[go: up one dir, main page]

JPH09317778A - Main spindle bearing cooling device - Google Patents

Main spindle bearing cooling device

Info

Publication number
JPH09317778A
JPH09317778A JP8161106A JP16110696A JPH09317778A JP H09317778 A JPH09317778 A JP H09317778A JP 8161106 A JP8161106 A JP 8161106A JP 16110696 A JP16110696 A JP 16110696A JP H09317778 A JPH09317778 A JP H09317778A
Authority
JP
Japan
Prior art keywords
cooling
passage
housing
cooling oil
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8161106A
Other languages
Japanese (ja)
Inventor
Takehiko Umemoto
武彦 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP8161106A priority Critical patent/JPH09317778A/en
Publication of JPH09317778A publication Critical patent/JPH09317778A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/12Arrangements for cooling or lubricating parts of the machine
    • B23Q11/126Arrangements for cooling or lubricating parts of the machine for cooling only
    • B23Q11/127Arrangements for cooling or lubricating parts of the machine for cooling only for cooling motors or spindles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve initial rigidity of a bearing and the rigidity from the low and high speed by providing a cooling sleeve between a bearing inner race and a spindle, penetrating it into a cooling oil path from one end to the other end, and providing a feed path and a recovery path of the cooling oil to a bearing housing. SOLUTION: Cooling oil fed from a cooling oil entrance 9a of a housing 2 flows to a flow path entrance member 5 via a cooling oil feed path 9, a ring groove 21 of a feed path member 7, and a fine clearance. The cooling oil which passes through a flow path 14 of a cooling sleeve 4 is discharged from a cooling oil exit 10a via a flow outlet member 6, a recovery member 8, and a cooling oil recovery path 10. When the cooling oil flows through the sleeve 4, the inner race 3a of the bearing 3 is cooled. The temperature difference between the inner and outer races thus becomes smaller so that, when the initial pressurization is set not to become pressurization excess during high speed rotation, the initial pressurization is prevented from becoming too low and the initial rigidity of the bearing 3 can be set to high, so that the support rigidity of the spindle 1 can be secured from the low to high speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、研削盤や、マシ
ニングセンタ、旋盤等の工作機械における主軸に応用さ
れる主軸軸受冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spindle bearing cooling device applied to a spindle in a machine tool such as a grinding machine, a machining center or a lathe.

【0002】[0002]

【従来の技術】工作機械の主軸スピンドルは、近年高速
化が進み、主軸軸受のdn値(d:軸受内径寸法、n:
回転数)が60×104 〜150×104 程度に達して
いる。このような主軸スピンドルの高速化は、軸受の内
部発熱による予圧の上昇と、焼き付き等の問題を伴う。
このような問題の解消のため、次の三つの対策が採用さ
れている。 主軸軸受の初期剛性を小さくする(初期予圧を低くす
る)。 ジェット潤滑を採用する。 スピンドルハウジングの外径面を冷却油で冷却する。
2. Description of the Related Art The spindle speed of machine tool spindles has increased in recent years, and the dn value of the spindle bearing (d: bearing inner diameter dimension, n:
The number of rotations) has reached about 60 × 10 4 to 150 × 10 4 . Such an increase in speed of the main spindle is accompanied by problems such as an increase in preload due to internal heat generation of the bearing and seizure.
In order to solve such problems, the following three measures are adopted. Reduce the initial rigidity of the main shaft bearing (lower the initial preload). Adopt jet lubrication. Cool the outer diameter surface of the spindle housing with cooling oil.

【0003】図13に示す従来例で前記の対策を説明す
ると、前記の方法は、スピンドルハウジング101の
外径面にねじ溝状の溝部を102を形成し、その外側に
冷却ジャケット103を形成して冷却油を流す方法であ
る。すなわち、主軸スピンドル装置の全体を冷却し、発
熱による主軸100の全体の精度劣化を防ぐことを目的
とする。前記の方法は、主軸軸受104につき、最高
回転数の発熱を予想して軸受隙間を大き目に設定する方
法である。軸受104内の温度分布は、(転動体)>
(内輪)>(外輪)の順に温度が高く、外輪よりも内輪
の方が温度が高いため、運転に伴って内部隙間が小さく
なり、予圧量が上昇する。このため、初期予圧を低くす
ることが必要となる。
The above measures will be described with reference to a conventional example shown in FIG. 13. According to the above method, a thread groove-like groove portion 102 is formed on the outer diameter surface of a spindle housing 101, and a cooling jacket 103 is formed on the outside thereof. It is a method of flowing cooling oil. That is, the object is to cool the entire main spindle device and prevent the accuracy of the entire main spindle 100 from deteriorating due to heat generation. The above method is a method in which the bearing clearance is set to a large value in anticipation of heat generation at the maximum rotation speed for the main shaft bearing 104. The temperature distribution in the bearing 104 is (rolling element)>
Since the temperature is higher in the order of (inner ring)> (outer ring) and the temperature of the inner ring is higher than that of the outer ring, the internal clearance becomes smaller and the amount of preload increases with the operation. Therefore, it is necessary to reduce the initial preload.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記のよう
に、最高回転数を予想して軸受隙間を大き目に設定する
方法では、低速回転で使用した場合に、発熱が小さく、
軸受隙間が小さくならないで、予圧量が増加せず、主軸
100の支持剛性が不足する。特に、の冷却方法のよ
うに、冷却ジャケット103をハウジング101の外周
に設けた場合、軸受104の外輪側を冷却するため、高
速運転時の内外輪間温度差はさらに大きくなる。その時
に過大予圧とならない様にするために初期予圧を小さく
する必要が生じ、低速回転時の剛性不足の問題が大きく
なる。工作機械では、加工の仕上がり等の面から、低速
回転で使用することが必要な場合も多くあり、この場合
の加工精度の向上が難しい。前記のジェット潤滑は、
軸受の側面に設けたノズル等から潤滑油を噴出させて軸
受内の冷却と潤滑を兼ねる方法であるが、構造が複雑で
あるため、それ程採用されておらず、また大量の潤滑油
を軸受に吹き付ける方法であるため、軸受の回転に抵抗
が生じ、主軸の動力損失が生じるという課題がある。ジ
ェット潤滑の一種として、内輪の軌道面に設けたノズル
から潤滑油を吐出する方法(アンダーレース潤滑)があ
り、これによれば内輪の冷却も兼ねられるが、これも構
造が複雑であり、動力損失の問題があり、また内輪の軌
道面にノズルが設けられることから、転動寿命の面でも
好ましくない。
However, as described above, in the method of predicting the maximum number of rotations and setting the bearing gap to a large value, the heat generation is small when used at low speed rotation,
The bearing clearance does not become small, the amount of preload does not increase, and the supporting rigidity of the spindle 100 becomes insufficient. In particular, when the cooling jacket 103 is provided on the outer periphery of the housing 101 as in the cooling method, the outer ring side of the bearing 104 is cooled, so that the temperature difference between the inner and outer rings during high-speed operation becomes larger. At that time, it becomes necessary to reduce the initial preload in order to prevent an excessive preload, and the problem of insufficient rigidity during low-speed rotation increases. In many cases, it is necessary to use the machine tool at low speed from the viewpoint of the finish of machining, and it is difficult to improve the machining accuracy in this case. The jet lubrication mentioned above
It is a method of spraying lubricating oil from a nozzle etc. provided on the side surface of the bearing to both cool and lubricate the inside of the bearing, but it is not so adopted because of its complicated structure, and a large amount of lubricating oil is applied to the bearing. Since it is a method of spraying, there is a problem that resistance is generated in the rotation of the bearing and power loss of the main shaft occurs. As one type of jet lubrication, there is a method of discharging lubricating oil from a nozzle provided on the raceway surface of the inner ring (underrace lubrication), which also serves to cool the inner ring, but this also has a complicated structure and power Since there is a problem of loss and the nozzle is provided on the raceway surface of the inner ring, it is not preferable in terms of rolling life.

