glass after polishing can be washed with water to easily wash away the attached polishing liquid and the like. If the organic solvent remains attached to the polished crystallized glass, peeling of the magnetic film layer may occur or the magnetic film characteristics may deteriorate when the magnetic film layer is formed on the surface later. Using a non-water-soluble organic solvent as a dispersion medium of the polishing liquid, after polishing is washed with a second organic solvent having a solubility in both the organic solvent and water, further, using a second organic solvent using water. It is possible to wash it off,
The number of washing steps is increased. The organic solvent used in the method of the present invention preferably has a solubility in water at 25 ° C. of 40% by weight or more, and more preferably 50% by weight or more. The organic solvent used in the method of the present invention preferably has a boiling point of 60 ° C or higher. During the polishing operation, heat is generated due to friction between the crystallized glass and the polishing plate. Therefore, if the boiling point of the organic solvent is less than 60 ° C., the organic solvent may evaporate and the concentration of the polishing liquid may fluctuate. When the concentration of the polishing liquid changes, it becomes difficult to maintain the properties of the polishing liquid constant, and the polishing rate and the like change, which may make it difficult to control the surface properties of the crystallized glass. In the method of the present invention, the boiling point of the organic solvent is 80.
C. or higher is more preferable, and 100.degree. C. or higher is still more preferable. The organic solvent used in the method of the present invention preferably has low toxicity, high flash point, and excellent safety.
【0008】本発明方法に使用する有機溶媒としては、
例えば、アルコール類、グリコール類、トリオール類、
グリコールエーテル類、グリコールエステル類、グリコ
ールエーテルエステル類、グリセリンエステル類、リン
酸エステル類、炭酸エステル類、アミド類、ラクトン
類、硫黄化合物類などを挙げることができる。アルコー
ル類としては、例えば、プロパノール、tert−ブチルア
ルコール、3−ブテン−2−オールなどを、グリコール
類としては、例えば、エチレングリコール、プロパンジ
オール、ブタンジオール、ペンタンジオール、2−ブテ
ン−1,4−ジオール、2−メチル−2,4−ペンタンジ
オール、ジエチレングリコール、トリエチレングリコー
ル、テトラエチレングリコール、低分子量のポリエチレ
ングリコール、ジプロピレングリコール、低分子量のポ
リプロピレングリコールなどを、トリオール類として
は、例えば、グリセリン、1,2,6−ヘキサントリオー
ルなどを、グリコールエーテル類としては、例えば、ジ
エチレングリコールモノメチルエーテル、ジエチレング
リコールモノエチルエーテル、ジエチレングリコールモ
ノブチルエーテル、トリエチレングリコールモノメチル
エーテル、ジエチレングリコールジエチルエーテル、ジ
プロピレングリコールモノメチルエーテル、ジプロピレ
ングリコールモノエチルエーテル、トリプロピレングリ
コールモノメチルエーテル、エチレングリコールモノブ
チルエーテル、2−(メトキシメトキシ)エタノールなど
を、グリコールエステル類としては、例えば、エチレン
グリコールモノアセタートなどを、グリコールエーテル
エステル類としては、例えば、ジエチレングリコールモ
ノエチルエーテルアセタート、エチレングリコールモノ
メチルエーテルアセタートなどを、グリセリンエステル
類としては、例えば、モノアセチン、ジアセチンなど
を、リン酸エステル類としては、例えば、リン酸トリエ
チルなどを、炭酸エステル類としては、例えば、炭酸プ
ロピレンなどを、アミド類としては、例えば、ホルムア
ミド、N−メチルホルムアミド、N−メチル−2−ピロ
リドンなどを、ラクトン類としては、例えば、γ−ブチ
ロラクトンなどを、硫黄化合物類としては、例えば、ジ
メチルスルホキシド、スルホランなどを挙げることがで
きる。安全性、経済性の観点から、これらの中で、プロ
パノール、tert−ブチルアルコール、エチレングリコー
ル、プロパンジオール、2−メチル−2,4−ペンタン
ジオール、ジエチレングリコール、トリエチレングリコ
ール、低分子量のポリエチレングリコール、ジプロピレ
ングリコール、グリセリン、ジエチレングリコールモノ
メチルエーテル、ジエチレングリコールモノエチルエー
テル、ジエチレングリコールモノブチルエーテル、エチ
レングリコールモノブチルエーテル、ホルムアミド及び
ジメチルスルホキシドを特に好適に使用することができ
る。The organic solvent used in the method of the present invention includes:
For example, alcohols, glycols, triols,
Examples thereof include glycol ethers, glycol esters, glycol ether esters, glycerin esters, phosphoric acid esters, carbonic acid esters, amides, lactones, and sulfur compounds. Examples of alcohols include propanol, tert-butyl alcohol, and 3-buten-2-ol. Examples of glycols include ethylene glycol, propanediol, butanediol, pentanediol, and 2-butene-1,4. -Diol, 2-methyl-2,4-pentanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, low molecular weight polyethylene glycol, dipropylene glycol, low molecular weight polypropylene glycol, and the like. Examples of triols include glycerin. Examples of glycol ethers such as 1,2,6-hexanetriol include diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, and diethylene glycol monobutyl ether. Glycol, triethylene glycol monomethyl ether, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monobutyl ether, 2- (methoxymethoxy) ethanol, etc. Is, for example, ethylene glycol monoacetate and the like, as glycol ether esters, for example, diethylene glycol monoethyl ether acetate, ethylene glycol monomethyl ether acetate and the like, and as glycerin esters, for example, monoacetin, diacetin and the like. As the phosphoric acid esters, for example, triethyl phosphate and the like can be used as carbonic acid esters. For example, propylene carbonate and the like, amides such as formamide, N-methylformamide, N-methyl-2-pyrrolidone and the like, lactones such as γ-butyrolactone and the like, sulfur compounds Examples thereof include dimethyl sulfoxide and sulfolane. From the viewpoint of safety and economy, among these, propanol, tert-butyl alcohol, ethylene glycol, propanediol, 2-methyl-2,4-pentanediol, diethylene glycol, triethylene glycol, low-molecular-weight polyethylene glycol, Dipropylene glycol, glycerin, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, ethylene glycol monobutyl ether, formamide and dimethyl sulfoxide can be used particularly preferably.
