JPH09313905A - Polysulfone porous separation membrane - Google Patents
Polysulfone porous separation membraneInfo
- Publication number
- JPH09313905A JPH09313905A JP15314596A JP15314596A JPH09313905A JP H09313905 A JPH09313905 A JP H09313905A JP 15314596 A JP15314596 A JP 15314596A JP 15314596 A JP15314596 A JP 15314596A JP H09313905 A JPH09313905 A JP H09313905A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- separation membrane
- polysulfone
- porous
- porous separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
(57)【要約】
【課題】分離膜22の表面には平均孔径0.01-0.05μmの
範囲の最小孔径層を有し、非対称構造を有し、膜22が多
孔性補強シート21に投錨状態で接合し補強されているこ
とにより、サブミクロンオーダーの菌体や微粒子及び分
子量100万オーダーの高分子物質を効率的に分離・除去
し、膜寿命が長く、優れた背圧強度を有し、逆圧洗浄が
適用可能な平膜型の多孔質分離膜20を提供する。
【解決手段】ポリスルホンをN−メチル−2ピロリドン
とジエチレングリコール及びホルムアミドの混合溶媒に
加熱溶解し、均一な製膜溶液を得、これをポリエステル
製不織布にロールコーターにより塗布し、相対湿度25%,
温度30℃雰囲気中を製膜速度を変えることによってミク
ロ相分離を生じさせた後、35℃の凝固水槽中に浸漬して
脱溶媒、凝固させ、しかる後水洗槽で残存溶媒を洗浄除
去することによりポリスルホン多孔質分離膜を得る。
(57) Abstract: The surface of a separation membrane (22) has a minimum pore diameter layer with an average pore diameter in the range of 0.01-0.05 μm, has an asymmetric structure, and the membrane (22) is anchored to the porous reinforcing sheet (21). By being joined and reinforced, it effectively separates and removes submicron-order bacterial cells and fine particles and polymer substances with a molecular weight of 1 million order, and has a long membrane life and excellent back pressure strength. Provided is a flat membrane type porous separation membrane 20 to which pressure washing can be applied. SOLUTION: Polysulfone is heated and dissolved in a mixed solvent of N-methyl-2pyrrolidone, diethylene glycol and formamide to obtain a uniform film-forming solution, which is applied to a polyester non-woven fabric by a roll coater to obtain a relative humidity of 25%,
After the micro-phase separation is generated by changing the film forming speed in the atmosphere at a temperature of 30 ° C, it is immersed in a coagulation water tank at 35 ° C for desolvation and coagulation, and then the residual solvent is washed off in a water washing tank. To obtain a polysulfone porous separation membrane.
Description
【0001】[0001]
【発明の属する技術分野】本発明は多孔質分離膜に関す
るものであり、食品工業におけるアルコール飲料や果汁
飲料等の除菌、除濁、除蛋白質、半導体製造工業におけ
る超純水の製造、医薬品工業における無菌水の製造、各
種工業排水、ビル等の建築物排水、下水の除濁、河川
水、かん水、海水の逆浸透法による脱塩の前処理などに
用いられ、サブミクロンオーダーから分子量100万オ
ーダーの菌体や微粒子及び高分子物質を効率良く分離・
除去し、且つ機械的強度に優れた精密濾過または限外濾
過用の多孔質分離膜に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous separation membrane, for sterilization, turbidity removal and protein removal of alcoholic beverages and fruit juice beverages in the food industry, ultrapure water production in the semiconductor manufacturing industry, pharmaceutical industry. It is used for the production of aseptic water, various industrial wastewater, wastewater for buildings such as buildings, sewage turbidity, pretreatment for desalination by reverse osmosis of river water, brine, seawater, etc. Efficiently separates order bacterial cells, fine particles, and polymeric substances
The present invention relates to a porous separation membrane for microfiltration or ultrafiltration that has been removed and is excellent in mechanical strength.