【0005】この発明は、これらの課題を解消するもの
であり、主軸軸受の初期剛性を向上させることができ
て、低速から高速までの剛性向上が図れ、かつ構成が簡
単で、動力損失の問題も生じない主軸軸受冷却装置を提
供することを目的とする。
The present invention solves these problems. It is possible to improve the initial rigidity of the main shaft bearing, improve the rigidity from low speed to high speed, and have a simple structure and the problem of power loss. It is an object of the present invention to provide a spindle bearing cooling device that does not occur.

【0006】[0006]

【課題を解決するための手段】この発明は、上記課題を
解消するため、主軸軸受の内輪と主軸との間に冷却用ス
リーブを設け、この冷却用スリーブに冷却油の流路を一
端から他端に貫通させて設けたものである。主軸軸受を
設置したハウジングには、前記冷却用スリーブの流路の
入口へ冷却油を供給する冷却油供給路と、前記流路の出
口から冷却油を回収する冷却油回収路とを設ける。この
構成によると、主軸に軸受内輪を冷却する冷却用スリー
ブを設けたため、次の各作用が得られる。 運転時に最も温度が高くなる内輪より熱を奪うため、
内外輪間の温度差が少なくなる。このため、高速回転時
に予圧過剰とならないように初期予圧を設定しても、初
期予圧が低くなり過ぎず、主軸軸受の初期剛性を高くと
れる。したがって、低速から高速まで主軸の支持剛性が
確保される。 冷却用スリーブに冷却油を流すだけであるため、ジェ
ット潤滑のような軸受の回転の抵抗とならずに冷却が行
える。 軸受自体には冷却油用のノズル等を加工することが不
要であり、構造が簡単である。 最も高温となる内輪より熱を奪うため、熱による潤滑
油の劣化が防がれる。 温度の高くなり易い内輪より熱を奪うため、精度劣化
が防げる。 主軸が冷却されるため、主軸の軸方向の熱膨張が抑制
され、主軸による加工精度が向上する。
In order to solve the above problems, the present invention provides a cooling sleeve between an inner ring of a main shaft bearing and a main shaft, and a cooling oil passage is provided from one end to the other of the cooling sleeve. It is provided by penetrating the end. The housing in which the main shaft bearing is installed is provided with a cooling oil supply passage for supplying cooling oil to the inlet of the passage of the cooling sleeve and a cooling oil recovery passage for collecting cooling oil from the outlet of the passage. According to this configuration, since the cooling sleeve for cooling the inner ring of the bearing is provided on the main shaft, the following actions can be obtained. In order to take heat from the inner ring, which has the highest temperature during driving,
The temperature difference between the inner and outer rings is reduced. Therefore, even if the initial preload is set so that the preload is not excessive at the time of high speed rotation, the initial preload does not become too low and the initial rigidity of the main shaft bearing can be made high. Therefore, the supporting rigidity of the spindle is ensured from low speed to high speed. Since only the cooling oil flows through the cooling sleeve, cooling can be performed without the resistance of rotation of the bearing such as jet lubrication. The bearing itself does not need to be processed with a nozzle for cooling oil, and the structure is simple. Since heat is taken from the inner ring, which has the highest temperature, deterioration of the lubricating oil due to heat can be prevented. Since heat is taken from the inner ring, which tends to become hot, deterioration of accuracy can be prevented. Since the main spindle is cooled, thermal expansion in the axial direction of the main spindle is suppressed, and the machining accuracy of the main spindle is improved.

【0007】冷却用スリーブの流路は、貫通孔であって
も良く、また内径面に形成された螺旋溝であっても良
い。螺旋溝とした場合、冷却用スリーブ内に流路を長く
形成することができ、少ない冷却油量で効率良く冷却で
きる。
The flow path of the cooling sleeve may be a through hole or a spiral groove formed on the inner diameter surface. When the spiral groove is used, the flow path can be formed long in the cooling sleeve, and the cooling can be efficiently performed with a small amount of cooling oil.

【0008】上記構成において、前記主軸の外周に、前
記冷却用スリーブの入口に一端が連通して他端が外径面
に開口した導入路を有する流路入口部材を設け、この流
路入口部材の外径面に内径面が近接する供給路部材を前
記ハウジングに設けても良い。供給路部材には内径面に
前記流路入口部材の導入路の入口部に対面する環状溝を
設け、その溝底にハウジングの冷却油供給路を開口させ
る。このように、径方向に近接する流路入口部材と供給
路部材とを介して冷却油を供給することにより、ハウジ
ングから回転する主軸の冷却用スリーブへの潤滑油の供
給が簡単な構成で行える。また、環状溝を介して供給す
るため、回転位相にかかわらず連続して円滑に冷却油が
供給される。また、前記主軸の外周に、前記冷却用スリ
ーブの出口に一端が連通して他端が外径面に開口した導
出路を有する流路出口部材を設け、この流路出口部材の
外径面に内径面が近接する回収路部材を前記ハウジング
に設けても良い。回収路部材には、内径面に前記流路出
口部材の導出路の出口部に対面する環状溝を設け、溝底
に前記ハウジングの冷却油回収路を開口させる。これに
より、回転する冷却用スリーブから固定のハウジングへ
の冷却油の回収が簡単な構成で行える。
In the above construction, a flow passage inlet member having an introduction passage having one end communicating with the inlet of the cooling sleeve and the other end opening to the outer diameter surface is provided on the outer periphery of the main shaft. The housing may be provided with a supply passage member whose inner diameter surface is close to the outer diameter surface. The supply passage member is provided with an annular groove on the inner diameter surface facing the inlet portion of the introduction passage of the passage inlet member, and the cooling oil supply passage of the housing is opened at the bottom of the groove. As described above, by supplying the cooling oil through the flow path inlet member and the supply path member that are close to each other in the radial direction, the lubricating oil can be supplied from the housing to the cooling sleeve of the rotating main shaft with a simple configuration. . Further, since the oil is supplied through the annular groove, the cooling oil is smoothly and continuously supplied regardless of the rotation phase. Further, on the outer circumference of the main shaft, a flow path outlet member having a lead-out path having one end communicating with the outlet of the cooling sleeve and the other end opening to the outer diameter surface is provided, and the flow path outlet member has an outer diameter surface. A recovery passage member having inner diameter surfaces close to each other may be provided in the housing. The recovery passage member is provided with an annular groove on the inner diameter surface thereof, which faces the outlet of the outlet passage of the passage outlet member, and the cooling oil recovery passage of the housing is opened at the groove bottom. Thus, the cooling oil can be collected from the rotating cooling sleeve to the fixed housing with a simple structure.