【0009】本発明方法においては、沸点が60℃以上
である有機溶媒に代えて、沸点が60℃未満の有機溶媒
に不揮発性物質を溶解させ、沸点上昇効果により沸点を
60℃以上に上昇させた溶媒を使用することができる。
有機溶媒に溶解する不揮発性物質としては、有機溶媒と
反応しないものを選択することが好ましい。さらに、本
発明方法においては、有機溶媒に代えて、市販の水溶性
切削油を用いることができる。本発明方法において、分
散媒としての有機溶媒の内、40重量%以下、好ましく
は20重量%以下、より好ましくは10重量%以下を水
で置換せしめることができる。研磨液に水を含有せしめ
ることにより、水による化学的な研磨の効果が現れ、表
面平滑性はやや低下するが、研磨速度が速くなり生産性
が向上する。研磨液の水の含有量は、要求される結晶化
ガラスの表面平滑性と、生産性の両面から勘案して、適
宜選択することができる。さらに、研磨液の水の含有量
の調整により、結晶化ガラスの表面粗さを制御すること
ができる。本発明方法に使用する有機溶媒の粘度は、2
5℃において2cp〜10kcpであることが好ましく、3c
p〜1.5kcpであることがより好ましい。有機溶媒の粘
度が25℃において2cp未満であると、研磨液の保存中
に研磨砥粒が沈降し、凝集するおそれがある。有機溶媒
の粘度が25℃において10kcpを超えると、取り扱い
が困難になり、作業性が悪化するおそれがある。本発明
方法に使用する研磨液には、必要に応じて、他の公知の
添加剤を加えることができる。このような添加剤として
は、例えば、分散剤、粘度調整剤、化学研磨制御剤など
を挙げることができる。本発明方法を用いて磁気ディス
ク基板用結晶化ガラスを仕上げ研磨することにより、化
学的耐久性の低い部分を含んだ結晶化ガラスであって
も、表面を極端に侵すことなく研磨できるため、特に平
滑性の高い表面が要求される場合でも、満足することが
できる平滑な面を得ることができる。In the method of the present invention, the non-volatile substance is dissolved in an organic solvent having a boiling point of less than 60 ° C. in place of the organic solvent having a boiling point of 60 ° C. or more, and the boiling point is raised to 60 ° C. or more by the boiling point raising effect. Different solvents can be used.
As the non-volatile substance that dissolves in the organic solvent, it is preferable to select a non-volatile substance that does not react with the organic solvent. Further, in the method of the present invention, a commercially available water-soluble cutting oil can be used instead of the organic solvent. In the method of the present invention, 40% by weight or less, preferably 20% by weight or less, and more preferably 10% by weight or less of the organic solvent as the dispersion medium can be replaced with water. By including water in the polishing liquid, the effect of chemical polishing by water appears and the surface smoothness is slightly lowered, but the polishing rate is increased and the productivity is improved. The water content of the polishing liquid can be appropriately selected in consideration of both the required surface smoothness of the crystallized glass and the productivity. Furthermore, the surface roughness of the crystallized glass can be controlled by adjusting the water content of the polishing liquid. The viscosity of the organic solvent used in the method of the present invention is 2
It is preferably 2 cp to 10 kcp at 5 ° C. and 3 c
More preferably, it is p to 1.5 kcp. If the viscosity of the organic solvent is less than 2 cp at 25 ° C., the abrasive grains may settle and aggregate during storage of the polishing liquid. When the viscosity of the organic solvent exceeds 10 kcp at 25 ° C., handling becomes difficult and workability may be deteriorated. If necessary, other known additives can be added to the polishing liquid used in the method of the present invention. Examples of such additives include a dispersant, a viscosity modifier, and a chemical polishing control agent. By finishing polishing the crystallized glass for a magnetic disk substrate using the method of the present invention, even the crystallized glass containing a portion having low chemical durability can be polished without extremely damaging the surface. Even if a highly smooth surface is required, a satisfactory smooth surface can be obtained.