【0002】[0002]
【従来の技術】従来、上記諸工業分野で用いられている
多孔質分離膜としては、セルロースエステル、ポリアミ
ド、ポリイミド、ポリスルホン、ポリフルオロカーボ
ン、ポリエチレン、ポリプロピレン、ポリビニルアルコ
ール、ポリアクリロニトリル等の高分子を素材とするも
のなどが挙げられる(例えば特開昭48−32166号
公報、特開昭58−146408号公報、特開昭61−
222505号公報、特開昭56−154051号公
報、特開昭57−66114号公報、特開昭52−15
627号公報、特開昭58−45239号公報、特開昭
48−86163号公報)。これらのうち、耐熱性、耐
薬品性、及びコスト面からポリスルホンが多孔質分離膜
の素材として最も好適に用いられている。2. Description of the Related Art Conventionally, as a porous separation membrane used in various industrial fields, polymers such as cellulose ester, polyamide, polyimide, polysulfone, polyfluorocarbon, polyethylene, polypropylene, polyvinyl alcohol and polyacrylonitrile are used as raw materials. And the like (for example, JP-A-48-32166, JP-A-58-146408, JP-A-61-161).
222505, JP 56-154051, JP 57-66114, and JP 52-15.
627, JP-A-58-45239, JP-A-48-86163). Among these, polysulfone is most preferably used as the material for the porous separation membrane in terms of heat resistance, chemical resistance, and cost.
【0003】このような多孔質分離膜は、膜の表面及び
内部の孔径が実質的に変化せず均質構造のいわゆる対称
膜と、膜厚方向に孔径が連続的又は不連続的に変化し、
膜の一方の表面又は両表面に最小孔径層を有するいわゆ
る非対称膜と呼ばれる構造とに分類される。両構造の膜
とも一長一短があり、一般に対称膜では目詰りしやすく
濾過寿命が短い場合が多く、一方、非対称膜では最小孔
径層が表面にあるためひだ織り加工などのモジュール化
の際に膜面が傷付きやすく分離・除去性能が低下するな
どの問題がある。Such a porous separation membrane has a so-called symmetrical membrane having a homogeneous structure in which the pore diameters on the surface and inside of the membrane do not substantially change, and the pore diameter changes continuously or discontinuously in the film thickness direction,
It is classified into a so-called asymmetric membrane having a minimum pore size layer on one or both surfaces of the membrane. Both membranes have advantages and disadvantages, and in general, symmetric membranes tend to be clogged and often have a short filtration life.On the other hand, asymmetric membranes have a minimum pore size layer on the surface, so the membrane surface is not suitable for modularization such as pleating. However, there is a problem that it is easily scratched and the separation / removal performance deteriorates.
【0004】これらの問題を改良したものとして、最小
孔径層が膜厚方向の内部に存在する非対称構造の膜が提
案されている。たとえば特開昭62−27006号公報
によれば、この膜は中空糸膜の製造方法として一般に用
いられているドライウェット法を応用した製膜法であ
り、製膜原液を流延してから凝固液に浸漬するまでの間
の空気中での溶媒の蒸発と雰囲気からの非溶媒の吸収量
を温度、湿度及び風量によって適度に制御することによ
って得られることが開示されている。この膜は濾過寿命
が長く、膜表面の欠損によっても分離性能が劣化し難
く、プリーツ型モジュール等いわゆる全量濾過方式に用
いられる精密濾過膜としては優れた膜といえる。As a solution to these problems, a film having an asymmetric structure in which a layer having the smallest pore size exists inside in the film thickness direction has been proposed. For example, according to Japanese Patent Application Laid-Open No. 62-27006, this membrane is a membrane forming method to which a dry-wet method generally used as a method for producing a hollow fiber membrane is applied. It is disclosed that it is obtained by appropriately controlling the evaporation of the solvent in the air and the absorption amount of the non-solvent from the atmosphere until the liquid is immersed in the liquid, by controlling the temperature, the humidity and the air flow. This membrane has a long filtration life, and its separation performance does not easily deteriorate even when the membrane surface is defective, and it can be said that this membrane is excellent as a microfiltration membrane used in a so-called total filtration system such as a pleated module.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記膜
を濾過方向と直角に被処理液(原液)を流すクロスフロ
ー濾過方式で用いる場合には、膜表面に最小孔径層が無
いためにクロスフローによる目詰り抑制効果や、いわゆ
る濃度分極層を小さくする効果が充分に得られず、必ず
しも効率的な濾過寿命の長い膜とは言い難い。However, when the above-mentioned membrane is used in a cross-flow filtration system in which the liquid to be treated (stock solution) is flowed at a right angle to the filtration direction, there is no minimum pore size layer on the surface of the membrane, so that cross-flow The effect of suppressing clogging and the effect of reducing the so-called concentration polarization layer are not sufficiently obtained, and it is not necessarily an efficient membrane having a long filtration life.