【0009】また、上記構成において、前記回収路部材
の内径面における主軸軸受側の端部に、前記流路出口部
材の側面に近接してラビリンスシールを構成する環状突
壁を設けても良い。前記ラビリンスシールにより、軸受
に対するシール効果も得られ、軸受の密封性が増す。ま
た、上記構成において、前記ハウジングに、主軸軸受に
潤滑油を噴出するノズル、およびこのノズルに潤滑油を
供給する潤滑油供給路を設けても良い。
Further, in the above structure, an annular projecting wall forming a labyrinth seal may be provided at an end portion of the inner diameter surface of the recovery passage member on the main shaft bearing side, in proximity to the side surface of the flow passage outlet member. The labyrinth seal also provides a sealing effect on the bearing, and the sealing property of the bearing is increased. In the above structure, the housing may be provided with a nozzle for ejecting lubricating oil to the main shaft bearing and a lubricating oil supply passage for supplying the lubricating oil to the nozzle.

【0010】[0010]

【発明の実施の形態】この発明の一実施形態を図1ない
し図7と共に説明する。この例は、研削盤等の工作機械
におけるスピンドル装置に適用したものであり、主軸1
は、ハウジング2に複列の主軸軸受3を介して支持され
ている。この主軸軸受冷却装置は、両列の主軸軸受3,
3にわたり、内輪3aと主軸1との間に介在させた冷却
用スリーブ4と、その両側に設けた流路入口部材5およ
び流路出口部材6と、これら流路入口部材5および流路
出口部材6に対応してハウジング1の内径面に配置した
供給路部材7および回収路部材8との5つの部品で主に
構成される。供給路部材7および回収路部材8に各々連
通してハウジング2内に冷却油供給路9と冷却油回収路
10とが設けられる。両列の主軸軸受3,3の間にはエ
アオイル潤滑用のノズル付き外輪間座11が配置され
る。ハウジング1内にはこのノズル付き外輪間座11に
連通する潤滑油供給路12と、主軸軸受3,3の並びの
両側から潤滑油や冷却油を回収する油回収路13とが形
成してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. This example is applied to a spindle device in a machine tool such as a grinder, and the spindle 1
Are supported by the housing 2 via double-row main shaft bearings 3. This main shaft bearing cooling device is provided with double-row main shaft bearings 3,
3, the cooling sleeve 4 interposed between the inner ring 3a and the main shaft 1, the flow path inlet member 5 and the flow path outlet member 6 provided on both sides thereof, and the flow path inlet member 5 and the flow path outlet member. 6 is mainly composed of five parts including a supply path member 7 and a recovery path member 8 arranged on the inner diameter surface of the housing 1. A cooling oil supply passage 9 and a cooling oil recovery passage 10 are provided in the housing 2 so as to communicate with the supply passage member 7 and the collection passage member 8, respectively. An outer ring spacer 11 with a nozzle for air-oil lubrication is arranged between the main shaft bearings 3 and 3 in both rows. A lubricating oil supply passage 12 communicating with the outer ring spacer 11 with a nozzle and an oil recovery passage 13 for recovering lubricating oil or cooling oil from both sides of the main shaft bearings 3, 3 are formed in the housing 1. .

【0011】冷却用スリーブ4は、図5(A),(B)
に示すように、軸方向に直線状に貫通する丸孔状の流路
14を、周方向複数箇所に設けたものである。冷却用ス
リーブ4の両端面には円周溝15,16を設け、この円
周溝15,16に流路14を開口させてある。流路14
は、図5(C)のように入口14aから出口14b側へ
向かって外径側へ近づく勾配を有するものとしても良
い。これにより、遠心力によって油の流れが良くなる。
また、丸孔からなる流路14の内径面は、ねじ溝等の螺
旋溝を設けると、表面積が大きくなり、熱の発散効率が
良くなる。
The cooling sleeve 4 is shown in FIGS. 5 (A) and 5 (B).
As shown in (1), the circular hole-shaped flow passages 14 penetrating linearly in the axial direction are provided at a plurality of positions in the circumferential direction. Circumferential grooves 15 and 16 are provided on both end surfaces of the cooling sleeve 4, and the channels 14 are opened in these circumferential grooves 15 and 16. Channel 14
May have a slope approaching the outer diameter side from the inlet 14a toward the outlet 14b as shown in FIG. 5 (C). This improves the oil flow due to the centrifugal force.
Further, the spiral groove such as the screw groove is provided on the inner diameter surface of the flow path 14 formed of the round hole, so that the surface area is increased and the heat dissipation efficiency is improved.

【0012】図1における流路入口部材5は、冷却用ス
リーブ4の流路14の入口14aに一端が連通して他端
が外径面に開口したL形の導入路17を周方向複数箇所
に設けたものである(図4)。流路入口部材5の冷却用
スリーブ側端の外周部には、冷却用スリーブ4の外径面
に嵌合して主軸軸受3の内輪3aの幅面に接する環状位
置決め片5aが設けてある。流路入口部材5の内径面、
および環状位置決め片5aの内径面の基端には、環状の
シール嵌合溝を形成し、Oリング等のシール部材を内部
に設けて主軸1および冷却用スリーブ4の外径面との間
を密封している。環状位置決め片5aの外周には、供給
路部材7の側面に近接してラビリンスシールを構成する
環状の突条5bが形成してある。
The flow path inlet member 5 in FIG. 1 has a plurality of L-shaped introduction paths 17 which are in communication with the entrance 14a of the flow path 14 of the cooling sleeve 4 at one end and open at the other end on the outer diameter surface in the circumferential direction. (Fig. 4). An annular positioning piece 5a fitted to the outer diameter surface of the cooling sleeve 4 and in contact with the width surface of the inner ring 3a of the main shaft bearing 3 is provided on the outer peripheral portion of the end of the flow path inlet member 5 on the side of the cooling sleeve. Inner diameter surface of the flow path inlet member 5,
And, an annular seal fitting groove is formed at the base end of the inner diameter surface of the annular positioning piece 5a, and a seal member such as an O-ring is provided inside to provide a space between the main shaft 1 and the outer diameter surface of the cooling sleeve 4. It is sealed. On the outer periphery of the annular positioning piece 5a, an annular protrusion 5b is formed near the side surface of the supply path member 7 to form a labyrinth seal.