【0010】[0010]
【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。また、実施例及び比較例におい
て、結晶相、結晶サイズ、表面の算術平均粗さ(Ra)
及び十点平均粗さ(Rz)は下記の方法により測定し
た。 (1)結晶相 得られた研磨成形体を、X線回折装置を用いて測定し
た。 (2)結晶サイズ 得られた研磨成形体を、5重量%フッ化水素酸に5秒間
浸漬したものをサンプルとし、走査型電子顕微鏡で表面
観察を行った。この10,000倍視野中で、ランダム
に10点の結晶を選び、その平均長径を、結晶サイズと
した。 (3)算術平均粗さ(Ra)及び十点平均粗さ(Rz) 得られた研磨成形体を、原子間力顕微鏡(Digita
l Instruments社製)を用いて表面観察を
行った。サンプル表面中で5カ所をランダムに選び、1
カ所当たり10μm×10μmの視野中でランダムに4
本の線を引き、それぞれのRa及びRzを算出した。これ
ら合計20カ所の平均をRa及びRzとした。 実施例1 ガラス組成が、SiO2:70.0重量%、Al2O3:
6.0重量%、Li2O:8.0重量%、TiO2:2.5
重量%、ZrO2:4.0重量%、P2O5:1.8重量
%、Sb2O3:0.2重量%、B2O3:2.0重量%、C
aO:2.0重量%、BaO:1.5重量%及びZnO:
2.0重量%となるよう各成分原料を秤量、混合した。
この混合した原料を、電気炉中の白金ルツボに投入して
1,450℃で5時間溶融し、均質になるよう撹拌した
のち、50×50×5mmの板状に成形し、除歪、冷却し
てガラス成形体を得た。 このガラス成形体を、600℃で3時間、続いて720
℃で2時間熱処理して、ガラス中に結晶を析出させた。
この結晶化ガラスの結晶相は、スポジューメン、リチウ
ムダイシリケート及びα−クオーツであった。結晶化度
は、スポジューメンが17容量%、リチウムダイシリケ
ートが15容量%、α−クオーツが10容量%であっ
た。結晶サイズは、0.4μmであった。この結晶化ガ
ラスを、直径200mmの鉄系定盤を研磨板とし、研磨板
表面に結晶化ガラスの被研磨面を接触させ、水にD50が
25μmの炭化ケイ素砥粒を10重量%分散した研磨液
を9ml/分の割合で噴霧しながら、回転数60rpm、荷
重300g/cm2で両者を相対的に回転させ、30分間
平面研削した。次いで、同様の条件で、水にD50が10
μmの炭化ケイ素砥粒を10重量%分散した研磨液を用
いて30分間、さらに、水にD50が3μmの炭化ケイ素
砥粒を5重量%分散した研磨液を用いて30分間ラッピ
ングした。ラッピングを終えた結晶化ガラスを、直径2
00mmのポリウレタン製研磨板を用い、研磨板表面に結
晶化ガラスの被研磨面を接触させ、エチレングリコール
に粒子径0.8μmの酸化セリウムを5重量%分散した
研磨液を1ml/分の割合で滴下しながら、回転速度60
rpm、荷重150g/cm2で両者を相対的に回転させ、3
0分間研磨した。研磨後の結晶化ガラス表面の算術平均
粗さ(Ra)は7Åであり、十点平均粗さ(Rz)は26
3Åであった。 比較例1 実施例1と同じラッピングを行った結晶化ガラスを、直
径200mmのポリウレタン製研磨板を用い、研磨板表面
に結晶化ガラスの被研磨面を接触させ、水に粒子径0.
8μmの酸化セリウムを5重量%分散した研磨液を1ml
/分の割合で滴下しながら、回転速度60rpm、荷重1
50g/cm2で両者を相対的に回転させ、30分間研磨
した。 研磨後の結晶化ガラス表面の算術平均粗さ(Ra)は1
2Åであり、十点平均粗さ(Rz)は337Åであっ
た。 実施例2 実施例1と同じガラス成形体を、680℃で3時間、続
いて850℃で3時間熱処理して、ガラス中に結晶を析
出させた。この結晶化ガラスの結晶相は、スポジューメ
ン、リチウムダイシリケート及びα−クオーツであっ
た。結晶化度は、スポジューメンが23容量%、リチウ
ムダイシリケートが13容量%、α−クオーツが7容量
%であった。結晶サイズは、2.0μmであった。この
結晶化ガラスを、実施例1と同様にして、炭化ケイ素砥
粒を用いてラッピングしたのち、酸化セリウムをエチレ
ングリコールに分散した研磨液を用いて研磨した。研磨
後の結晶化ガラス表面の算術平均粗さ(Ra)は9Åで
あり、十点平均粗さ(Rz)は272Åであった。原子
間力顕微鏡により観察した研磨後の結晶化ガラスの表面
状態を、図1に示す。 比較例2 実施例2と同じラッピングを行った結晶化ガラスを、比
較例1と同様にして、酸化セリウムを水に分散した研磨
液を用いて研磨した。研磨後の結晶化ガラス表面の算術
平均粗さ(Ra)は26Åであり、十点平均粗さ(Rz)
は458Åであった。原子間力顕微鏡により観察した研
磨後の結晶化ガラスの表面状態を、図2に示す。 実施例3 ガラス組成が、SiO2:78.0重量%、Al2O3:
8.0重量%、Li2O:3.5重量%、TiO2:0.5
重量%、ZrO2:4.0重量%、P2O5:2.3重量
%、Sb2O3:0.2重量%、B2O3:1.0重量%、M
gO:1.0重量%、ZnO:1.0重量%及びPbO:
0.5重量%となるよう各成分原料を秤量、混合した。
この混合した原料を、電気炉中の白金ルツボに投入して
1,500℃で5時間溶融し、均質になるよう撹拌した
のち、50×50×5mmの板状に成形し、除歪、冷却し
てガラス成形体を得た。 このガラス成形体を、700℃で3時間、続いて900
℃で2時間熱処理して、ガラス中に結晶を析出させた。
この結晶化ガラスの結晶相は、スポジューメン及びα−
クオーツであった。結晶化度は、スポジューメンが25
容量%、α−クオーツが15容量%であった。結晶サイ
ズは、0.8μmであった。この結晶化ガラスを、実施
例1と同様にして、炭化ケイ素砥粒を用いてラッピング
したのち、さらに、直径200mmのセラミック製研磨板
を用い、研磨板表面に結晶化ガラスの被研磨面を接触さ
せ、分散剤としてエステル系ノニオン活性剤[サンノプ
コ(株)、SNディスパーサント9228]を0.5重量
%含むグリセリンに、粒子径0.3μmの酸化アルミニ
ウムを5重量%分散した研磨液を1ml/分の割合で滴下
しながら、回転速度60rpm、荷重150g/cm2で両者
を相対的に回転させ、30分間研磨した。研磨後の結晶
化ガラス表面の算術平均粗さ(Ra)は7Åであり、十
点平均粗さ(Rz)は292Åであった。実施例1〜3
及び比較例1〜2の結果を、第1表に示す。EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. Further, in Examples and Comparative Examples, the crystal phase, the crystal size, and the arithmetic average roughness of surface ( Ra )
The ten-point average roughness (R z ) was measured by the following method. (1) Crystal phase The obtained polished compact was measured using an X-ray diffractometer. (2) Crystal Size The obtained polished compact was immersed in 5% by weight of hydrofluoric acid for 5 seconds, and the surface of the sample was observed with a scanning electron microscope. In this 10,000-fold visual field, 10 points of crystals were randomly selected, and the average major axis was taken as the crystal size. (3) Arithmetic Average Roughness (R a ) and Ten-Point Average Roughness (R z ) The obtained abrasive compact was subjected to atomic force microscopy (Digital).