【0013】流路出口部材6は、流路入口部材5と同様
な構成であり、冷却用スリーブ4の流路14の出口14
bに一端が連通して他端が外径面に開口したL形の導出
路18を周方向複数箇所に設けてある(図6)。流路出
口部材6の冷却用スリーブ側端の外周部には、冷却用ス
リーブ4の外径面に嵌合して主軸軸受3の内輪3aの幅
面に接する環状位置決め片6aが設けてある。流路出口
部材6の内径面、および環状位置決め片6aの内径面の
基端には、環状のシール嵌合溝を形成し、Oリング等の
シール部材を内部に設けて主軸1および冷却用スリーブ
4の外径面との間を密封している。
The flow channel outlet member 6 has the same structure as the flow channel inlet member 5, and the outlet 14 of the flow channel 14 of the cooling sleeve 4 is provided.
L-shaped lead-out paths 18 having one end communicating with b and the other end opening to the outer diameter surface are provided at a plurality of circumferential positions (FIG. 6). An annular positioning piece 6a fitted to the outer diameter surface of the cooling sleeve 4 and in contact with the width surface of the inner ring 3a of the main shaft bearing 3 is provided on the outer peripheral portion of the end of the flow passage outlet member 6 on the side of the cooling sleeve. An annular seal fitting groove is formed at the base end of the inner diameter surface of the flow path outlet member 6 and the inner diameter surface of the annular positioning piece 6a, and a seal member such as an O ring is provided inside the main shaft 1 and the cooling sleeve. 4 and the outer diameter surface are sealed.

【0014】流路出口部材6、冷却用スリーブ4、およ
び流路入口部材5は、段付軸状に形成された主軸1の段
部1aよりも先端側の部分にこの順に外嵌させ、先端の
ラビリンスシール用のシールリング19と共に、主軸1
の雄ねじ部に螺着されたナット部材20により、前記段
部1aとの間で締め付けて主軸1に取付けてある。両列
の主軸軸受3,3の内輪3a,3aは、両者の間に介在
させた内輪間座29と共に、流路入口部材5と流路出口
部材6の環状位置決め片5a,6a間に挟み込まれる。
The flow path outlet member 6, the cooling sleeve 4, and the flow path inlet member 5 are externally fitted in this order to a portion of the main shaft 1 formed in a stepped shaft shape on the tip side of the step portion 1a, in this order. Together with the seal ring 19 for the labyrinth seal of
The nut member 20 screwed to the male screw portion of the above is fastened to the main shaft 1 by being tightened between the nut member 20 and the step portion 1a. The inner rings 3a, 3a of the main shaft bearings 3, 3 in both rows are sandwiched between the annular positioning pieces 5a, 6a of the flow path inlet member 5 and the flow path outlet member 6 together with the inner ring spacer 29 interposed therebetween. .

【0015】供給路部材7は、流路入口部材5の外径面
に微小な隙間(例えば数10〜数100ミクロン程度)
を介して内径面が近接するものであり、図3に示すよう
に、内径面に環状溝21が形成されている。環状溝21
は、流路入口部材5の導入路17の入口部に対面するよ
うに形成され、溝底にハウジング2の冷却油供給路9と
連通する貫通孔22が開口している。貫通孔22の供給
路部材外径面の開口周囲には、座繰り部を形成してOリ
ング等の環状のシール材が設けられており、ハウジング
2の内径面との間が密封される。供給路部材7は、外径
部が両側へ鍔状に広がった断面形状とされ、その両側の
鍔状部分の周方向一箇所または複数箇所に、油排出用の
切欠口23,24が形成されている。
The supply passage member 7 has a minute gap (for example, about several tens to several hundreds of microns) on the outer diameter surface of the passage inlet member 5.
The inner diameter surface is close to the inner diameter surface, and an annular groove 21 is formed in the inner diameter surface as shown in FIG. Annular groove 21
Is formed so as to face the inlet portion of the introduction passage 17 of the passage inlet member 5, and a through hole 22 communicating with the cooling oil supply passage 9 of the housing 2 is opened at the groove bottom. An annular seal member such as an O-ring is provided around the opening of the outer diameter surface of the supply path member of the through hole 22, and an annular seal member such as an O-ring is provided to seal the inner diameter surface of the housing 2. The supply passage member 7 has a cross-sectional shape in which the outer diameter portion spreads to both sides in a brim shape, and notches 23 and 24 for oil discharge are formed at one or more circumferential positions of the brim portions on both sides thereof. ing.

【0016】回収路部材8は、供給路部材7と同様に、
流路出口部材6の外径面に微小な隙間を介して内径面が
近接するものであり、図7に示すように、内径面に環状
溝25が形成されている。環状溝25は、流路出口部材
6の導出路18の出口部に対面するように形成され、溝
底にハウジング2の冷却油回収路10と連通する貫通孔
26が開口している。貫通孔26の回収路部材外径面の
開口周囲には、座繰り部を形成してOリング等の環状の
シール材が設けられ、ハウジング1の内径面との間が密
封される。回収路部材8は、外径部が両側へ鍔状に広が
った断面形状とされ、その両側の鍔状部分の周方向一箇
所または複数箇所に、油排出用の切欠口27,28が形
成されている。
The recovery path member 8 is similar to the supply path member 7 in that
The inner diameter surface is close to the outer diameter surface of the flow path outlet member 6 through a minute gap, and as shown in FIG. 7, an annular groove 25 is formed in the inner diameter surface. The annular groove 25 is formed so as to face the outlet portion of the outlet passage 18 of the passage outlet member 6, and a through hole 26 communicating with the cooling oil recovery passage 10 of the housing 2 is opened at the groove bottom. An annular seal member such as an O-ring is formed around the opening of the outer diameter surface of the recovery passage member of the through hole 26 to seal the inner diameter surface of the housing 1. The recovery passage member 8 has a cross-sectional shape in which the outer diameter portion spreads to both sides in a brim shape, and cutouts 27 and 28 for oil discharge are formed at one or more circumferential positions of the brim portions on both sides thereof. ing.

【0017】供給路部材7および回収路部材8は、両列
の軸受3,3における外輪3b,3bの並びの外側に隣
接して配置され、これら軸受外輪3b,3bおよび前記
ノズル付き外輪間座11と共に、ハウジング1の内径面
の段部2aと、ハウジング2の先端のハウジング蓋2A
との間に締め付け状態に取付けられる。供給路部材7と
ハウジング蓋2Aとの間にはラビリンスシール用のシー
ルリング30を介在させる。
The supply passage member 7 and the recovery passage member 8 are arranged adjacent to the outside of the row of the outer rings 3b, 3b in the bearings 3, 3 in both rows, and the bearing outer rings 3b, 3b and the outer ring spacer with nozzle are arranged. 11, a step portion 2a on the inner diameter surface of the housing 1, and a housing lid 2A at the tip of the housing 2
It is installed in a tightened state between and. A seal ring 30 for a labyrinth seal is interposed between the supply passage member 7 and the housing lid 2A.

【0018】両列の主軸軸受3は、アンギュラ玉軸受か
らなり、接触角の傾き方向が互いに対向するように配置
される。ノズル付き外輪間座11には、両側の主軸軸受
3における内輪3aの軌道面に潤滑油を各々噴出するノ
ズル11aが両面の周方向複数箇所に設けられている。
The main shaft bearings 3 in both rows are angular ball bearings, and are arranged so that the inclination angles of the contact angles face each other. The nozzle-equipped outer ring spacer 11 is provided with nozzles 11a for ejecting lubricating oil onto the raceways of the inner ring 3a of the main shaft bearings 3 on both sides at a plurality of circumferential positions on both sides.