1 Instruments (manufactured by Instruments). Randomly select 5 locations on the sample surface
4 randomly in a 10 μm × 10 μm field of view
A line was drawn and the respective R a and R z were calculated. The average of these 20 points in total was taken as R a and R z . Example 1 Glass composition: SiO 2 : 70.0% by weight, Al 2 O 3 :
6.0 wt%, Li 2 O: 8.0 wt%, TiO 2: 2.5
Wt%, ZrO 2: 4.0 wt%, P 2 O 5: 1.8 wt%, Sb 2 O 3: 0.2 wt%, B 2 O 3: 2.0 wt%, C
aO: 2.0% by weight, BaO: 1.5% by weight and ZnO:
Each component raw material was weighed and mixed so as to be 2.0% by weight.
The mixed raw materials are put into a platinum crucible in an electric furnace, melted at 1,450 ° C. for 5 hours, stirred to be homogeneous, then molded into a plate of 50 × 50 × 5 mm, strain-removed and cooled. Then, a glass molded body was obtained. This glass molded body is heated at 600 ° C. for 3 hours and then 720
Heat treatment was performed at 2 ° C. for 2 hours to precipitate crystals in the glass.
The crystal phase of this crystallized glass was spodumene, lithium disilicate and α-quartz. The crystallinity was 17% by volume for spodumene, 15% by volume for lithium disilicate, and 10% by volume for α-quartz. The crystal size was 0.4 μm. An iron-based surface plate having a diameter of 200 mm was used as a polishing plate for this crystallized glass, and the surface to be polished of the crystallized glass was brought into contact with the surface of the polishing plate to disperse 10% by weight of silicon carbide abrasive grains having D 50 of 25 μm in water. While spraying the polishing liquid at a rate of 9 ml / min, both were relatively rotated at a rotation speed of 60 rpm and a load of 300 g / cm 2 , and surface grinding was performed for 30 minutes. Then, under the same conditions, water has a D 50 of 10
Lapping was performed for 30 minutes using a polishing liquid in which 10% by weight of silicon carbide abrasive grains having a diameter of 3 μm was dispersed, and 30 minutes was further used for 30 minutes in which a polishing liquid in which 5% by weight of silicon carbide abrasive grains having a D 50 of 3 μm was dispersed in water was used. The diameter of the crystallized glass after lapping is 2
Using a 00 mm polyurethane polishing plate, the surface of the polishing plate is brought into contact with the surface to be polished of crystallized glass, and a polishing liquid in which 5 wt% of cerium oxide having a particle size of 0.8 μm is dispersed in ethylene glycol is added at a rate of 1 ml / min. Rotation speed 60 while dripping
Rotate both at a rpm of 150 g / cm 2 and rotate them to 3
Polished for 0 minutes. The arithmetic average roughness (R a ) of the crystallized glass surface after polishing is 7Å, and the ten-point average roughness (R z ) is 26.
It was 3Å. Comparative Example 1 The same lapped crystallized glass as in Example 1 was used as a polishing plate made of polyurethane having a diameter of 200 mm, and the surface of the crystallized glass to be polished was brought into contact with the surface of the polishing plate.
1 ml of polishing liquid in which 5 μ% of 8 μm cerium oxide is dispersed
Rotation speed 60 rpm, load 1 while dropping at a rate of / min
Both were relatively rotated at 50 g / cm 2 and polished for 30 minutes. The arithmetic average roughness (R a ) of the crystallized glass surface after polishing is 1
It was 2Å, and the ten-point average roughness (R z ) was 337Å. Example 2 The same glass molded body as in Example 1 was heat-treated at 680 ° C. for 3 hours and then at 850 ° C. for 3 hours to precipitate crystals in the glass. The crystal phase of this crystallized glass was spodumene, lithium disilicate and α-quartz. The crystallinity was 23% by volume for spodumene, 13% by volume for lithium disilicate, and 7% by volume for α-quartz. The crystal size was 2.0 μm. This crystallized glass was lapped with silicon carbide abrasive grains in the same manner as in Example 1, and then polished with a polishing liquid in which cerium oxide was dispersed in ethylene glycol. The arithmetic average roughness ( Ra ) of the crystallized glass surface after polishing was 9Å, and the ten-point average roughness ( Rz ) was 272Å. The surface state of the crystallized glass after polishing, which was observed by an atomic force microscope, is shown in FIG. Comparative Example 2 The crystallized glass subjected to the same lapping as in Example 2 was polished in the same manner as in Comparative Example 1 using a polishing liquid in which cerium oxide was dispersed in water. The arithmetic average roughness ( Ra ) of the crystallized glass surface after polishing is 26Å, and the ten-point average roughness ( Rz ).
Was 458Å. The surface state of the crystallized glass after polishing, which is observed by an atomic force microscope, is shown in FIG. Example 3 The glass composition was SiO 2 : 78.0 wt%, Al 2 O 3 :
8.0% by weight, Li 2 O: 3.5% by weight, TiO 2 : 0.5
Wt%, ZrO 2: 4.0 wt%, P 2 O 5: 2.3 wt%, Sb 2 O 3: 0.2 wt%, B 2 O 3: 1.0 wt%, M
gO: 1.0 wt%, ZnO: 1.0 wt% and PbO:
Raw materials for each component were weighed and mixed so as to be 0.5% by weight.
The mixed raw materials are put into a platinum crucible in an electric furnace, melted at 1,500 ° C. for 5 hours, stirred to be homogeneous, then molded into a plate of 50 × 50 × 5 mm, strain-relieved and cooled. Then, a glass molded body was obtained. This glass molded body is heated at 700 ° C. for 3 hours and then 900 times.
Heat treatment was performed at 2 ° C. for 2 hours to precipitate crystals in the glass.
The crystal phase of this crystallized glass is spodumene and α-
It was quartz. Crystallinity is 25 for Spodumene
% By volume and 15% by volume of α-quartz. The crystal size was 0.8 μm. This crystallized glass was lapped with silicon carbide abrasive grains in the same manner as in Example 1, and then a ceramic polishing plate having a diameter of 200 mm was used, and the polishing plate surface was brought into contact with the surface to be polished of the crystallized glass. Then, 1 ml of a polishing liquid in which 5% by weight of aluminum oxide having a particle diameter of 0.3 μm is dispersed in glycerin containing 0.5% by weight of an ester nonionic activator [San Nopco Ltd., SN Dispersant 9228] as a dispersant. Both were relatively rotated at a rotation speed of 60 rpm and a load of 150 g / cm 2 while dripping at a rate of 30 minutes, and polishing was performed for 30 minutes. The arithmetic average roughness (R a ) of the crystallized glass surface after polishing was 7Å and the ten-point average roughness (R z ) was 292Å. Examples 1-3
The results of Comparative Examples 1 and 2 are shown in Table 1.
【0011】[0011]
【表1】 [Table 1]
【0012】第1表の結果から、スポジューメンを主結
晶相とする結晶化ガラスに対して、エチレングリコール
を分散媒とする研磨液を用いた場合は、結晶サイズが小
さい実施例1においても、結晶サイズが大きい実施例2
においても、表面粗さの値が小さく、良好な表面平滑性
が得られている。これに対して、水を分散媒とする従来
の研磨液を用いた場合は、結晶サイズが小さい比較例1
においては、比較的良好な表面平滑性が得られている
が、結晶サイズが大きい比較例2においては、表面粗さ
の値が大きく、水を分散媒とする研磨液では良好な表面
平滑性が得られないことが分かる。 実施例4 ガラス組成が、SiO2:23重量%、Al2O3:40
重量%、B2O3:20重量%、MgO:10重量%、C
aO:2重量%、BaO:2重量%、ZnO:2重量%
及びLi2O:1重量%となるよう各成分原料を秤量、
混合した。この混合した原料を、電気炉中の白金ルツボ
に投入して1,500℃で5時間溶融し、均質になるよ
う撹拌したのち、50×50×5mmの板状に成形し、除
歪、冷却してガラス成形体を得た。 このガラス成形体を、700℃で2時間、続いて870
℃で2時間熱処理して、ガラス中に結晶を析出させた。
この結晶化ガラスの結晶相は、ムライト及びホウ酸アル
ミニウム系結晶であり、結晶化度は、ムライトが25容
量%、ホウ酸アルミニウム系結晶が18容量%であっ
た。結晶サイズは、1.4μmであった。この結晶化ガ
ラスを、実施例1と同様にして、炭化ケイ素砥粒を用い
てラッピングしたのち、さらに、直径200mmのポリウ
レタン製研磨板を用い、研磨板表面に結晶化ガラスの被
研磨面を接触させ、ジエチレングリコールに粒子径0.
5μmの酸化ジルコニウムを8重量%分散した研磨液を
1ml/分の割合で滴下しながら、回転速度60rpm、荷
重150g/cm2で両者を相対的に回転させ、30分間
研磨した。研磨後の結晶化ガラス表面の算術平均粗さ
(Ra)は6Åであり、十点平均粗さ(Rz)は201Å
であった。 実施例5 実施例4と同じラッピングを行った結晶化ガラスを、直
径200mmのポリウレタン製研磨板を用い、研磨板表面
に結晶化ガラスの被研磨面を接触させ、ジエチレングリ
コール90重量%及び水10重量%よりなる混合溶媒
に、粒子径0.5μmの酸化ジルコニウムを8重量%分
散した研磨液を1ml/分の割合で滴下しながら、回転速
度60rpm、荷重150g/cm2で両者を相対的に回転さ
せ、30分間研磨した。研磨後の結晶化ガラス表面の算
術平均粗さ(Ra)は9Åであり、十点平均粗さ(Rz)
は243Åであった。 比較例3 実施例4と同じラッピングを行った結晶化ガラスを、直
径200mmのポリウレタン製研磨板を用い、研磨板表面
に結晶化ガラスの被研磨面を接触させ、水に粒子径0.
5μmの酸化ジルコニウムを8重量%分散した研磨液を
1ml/分の割合で滴下しながら、回転速度60rpm、荷
重150g/cm2で両者を相対的に回転させ、30分間
研磨した。研磨後の結晶化ガラス表面の算術平均粗さ
(Ra)は22Åであり、十点平均粗さ(Rz)は358
Åであった。実施例4〜5及び比較例3の結果を、第2
表に示す。From the results shown in Table 1, when a polishing liquid containing ethylene glycol as a dispersion medium was used with respect to crystallized glass containing spodumene as a main crystal phase, the crystal size was small even in Example 1. Example 2 with large size
Also in the above, the value of the surface roughness is small and good surface smoothness is obtained. On the other hand, when the conventional polishing liquid containing water as the dispersion medium was used, the crystal size was small in Comparative Example 1
In Comparative Example 2 in which the crystal size is large, the surface roughness value is large, and the polishing liquid containing water as the dispersion medium exhibits good surface smoothness. You can see that you cannot get it. Example 4 The glass composition was SiO 2 : 23% by weight, Al 2 O 3 : 40
% By weight, B 2 O 3 : 20% by weight, MgO: 10% by weight, C
aO: 2% by weight, BaO: 2% by weight, ZnO: 2% by weight
And Li 2 O: Weigh each component raw material so that it becomes 1% by weight,
Mixed. The mixed raw materials are put into a platinum crucible in an electric furnace, melted at 1,500 ° C. for 5 hours, stirred to be homogeneous, then molded into a plate of 50 × 50 × 5 mm, strain-relieved and cooled. Then, a glass molded body was obtained. The glass molded body was heated at 700 ° C. for 2 hours and then 870.