【0019】ハウジング2内に設けられた前記潤滑油供
給路12は、軸方向孔の一端に連通して潤滑油入口12
aをハウジング外径面に開口させ、前記軸方向孔の他端
から径方向孔を介してノズル付き外輪間座11内に連通
させたものである。潤滑油入口12aには、潤滑油を搬
送空気と共に送り込む潤滑油供給装置(図示せず)が配
管で接続される。ハウジング2内の油回収路13は、軸
方向孔の一端に連通して油回収口13aをハウジング外
径面に開口させ、供給路部材7および回収路部材8の各
切欠口23,24,27,28と各々対応してハウジン
グ内径面に開口する複数の径方向孔を前記軸方向孔から
分岐させたものである。冷却油供給路9および冷却油回
収路10はいずれもハウジング2に設けた径方向孔から
なり、外径面に冷却油入口9aおよび冷却油出口10a
が各々開口している。 ハウジング2の外径面には、ね
じ溝状の溝部2bが形成され、その外周に冷却ジャケッ
ト(図示せず)が設けられる。
The lubricating oil supply passage 12 provided in the housing 2 communicates with one end of the axial hole, and the lubricating oil inlet 12 is provided.
a is opened on the outer diameter surface of the housing and communicated from the other end of the axial hole into the outer ring spacer 11 with a nozzle through the radial hole. A lubricating oil supply device (not shown) for feeding the lubricating oil together with the carrier air is connected to the lubricating oil inlet 12a by a pipe. The oil recovery passage 13 in the housing 2 communicates with one end of the axial hole to open the oil recovery port 13a on the outer diameter surface of the housing, and the cutouts 23, 24, 27 of the supply passage member 7 and the recovery passage member 8 are formed. , 28 corresponding to each of the plurality of radial holes, which are opened on the inner diameter surface of the housing, are branched from the axial holes. Each of the cooling oil supply passage 9 and the cooling oil recovery passage 10 is composed of a radial hole provided in the housing 2, and has a cooling oil inlet 9a and a cooling oil outlet 10a on the outer diameter surface.
Are open. A threaded groove portion 2b is formed on the outer diameter surface of the housing 2, and a cooling jacket (not shown) is provided on the outer periphery thereof.

【0020】上記構成の作用を説明する。ハウジング2
の冷却油入口9aから供給された冷却油は、図2(A)
に矢印で示すように、冷却油供給路9を介して供給路部
材7の環状溝21に流れ、微小隙間を介して対向する流
路入口部材5に流入する。流入した冷却油は、冷却用ス
リーブ4の流路14を通って流路出口部材6から、回収
路部材8に回収され、冷却油出口10aから排出され
る。この間、冷却用スリーブ4内を流れるときに、主軸
軸受3の内輪3aを冷却する。内輪3aの熱を奪った冷
却油は、ハウジング2の冷却油回収口10aから排出さ
れてオイルクーラ(図示せず)によって冷却された後、
再び冷却油入口9aから供給される。高速回転する主軸
1に前記のように冷却油を供給するときに、供給路部材
7と流路入口部材5との間、および流路出口部材6と回
収路部材8との間には僅かではあるが隙間があるため、
この隙間から冷却油が漏れる。漏れた冷却油は、図2
(B)に矢印で示すように、供給路部材7および回収路
部材8に設けられた切欠口23,24,27,28から
を通りハウジング2外に回収される。潤滑油は、搬送空
気と共に潤滑油入口12aからハウジング2内に供給さ
れ、ノズル付き外輪間座11のノズル11aから両側の
主軸軸受3の内輪3aに噴出して供給される。この軸受
3に供給された潤滑油は、軸受両側の供給路部材7およ
び回収路部材8の切欠口23,27から冷却油と共に回
収される。
The operation of the above configuration will be described. Housing 2
The cooling oil supplied from the cooling oil inlet 9a of FIG.
As indicated by the arrow, the oil flows through the cooling oil supply passage 9 into the annular groove 21 of the supply passage member 7, and then flows into the opposing passage inlet member 5 through the minute gap. The inflowing cooling oil passes through the flow path 14 of the cooling sleeve 4, is recovered from the flow path outlet member 6 to the recovery path member 8, and is discharged from the cooling oil outlet 10a. During this time, the inner ring 3a of the main shaft bearing 3 is cooled when flowing through the cooling sleeve 4. The cooling oil that has deprived the inner ring 3a of heat is discharged from the cooling oil recovery port 10a of the housing 2 and cooled by an oil cooler (not shown).
It is supplied again from the cooling oil inlet 9a. When the cooling oil is supplied to the main shaft 1 that rotates at a high speed as described above, there is a slight gap between the supply passage member 7 and the passage inlet member 5 and between the passage outlet member 6 and the recovery passage member 8. But there is a gap, so
Cooling oil leaks from this gap. The leaked cooling oil is
As shown by the arrow in (B), it is collected outside the housing 2 through the cutouts 23, 24, 27, 28 provided in the supply passage member 7 and the collection passage member 8. The lubricating oil is supplied into the housing 2 from the lubricating oil inlet 12a together with the carrier air, and is jetted and supplied from the nozzle 11a of the outer ring spacer 11 with nozzle to the inner rings 3a of the main shaft bearings 3 on both sides. The lubricating oil supplied to the bearing 3 is collected together with the cooling oil from the cutouts 23 and 27 of the supply path member 7 and the recovery path member 8 on both sides of the bearing.

【0021】このように、主軸軸受3の内輪3aを冷却
するため、内外輪間の温度差が少なくなる。このため、
高速回転時に予圧過剰とならないように初期予圧を設定
しても、初期予圧が低くなり過ぎず、主軸軸受3の初期
剛性を大きくとれる。したがって、低速から高速まで主
軸1の支持剛性が確保される。主軸軸受3の潤滑は、グ
リース潤滑と油潤滑等のいずれでも可能であるが、主軸
1の動力損失を考慮すると、この例のようにエアオイル
潤滑とするか、あるいはオイルミスト潤滑とすることが
好ましい。
Since the inner ring 3a of the main shaft bearing 3 is cooled in this manner, the temperature difference between the inner and outer rings is reduced. For this reason,
Even if the initial preload is set so that the preload is not excessive at the time of high speed rotation, the initial preload does not become too low, and the initial rigidity of the spindle bearing 3 can be increased. Therefore, the supporting rigidity of the spindle 1 is ensured from low speed to high speed. The main shaft bearing 3 can be lubricated by either grease lubrication or oil lubrication, but considering the power loss of the main shaft 1, it is preferable to use air oil lubrication as in this example or oil mist lubrication. .