Heat treatment was performed at 2 ° C. for 2 hours to precipitate crystals in the glass.
The crystal phase of this crystallized glass was mullite and aluminum borate-based crystals, and the crystallinity was 25 vol% for mullite and 18 vol% for aluminum borate-based crystals. The crystal size was 1.4 μm. This crystallized glass was lapped with silicon carbide abrasive grains in the same manner as in Example 1, and then a polishing plate made of polyurethane having a diameter of 200 mm was used to bring the polishing plate surface into contact with the surface to be polished of the crystallized glass. Then, diethylene glycol has a particle size of 0.1.
While polishing liquid containing 8% by weight of zirconium oxide of 5 μm added dropwise at a rate of 1 ml / min, both were relatively rotated at a rotation speed of 60 rpm and a load of 150 g / cm 2 , and polishing was performed for 30 minutes. The arithmetic average roughness (R a ) of the crystallized glass surface after polishing is 6Å, and the ten-point average roughness (R z ) is 201Å.
Met. Example 5 The same lapped crystallized glass as in Example 4 was used as a polishing plate made of polyurethane having a diameter of 200 mm. The polishing plate surface was brought into contact with the surface to be polished of the crystallized glass, and 90% by weight of diethylene glycol and 10% by weight of water were used. % Of a zirconium oxide having a particle diameter of 0.5 μm dispersed in a mixed solvent of 1% / min at a rate of 1 ml / min, while rotating both at a rotation speed of 60 rpm and a load of 150 g / cm 2. And polished for 30 minutes. The arithmetic average roughness (R a ) of the crystallized glass surface after polishing is 9Å, and the ten-point average roughness (R z )
Was 243Å. Comparative Example 3 The crystallized glass which was lapped in the same manner as in Example 4 was used as a polishing plate made of polyurethane having a diameter of 200 mm, and the surface of the crystallized glass to be polished was brought into contact with the surface of the polishing plate.
While polishing liquid containing 8% by weight of zirconium oxide of 5 μm added dropwise at a rate of 1 ml / min, both were relatively rotated at a rotation speed of 60 rpm and a load of 150 g / cm 2 , and polishing was performed for 30 minutes. The arithmetic average roughness (R a ) of the crystallized glass surface after polishing is 22Å, and the ten-point average roughness (R z ) is 358.
Was Å. The results of Examples 4 to 5 and Comparative Example 3 were
It is shown in the table.
【0013】[0013]
【表2】 [Table 2]
【0014】第2表の結果から、ムライト及びホウ酸ア
ルミニウム系結晶を主結晶相とする結晶化ガラスに対し
て、ジエチレングリコールを分散媒とする研磨液を用い
た実施例4においては、表面粗さの値が小さく、良好な
表面平滑性が得られている。また、ジエチレングリコー
ルと水の混合溶媒を分散媒とする研磨液を用いた実施例
5においても、実施例4とほぼ同程度の良好な表面平滑
性が得られている。これに対して、水を分散媒とする従
来の研磨液を用いた比較例3においては、表面粗さの値
が大きく、水を分散媒とする研磨液では良好な表面平滑
性が得られないことが分かる。From the results shown in Table 2, in Example 4 in which a polishing liquid containing diethylene glycol as a dispersion medium was used with respect to crystallized glass containing mullite and aluminum borate crystals as a main crystal phase, the surface roughness was measured. Value is small, and good surface smoothness is obtained. Further, also in Example 5 using a polishing liquid containing a mixed solvent of diethylene glycol and water as a dispersion medium, good surface smoothness almost equal to that in Example 4 was obtained. On the other hand, in Comparative Example 3 in which the conventional polishing liquid containing water as the dispersion medium was used, the surface roughness was large, and the polishing liquid containing water as the dispersion medium did not provide good surface smoothness. I understand.
【0015】[0015]
【発明の効果】本発明方法によれば、結晶サイズの大小
にかかわりなく、結晶化ガラスを研磨して平滑性に優れ
た表面を得ることができるので、ガラス組成物の組成や
熱処理条件などを幅広く選択することが可能となり、磁
気ディスク基板として望ましい特性を有し、表面平滑性
に優れた磁気ディスク基板用結晶化ガラスを得ることが
できる。EFFECTS OF THE INVENTION According to the method of the present invention, a crystallized glass can be polished to obtain a surface having excellent smoothness regardless of the size of the crystal size. It is possible to select a wide range, and it is possible to obtain crystallized glass for a magnetic disk substrate having desirable characteristics as a magnetic disk substrate and excellent surface smoothness.
【図1】図1は、原子間力顕微鏡により観察した実施例
2の研磨後の結晶化ガラスの表面状態である。FIG. 1 is a surface state of crystallized glass after polishing of Example 2 observed by an atomic force microscope.
【図2】図2は、原子間力顕微鏡により観察した比較例
2の研磨後の結晶化ガラスの表面状態である。FIG. 2 is a surface state of the crystallized glass after polishing of Comparative Example 2 observed by an atomic force microscope.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 若林 肇 兵庫県西宮市浜松原町2番21号 山村硝子 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hajime Wakabayashi 2-21 Hamamatsubara-cho, Nishinomiya-shi, Hyogo Yamamura Glass Co., Ltd.
Claims (5)
研磨液を用いることを特徴とする結晶化ガラスの精密研
磨方法。1. A precision polishing method for crystallized glass, which comprises using a polishing liquid containing polishing abrasive grains and an organic solvent as a dispersion medium.
℃以上である請求項1記載の結晶化ガラスの精密研磨方
法。2. The organic solvent is water-soluble and has a boiling point of 60.
The method for precision polishing of crystallized glass according to claim 1, which is at least ℃.
類、トリオール類、グリコールエーテル類、グリコール
エステル類、グリコールエーテルエステル類、グリセリ
ンエステル類、リン酸エステル類、炭酸エステル類、ア
ミド類、ラクトン類、硫黄化合物類の内の少なくとも1
種を含む請求項1又は請求項2記載の結晶化ガラスの精
密研磨方法。3. An organic solvent comprising alcohols, glycols, triols, glycol ethers, glycol esters, glycol ether esters, glycerin esters, phosphoric acid esters, carbonic acid esters, amides, lactones, At least one of the sulfur compounds
The method for precision polishing crystallized glass according to claim 1 or 2, further comprising a seed.
請求項1ないし請求項3のいずれかに記載の結晶化ガラ
スの精密研磨方法。4. The precision polishing method for crystallized glass according to claim 1, wherein the dispersion medium contains 40% by weight or less of water.
化ガラスである請求項1ないし請求項4のいずれかに記
載の結晶化ガラスの精密研磨方法。5. The precision polishing method for crystallized glass according to claim 1, wherein the crystallized glass is crystallized glass for a magnetic disk substrate.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8154986A JPH09314458A (en) | 1996-05-27 | 1996-05-27 | Precision grinding method for crystalline glass |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8154986A JPH09314458A (en) | 1996-05-27 | 1996-05-27 | Precision grinding method for crystalline glass |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH09314458A true JPH09314458A (en) | 1997-12-09 |
Family
ID=15596225
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP8154986A Pending JPH09314458A (en) | 1996-05-27 | 1996-05-27 | Precision grinding method for crystalline glass |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH09314458A (en) |
Cited By (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001085374A (en) * | 1999-07-13 | 2001-03-30 | Kao Corp | Polishing liquid composition |
| JP2002114537A (en) * | 2000-10-04 | 2002-04-16 | Nippon Electric Glass Co Ltd | Setter for heat treatment of glass substrate |
| US6458730B1 (en) | 1999-07-14 | 2002-10-01 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6458728B1 (en) | 1999-07-06 | 2002-10-01 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6458729B1 (en) | 1999-07-14 | 2002-10-01 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6514890B1 (en) | 1999-07-06 | 2003-02-04 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6524982B1 (en) | 1999-07-06 | 2003-02-25 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6569791B1 (en) | 1999-07-14 | 2003-05-27 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6569790B1 (en) | 1999-07-14 | 2003-05-27 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6573206B1 (en) | 1999-07-14 | 2003-06-03 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6583078B1 (en) | 1999-07-14 | 2003-06-24 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6583077B1 (en) | 1999-07-14 | 2003-06-24 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6593259B1 (en) | 1999-07-14 | 2003-07-15 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6593257B1 (en) | 1999-07-06 | 2003-07-15 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6596659B1 (en) | 1999-07-14 | 2003-07-22 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6610620B1 (en) | 1999-07-14 | 2003-08-26 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6624101B1 (en) | 1999-07-14 | 2003-09-23 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6627567B1 (en) | 1999-07-14 | 2003-09-30 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6635591B2 (en) | 2000-04-03 | 2003-10-21 | Minolta Co., Ltd. | Glass composition for crystallized glass |
| US6642161B2 (en) | 2000-04-03 | 2003-11-04 | Minolta Co., Ltd. | Glass composition for crystallized glass |
| US6642162B2 (en) | 2000-04-03 | 2003-11-04 | Minolta Co., Ltd. | Glass composition for crystallized glass |
| US6645892B2 (en) | 2000-04-03 | 2003-11-11 | Minolta Co., Ltd. | Glass composition for crystallized glass |
| US6645890B2 (en) | 2000-04-03 | 2003-11-11 | Minolta Co., Ltd. | Glass composition for crystallized glass |
| US6645888B2 (en) | 2000-04-03 | 2003-11-11 | Minolta Co., Ltd. | Glass composition for crystallized glass |
| US6645891B2 (en) | 2000-04-03 | 2003-11-11 | Minolta Co., Ltd. | Glass composition for crystallized glass |
| US6645889B2 (en) | 2000-04-03 | 2003-11-11 | Minolta Co., Ltd. | Glass composition for crystallized glass |
| US6649549B2 (en) | 2000-04-03 | 2003-11-18 | Minolta Co., Ltd. | Glass composition for crystallized glass |
| US7438630B2 (en) | 1997-09-30 | 2008-10-21 | Hoya Corporation | Polishing method, polishing device, glass substrate for magnetic recording medium, and magnetic recording medium |
| JP2013224413A (en) * | 2012-03-23 | 2013-10-31 | Daxin Material Corp | Processing composition used for cutting workpiece of hard brittle material with cutting or grinding tool |
| JP2019104797A (en) * | 2017-12-11 | 2019-06-27 | 花王株式会社 | Polishing liquid composition |
| CN113618497A (en) * | 2021-07-09 | 2021-11-09 | 维达力实业(赤壁)有限公司 | Polishing liquid for polishing microcrystalline ceramic and microcrystalline ceramic polishing method |
-
1996
- 1996-05-27 JP JP8154986A patent/JPH09314458A/en active Pending
Cited By (33)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7690969B2 (en) | 1997-09-30 | 2010-04-06 | Hoya Corporation | Polishing method, polishing device, glass substrate for magnetic recording medium, and magnetic recording medium |
| US7494401B2 (en) | 1997-09-30 | 2009-02-24 | Hoya Corporation | Polishing method, polishing device, glass substrate for magnetic recording medium, and magnetic recording medium |
| US7438630B2 (en) | 1997-09-30 | 2008-10-21 | Hoya Corporation | Polishing method, polishing device, glass substrate for magnetic recording medium, and magnetic recording medium |