【0022】冷却用スリーブ4の流路14は、上記実施
形態では軸方向の貫通孔としたが、図8〜図11に示し
た例のように、冷却用スリーブ4の内径面に形成した螺
旋溝であっても良い。溝断面は、同図の例のような角溝
状としても、V溝状等としても良い。流路入口部材5お
よび流路出口部材6は、この例では内径面を段付き面に
形成し、その大径部5c,6cに螺旋溝からなる流路1
4の両端を開口させてある。このように、流路14を螺
旋溝とすることで、冷却用スリーブ4内に流路14を長
く形成することができ、少ない冷却油量で効率良く冷却
できる。図8の例における他の構成,効果は図1の例と
同じである。
The flow passage 14 of the cooling sleeve 4 is a through hole in the axial direction in the above embodiment, but as shown in the examples shown in FIGS. 8 to 11, a spiral formed on the inner diameter surface of the cooling sleeve 4. It may be a groove. The cross section of the groove may be in the shape of a square groove as in the example of FIG. In this example, the flow path inlet member 5 and the flow path outlet member 6 are formed with a stepped inner diameter surface, and the large diameter portions 5c and 6c have spiral grooves formed in the flow path 1 respectively.
Both ends of 4 are opened. As described above, by forming the flow passage 14 as the spiral groove, the flow passage 14 can be formed long in the cooling sleeve 4, and the cooling can be efficiently performed with a small amount of cooling oil. Other configurations and effects in the example of FIG. 8 are the same as those of the example of FIG.

【0023】また、図12に示すように、回収路部材8
の内径面における主軸軸受側の端部に、流路出口部材6
の側面に近接してラビリンスシールを構成する環状突壁
8bを設けも良い。この例では、流路出口部材6の側面
外周部に環状凹部6bを形成し、この環状凹部6bに前
記環状突壁8bを遊嵌させている。このようにラビリン
スシールを構成することより、この主軸軸受冷却装置が
主軸軸受3のさらなるシールと兼ね、密封性が増す。こ
の例におけるその他の構成,効果は図1の例と同じであ
る。
Further, as shown in FIG. 12, the recovery path member 8
At the end of the inner diameter surface of the main shaft bearing side, the flow path outlet member 6
An annular protruding wall 8b forming a labyrinth seal may be provided adjacent to the side surface of the. In this example, an annular recess 6b is formed on the side surface outer peripheral portion of the flow path outlet member 6, and the annular projection wall 8b is loosely fitted in the annular recess 6b. By configuring the labyrinth seal in this manner, the main shaft bearing cooling device also serves as a further seal for the main shaft bearing 3, and the hermeticity is increased. Other configurations and effects in this example are the same as those in the example of FIG.

【0024】[0024]

【発明の効果】この発明の主軸軸受冷却装置は、主軸軸
受の内輪と主軸との間に冷却用スリーブを設け、この冷
却用スリーブに冷却油の流路を設けたため、主軸軸受の
初期剛性を向上させることができて、低速から高速まで
の剛性向上が図れ、しかも構成が簡単で、動力損失の問
題も生じないという効果が得られる。冷却用スリーブの
流路をねじ溝状とした場合は、流路を長くして少ない冷
却油で効果的な冷却が行える。主軸とハウジングとの間
に、互いに径方向に近接する流路入口部材および供給路
部材と、流路出口部材および回収路部材とを設けた場合
は、簡単な構成で固定のハウジングと回転する冷却用ス
リーブとの間の冷却油の供給や回収が行える。前記流路
出口部材と回収路部材との間にラビリンスシールを構成
する環状突壁を設けた場合は、冷却済みの冷却油が軸受
に流れることが防止されると共に、軸受に対するシール
効果も向上する。また、この主軸軸受冷却装置は、主軸
軸受に潤滑油噴出ノズルから噴出させる構成と組み合わ
せて使用した場合に、効果的な冷却および潤滑が行われ
る。
According to the spindle bearing cooling device of the present invention, since the cooling sleeve is provided between the inner ring of the spindle bearing and the spindle, and the cooling oil passage is provided in the cooling sleeve, the initial rigidity of the spindle bearing is improved. The advantages are that the rigidity can be improved from low speed to high speed, the structure is simple, and the problem of power loss does not occur. When the flow path of the cooling sleeve is formed in a thread groove, the flow path can be lengthened to effectively cool with a small amount of cooling oil. When a flow path inlet member and a supply path member and a flow path outlet member and a recovery path member that are radially close to each other are provided between the main shaft and the housing, a cooling that rotates with a fixed housing with a simple configuration Cooling oil can be supplied to and collected from the sleeve. When the annular projecting wall forming the labyrinth seal is provided between the flow path outlet member and the recovery path member, the cooled cooling oil is prevented from flowing to the bearing, and the sealing effect on the bearing is also improved. . Further, when the main shaft bearing cooling device is used in combination with the structure in which the main shaft bearing is jetted from the lubricating oil jet nozzle, effective cooling and lubrication are performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施形態にかかる主軸軸受冷却装
置の断面図である。
FIG. 1 is a sectional view of a spindle bearing cooling device according to an embodiment of the present invention.

【図2】その油流経路の説明図である。FIG. 2 is an explanatory diagram of the oil flow path.

【図3】(A),(B)は各々同主軸軸受冷却装置の供
給路部材の断面図および正面図である。
3A and 3B are a sectional view and a front view of a supply passage member of the same spindle bearing cooling device, respectively.

【図4】(A),(B)は各々同じく流路入口部材の断
面図および正面図である。
4A and 4B are a sectional view and a front view of a flow path inlet member, respectively.

【図5】(A)〜(C)は、各々同じく冷却用スリーブ
の正面図および断面図と、冷却用スリーブの変形例の部
分断面である。
5A to 5C are respectively a front view and a sectional view of a cooling sleeve, and a partial cross section of a modified example of the cooling sleeve.

【図6】(A),(B)は各々その流路出口部材の正面
図および断面図である。
6A and 6B are a front view and a cross-sectional view of a flow path outlet member, respectively.

【図7】(A),(B)は各々その回収路部材の断面図
および正面図である。
7 (A) and 7 (B) are a cross-sectional view and a front view of the recovery path member, respectively.

【図8】この発明の他の実施形態にかかる主軸軸受冷却
装置の断面図である。
FIG. 8 is a sectional view of a spindle bearing cooling device according to another embodiment of the present invention.

【図9】その冷却用スリーブの正面図および断面図であ
る。
FIG. 9 is a front view and a sectional view of the cooling sleeve.

【図10】その流路入口部材の正面図および断面図であ
る。
FIG. 10 is a front view and a cross-sectional view of the flow path inlet member.

【図11】その流路出口部材の正面図および断面図であ
る。
FIG. 11 is a front view and a cross-sectional view of the flow path outlet member.

【図12】この発明のさらに他の実施形態にかかる主軸
軸受冷却装置の断面図である。
FIG. 12 is a sectional view of a spindle bearing cooling device according to still another embodiment of the present invention.

【図13】従来例の断面図である。FIG. 13 is a sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

1…主軸 2…ハウジング 3…主軸軸受 3a…内輪 4…冷却用スリーブ 5…流路入口部材 6…流路出口部材 7…供給路部材 8…回収路部材 9…冷却油供給路 10…冷却油回収路 11a…ノズル 12…潤滑油供給路 14…流路 DESCRIPTION OF SYMBOLS 1 ... Main shaft 2 ... Housing 3 ... Main shaft bearing 3a ... Inner ring 4 ... Cooling sleeve 5 ... Flow path inlet member 6 ... Flow path outlet member 7 ... Supply path member 8 ... Recovery path member 9 ... Cooling oil supply path 10 ... Cooling oil Recovery path 11a ... Nozzle 12 ... Lubricating oil supply path 14 ... Flow path

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 主軸軸受の内輪と主軸との間に冷却用ス
リーブを設け、この冷却用スリーブに冷却油の流路を一
端から他端に貫通させて設け、前記主軸軸受を設置した
ハウジングに、前記冷却用スリーブの流路の入口へ冷却
油を供給する冷却油供給路と、前記流路の出口から冷却
油を回収する冷却油回収路とを設けた主軸軸受冷却装
置。
1. A cooling sleeve is provided between an inner ring of a main shaft bearing and a main shaft, and a cooling oil passage is provided through the cooling sleeve from one end to the other end, and a housing in which the main shaft bearing is installed is provided. A spindle bearing cooling device provided with a cooling oil supply passage for supplying cooling oil to the inlet of the passage of the cooling sleeve and a cooling oil recovery passage for collecting the cooling oil from the outlet of the passage.
【請求項2】 前記冷却用スリーブの流路が、内径面に
形成された螺旋溝である請求項1記載の主軸軸受冷却装
置。
2. The spindle bearing cooling device according to claim 1, wherein the flow path of the cooling sleeve is a spiral groove formed on an inner diameter surface.
【請求項3】 前記主軸の外周に、前記冷却用スリーブ
の入口に一端が連通して他端が外径面に開口した導入路
を有する流路入口部材を設け、この流路入口部材の外径
面に内径面が近接する供給路部材を前記ハウジングに設
け、前記供給路部材の内径面に前記流路入口部材の導入
路の入口部に対面する環状溝を設け、この環状溝の溝底
に前記ハウジングの冷却油供給路を開口させた請求項1
または請求項2記載の主軸軸受冷却装置。
3. A flow passage inlet member having an introduction passage, one end of which communicates with an inlet of the cooling sleeve and the other end of which is opened to an outer diameter surface, is provided on an outer periphery of the main shaft, and the outside of the flow passage inlet member is provided. A supply passage member whose inner diameter surface is close to the radial surface is provided in the housing, and an annular groove facing the inlet portion of the introduction passage of the flow passage inlet member is provided on the inner diameter surface of the supply passage member, and the groove bottom of the annular groove is provided. The cooling oil supply passage of the housing is opened in the housing.
Alternatively, the spindle bearing cooling device according to claim 2.
【請求項4】 前記主軸の外周に、前記冷却用スリーブ
の出口に一端が連通して他端が外径面に開口した導出路
を有する流路出口部材を設け、この流路出口部材の外径
面に内径面が近接する回収路部材を前記ハウジングに設
け、前記回収路部材の内径面に前記流路出口部材の導出
路の出口部に対面する環状溝を設け、この環状溝の溝底
に前記ハウジングの冷却油回収路を開口させた請求項1
または請求項2または請求項3記載の主軸軸受冷却装
置。
4. A flow path outlet member is provided on the outer periphery of the main shaft, the flow path outlet member having a lead-out path having one end communicating with the exit of the cooling sleeve and the other end opening to the outer diameter surface. A recovery passage member whose inner diameter surface is close to the radial surface is provided in the housing, and an annular groove facing the outlet portion of the outlet passage of the flow passage outlet member is provided on the inner diameter surface of the recovery passage member. The cooling oil recovery passage of the housing is opened in the housing.
Alternatively, the spindle bearing cooling device according to claim 2 or claim 3.
【請求項5】 前記回収路部材の内径面における前記主
軸軸受側の端部に、前記流路出口部材の側面に近接して
ラビリンスシールを構成する環状突壁を設けた請求項4
記載の主軸軸受冷却装置。
5. An annular projecting wall forming a labyrinth seal in the vicinity of the side surface of the flow path outlet member is provided at an end portion of the inner diameter surface of the recovery passage member on the spindle bearing side.
Spindle bearing cooling device described.
【請求項6】 前記ハウジングに、前記主軸軸受に潤滑
油を噴出するノズル、およびこのノズルに潤滑油を供給
する潤滑油供給路を設けた請求項1ないし請求項5のい
ずれかに記載の主軸軸受冷却装置。
6. The main shaft according to claim 1, wherein the housing is provided with a nozzle for ejecting lubricating oil to the main shaft bearing, and a lubricating oil supply passage for supplying the lubricating oil to the nozzle. Bearing cooling device.
JP8161106A 1996-05-31 1996-05-31 Main spindle bearing cooling device Pending JPH09317778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8161106A JPH09317778A (en) 1996-05-31 1996-05-31 Main spindle bearing cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8161106A JPH09317778A (en) 1996-05-31 1996-05-31 Main spindle bearing cooling device

Publications (1)

Publication Number Publication Date
JPH09317778A true JPH09317778A (en) 1997-12-09

Family

ID=15728727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8161106A Pending JPH09317778A (en) 1996-05-31 1996-05-31 Main spindle bearing cooling device

Country Status (1)

Country Link
JP (1) JPH09317778A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397972B1 (en) * 2000-12-19 2003-09-13 현대자동차주식회사 Spindle cooling device of machine tools
KR100397973B1 (en) * 2000-12-19 2003-09-19 현대자동차주식회사 Spindle cooling device of machine tools
WO2004011817A1 (en) * 2002-07-29 2004-02-05 Nsk Ltd. Rolling bearing, grease replenishing device, main shaft device, grease replenishing method, and grease replenishing program
GB2421054A (en) * 2004-12-08 2006-06-14 Boc Group Plc Vacuum pump with cooled shaft seal surface and bearing
CN100455407C (en) * 2002-07-29 2009-01-28 日本精工株式会社 Rolling bearings, spindle units
KR101012841B1 (en) * 2008-06-18 2011-02-08 주식회사 포스코 Bearing Block Cooling Device of Annealing Furnace Strip Roll
WO2011092887A1 (en) * 2010-01-29 2011-08-04 三菱重工業株式会社 Main shaft device for boring machine
DE102011075965A1 (en) 2010-05-17 2011-11-17 Okuma Corporation Cooling structure for a main spindle of a machine tool
CN103730976A (en) * 2013-11-30 2014-04-16 南阳防爆集团股份有限公司 Thin oil lubrication bearing device of motor for coal mine main ventilator
DE202014101721U1 (en) * 2014-04-11 2015-07-14 Paul Müller GmbH & Co. KG Unternehmensbeteiligungen Spindle for a machine tool with cooling channel
CN106763218A (en) * 2017-03-30 2017-05-31 四川高博环保工程有限公司 It is a kind of for it is interior heating hollow shaft equipment cooling shaft cover
CN106812814A (en) * 2017-03-30 2017-06-09 四川高博环保工程有限公司 It is a kind of for it is interior heating hollow shaft equipment the direct-cooled bearing block of oil cooling type
JP2018069407A (en) * 2016-11-01 2018-05-10 日本精工株式会社 Spindle device
CN108481588A (en) * 2018-05-28 2018-09-04 台州职业技术学院 A kind of spindle cooling device of multi-line cutting machine
CN111765175A (en) * 2020-05-22 2020-10-13 浙江珂勒曦动力设备股份有限公司 A bearing cooling structure
CN112476051A (en) * 2020-11-20 2021-03-12 上海第二工业大学 Electricity main shaft heat abstractor
TWI765089B (en) * 2017-09-01 2022-05-21 芬蘭商磨卡有限公司 Spindle bearing cooling arrangement in an abrading apparatus
WO2023073796A1 (en) * 2021-10-26 2023-05-04 株式会社ジェイテクト Spindle device
CN117515043A (en) * 2023-10-23 2024-02-06 广州市昊志机电股份有限公司 Bearing lubrication structure, high-speed motorized spindle and bearing lubrication method
CN117662623A (en) * 2023-12-08 2024-03-08 哈尔滨工程大学 Quick heat radiation structure of high-speed heavy-duty bearing