| US6593257B1 (en) | 1999-07-06 | 2003-07-15 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6458728B1 (en) | 1999-07-06 | 2002-10-01 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6514890B1 (en) | 1999-07-06 | 2003-02-04 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6524982B1 (en) | 1999-07-06 | 2003-02-25 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| JP2001085374A (en) * | 1999-07-13 | 2001-03-30 | Kao Corp | Polishing liquid composition |
| US6624101B1 (en) | 1999-07-14 | 2003-09-23 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6458729B1 (en) | 1999-07-14 | 2002-10-01 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6583078B1 (en) | 1999-07-14 | 2003-06-24 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6583077B1 (en) | 1999-07-14 | 2003-06-24 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6593259B1 (en) | 1999-07-14 | 2003-07-15 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6569790B1 (en) | 1999-07-14 | 2003-05-27 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6596659B1 (en) | 1999-07-14 | 2003-07-22 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6610620B1 (en) | 1999-07-14 | 2003-08-26 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6569791B1 (en) | 1999-07-14 | 2003-05-27 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6627567B1 (en) | 1999-07-14 | 2003-09-30 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6458730B1 (en) | 1999-07-14 | 2002-10-01 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6573206B1 (en) | 1999-07-14 | 2003-06-03 | Minolta Co., Ltd. | Glass-ceramic composition for recording disk substrate |
| US6649549B2 (en) | 2000-04-03 | 2003-11-18 | Minolta Co., Ltd. | Glass composition for crystallized glass |
| US6645892B2 (en) | 2000-04-03 | 2003-11-11 | Minolta Co., Ltd. | Glass composition for crystallized glass |
| US6645890B2 (en) | 2000-04-03 | 2003-11-11 | Minolta Co., Ltd. | Glass composition for crystallized glass |
| US6645888B2 (en) | 2000-04-03 | 2003-11-11 | Minolta Co., Ltd. | Glass composition for crystallized glass |
| US6645891B2 (en) | 2000-04-03 | 2003-11-11 | Minolta Co., Ltd. | Glass composition for crystallized glass |
| US6645889B2 (en) | 2000-04-03 | 2003-11-11 | Minolta Co., Ltd. | Glass composition for crystallized glass |
| US6642162B2 (en) | 2000-04-03 | 2003-11-04 | Minolta Co., Ltd. | Glass composition for crystallized glass |
| US6642161B2 (en) | 2000-04-03 | 2003-11-04 | Minolta Co., Ltd. | Glass composition for crystallized glass |
| US6635591B2 (en) | 2000-04-03 | 2003-10-21 | Minolta Co., Ltd. | Glass composition for crystallized glass |
| JP2002114537A (en) * | 2000-10-04 | 2002-04-16 | Nippon Electric Glass Co Ltd | Setter for heat treatment of glass substrate |
| JP2013224413A (en) * | 2012-03-23 | 2013-10-31 | Daxin Material Corp | Processing composition used for cutting workpiece of hard brittle material with cutting or grinding tool |
| JP2019104797A (en) * | 2017-12-11 | 2019-06-27 | 花王株式会社 | Polishing liquid composition |
| CN113618497A (en) * | 2021-07-09 | 2021-11-09 | 维达力实业(赤壁)有限公司 | Polishing liquid for polishing microcrystalline ceramic and microcrystalline ceramic polishing method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPH09314458A (en) | Precision grinding method for crystalline glass | |
| US6294490B1 (en) | Crystallized glass for information recording medium, crystallized glass substrate, and information recording medium using the crystallized glass substrate | |
| EP0788093B1 (en) | A glass-ceramic substrate for a magnetic disk | |
| JP2000336344A (en) | Abrasive | |
| JP2001097740A (en) | Crystallized glass, substrate for magnetic disk and magnetic disk | |
| CN103240665B (en) | The manufacture of synthetic quartz glass substrate | |
| TW593649B (en) | Cerium-based abrasive slurry and method for manufacturing cerium-based abrasive slurry | |
| TW200836883A (en) | Submicron alpha alumina high temperature bonded abrasives | |
| JP6308044B2 (en) | Alkali-free glass for magnetic recording media and glass substrate for magnetic recording media using the same | |
| CN1295983A (en) | Process for making nucleated glass used in information storage magnetic disk | |
| JP2015027932A (en) | Alkali-free glass for magnetic recording medium, and glass substrate for magnetic recording medium prepared using the same | |
| WO2012160897A1 (en) | Method for producing polished product | |
| CN111633476B (en) | Method for obtaining angstrom-level smooth surface of yttrium oxide transparent ceramic | |
| US6372319B1 (en) | Nucleating agents for crystallized glasses, crystallized glasses, magnetic discs substrate and magnetic discs | |
| WO2004037943A1 (en) | Polishing slurry and polished substrate | |
| US3877183A (en) | Method of polishing semiconductor surfaces | |
| JPH0935234A (en) | Substrate for magnetic disk and its production | |
| JP2001172043A (en) | Glass for information recording medium substrate and glass substrate for information recording medium | |
| JP4885352B2 (en) | Abrasive slurry and fine abrasive | |
| JP6299472B2 (en) | Alkali-free glass for magnetic recording media and glass substrate for magnetic recording media using the same | |
| JP2001126236A (en) | Board for magnetic disk and magnetic disk | |
| JPH06330025A (en) | Polishing material for glass | |
| WO2013118648A1 (en) | Method for producing glass product and method for producing magnetic disk | |
| JP2015027931A (en) | Alkali-free glass for magnetic recording media and glass substrate for magnetic recording media using the same | |
| JP4807905B2 (en) | Abrasive slurry and fine abrasive |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| EXPY | Cancellation because of completion of term |