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397972B1 (en) * 2000-12-19 2003-09-13 현대자동차주식회사 Spindle cooling device of machine tools
KR100397973B1 (en) * 2000-12-19 2003-09-19 현대자동차주식회사 Spindle cooling device of machine tools
WO2004011817A1 (en) * 2002-07-29 2004-02-05 Nsk Ltd. Rolling bearing, grease replenishing device, main shaft device, grease replenishing method, and grease replenishing program
CN100455407C (en) * 2002-07-29 2009-01-28 日本精工株式会社 Rolling bearings, spindle units
US8753016B2 (en) 2002-07-29 2014-06-17 Nsk Ltd. Rolling bearing, grease supply system, spindle unit, grease supply method, and grease supply program
GB2421054A (en) * 2004-12-08 2006-06-14 Boc Group Plc Vacuum pump with cooled shaft seal surface and bearing
KR101012841B1 (en) * 2008-06-18 2011-02-08 주식회사 포스코 Bearing Block Cooling Device of Annealing Furnace Strip Roll
JP2011156597A (en) * 2010-01-29 2011-08-18 Mitsubishi Heavy Ind Ltd Main shaft device for boring machine
CN102596493A (en) * 2010-01-29 2012-07-18 三菱重工业株式会社 Main shaft device for boring machine
EP2529883A4 (en) * 2010-01-29 2013-06-19 Mitsubishi Heavy Ind Ltd Main shaft device for boring machine
WO2011092887A1 (en) * 2010-01-29 2011-08-04 三菱重工業株式会社 Main shaft device for boring machine
CN102248445A (en) * 2010-05-17 2011-11-23 大隈株式会社 Cooling Structure For Machine Tool Main Spindle
JP2011240428A (en) * 2010-05-17 2011-12-01 Okuma Corp Cooling structure of machine tool main shaft
US8944731B2 (en) 2010-05-17 2015-02-03 Okuma Corporation Cooling structure for machine tool main spindle
DE102011075965A1 (en) 2010-05-17 2011-11-17 Okuma Corporation Cooling structure for a main spindle of a machine tool
DE102011075965B4 (en) 2010-05-17 2022-11-10 Okuma Corporation Cooling structure for a main spindle of a machine tool
CN103730976A (en) * 2013-11-30 2014-04-16 南阳防爆集团股份有限公司 Thin oil lubrication bearing device of motor for coal mine main ventilator
DE202014101721U1 (en) * 2014-04-11 2015-07-14 Paul Müller GmbH & Co. KG Unternehmensbeteiligungen Spindle for a machine tool with cooling channel
EP2933056A1 (en) * 2014-04-11 2015-10-21 Paul Müller GmbH & Co. KG Unternehmensbeteiligungen Spindle for a machine tool with cooling channel
JP2018069407A (en) * 2016-11-01 2018-05-10 日本精工株式会社 Spindle device
CN106763218A (en) * 2017-03-30 2017-05-31 四川高博环保工程有限公司 It is a kind of for it is interior heating hollow shaft equipment cooling shaft cover
CN106812814A (en) * 2017-03-30 2017-06-09 四川高博环保工程有限公司 It is a kind of for it is interior heating hollow shaft equipment the direct-cooled bearing block of oil cooling type
TWI765089B (en) * 2017-09-01 2022-05-21 芬蘭商磨卡有限公司 Spindle bearing cooling arrangement in an abrading apparatus
US11638977B2 (en) 2017-09-01 2023-05-02 Mirka Ltd. Spindle bearing cooling arrangement in an abrading apparatus
CN108481588A (en) * 2018-05-28 2018-09-04 台州职业技术学院 A kind of spindle cooling device of multi-line cutting machine
CN108481588B (en) * 2018-05-28 2024-05-17 台州职业技术学院 Main shaft cooling system of multi-wire saw
CN111765175A (en) * 2020-05-22 2020-10-13 浙江珂勒曦动力设备股份有限公司 A bearing cooling structure
CN112476051A (en) * 2020-11-20 2021-03-12 上海第二工业大学 Electricity main shaft heat abstractor
WO2023073796A1 (en) * 2021-10-26 2023-05-04 株式会社ジェイテクト Spindle device
CN117515043A (en) * 2023-10-23 2024-02-06 广州市昊志机电股份有限公司 Bearing lubrication structure, high-speed motorized spindle and bearing lubrication method
CN117662623A (en) * 2023-12-08 2024-03-08 哈尔滨工程大学 Quick heat radiation structure of high-speed heavy-duty bearing

Similar Documents

Publication Publication Date Title
JPH09317778A (en) Main spindle bearing cooling device
US10280980B2 (en) Cooling structure for bearing device
US4400040A (en) Tapered roller bearing with improved lubricating means
JP2008286270A (en) Lubricating device for roller bearing
JP4836852B2 (en) Angular contact ball bearing lubrication system
JP5183059B2 (en) Multi-row rolling bearing device
JP2014062618A (en) Lubricating structure of bearing device
JP2002054643A (en) Air oil lubricating structure of rolling bearing
JP2009138896A (en) Rolling bearing and its lubrication method
JP2003232339A (en) Taper land thrust bearing and rotary machine equipped therewith
JPH11336767A (en) Cylindrical roller bearing
JPH06264934A (en) Bearing lubrication mechanism of main shaft device
US20080063331A1 (en) Lubricating Structure Of Rolling Bearing
JP2010090993A (en) Bearing unit
JP2009150559A (en) Lubricating device of rolling bearing
JP7340445B2 (en) Spindle device
JP2503488Y2 (en) Bearing lubricator
JPS61116123A (en) Bearing
JPH10274244A (en) Rolling bearing for supporting high speed rotary shaft
JPS637251A (en) Structure for cooling spindle
JP2008082497A (en) Lubricating device of roll bearing
JP2008082502A (en) Lubricating device of rolling bearing
JP6434094B2 (en) Lubrication structure of bearing device
JP2008082500A (en) Lubricating device of rolling bearing
JPH0435545Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404