【0006】また、特開昭62−27006号公報に開
示されているような補強支持体がない平膜では、円盤状
の支持板や枠体の両面に平膜を貼り付けた回転円盤型モ
ジュールや浸漬型平膜モジュールのように膜自体の機械
的強度が特に必要なモジュール形態には適用が困難であ
る。さらに、上記モジュール形態に用いられる膜には、
中空糸膜の効果的洗浄方法の一つとして良く用いられて
いる逆圧洗浄が可能な背圧強度に優れた平膜が、近年強
く望まれている。Further, in a flat membrane without a reinforcing support as disclosed in Japanese Patent Laid-Open No. 62-27006, a rotary disc type module in which flat membranes are attached to both sides of a disc-shaped support plate or frame. It is difficult to apply to a module type in which the mechanical strength of the membrane itself is particularly required, such as an immersion type flat membrane module. Furthermore, the membrane used in the above module form has
In recent years, there has been a strong demand for a flat membrane excellent in back pressure strength that can be back-pressure washed, which is often used as one of effective cleaning methods for hollow fiber membranes.
【0007】本発明は、前記従来の問題を解決するた
め、サブミクロンオーダーの菌体や微粒子及び分子量1
00万オーダーの高分子物質を効率的に分離・除去し、
膜寿命の長い多孔質分離膜を提供することを第1の目的
とする。また、本発明の第2の目的は、優れた背圧強度
を有し、逆圧洗浄が適用可能な平膜型の多孔質分離膜を
提供することにある。In order to solve the above-mentioned conventional problems, the present invention has submicron-order bacterial cells and fine particles and a molecular weight of 1.
Efficiently separates and removes polymer substances of the order of, 000,000,
A first object is to provide a porous separation membrane having a long membrane life. A second object of the present invention is to provide a flat membrane type porous separation membrane having excellent back pressure strength and capable of applying back pressure washing.
【0008】[0008]
【課題を解決するための手段】前記目的を達成するた
め、本発明のポリスルホン多孔質分離膜は、多孔性補強
シートの表面に実質的に分離機能を有する膜が存在する
ポリスルホン多孔質分離膜において、前記膜の表面には
平均孔径0.01〜0.05μmの範囲の最小孔径層を
有し、表面から厚み方向に連続的に孔径が拡大する非対
称構造を有し、前記膜が多孔性補強シートに投錨状態で
接合し補強されていることを特徴とする。この構成によ
り、サブミクロンオーダーの菌体や微粒子及び分子量1
00万オーダーの高分子物質を効率的に分離・除去し、
膜寿命の長い多孔質分離膜を実現できる。また、優れた
背圧強度を有し、逆圧洗浄が適用可能な平膜型の多孔質
分離膜を実現できる。In order to achieve the above object, the polysulfone porous separation membrane of the present invention is a polysulfone porous separation membrane in which a membrane having substantially a separating function is present on the surface of a porous reinforcing sheet. The surface of the membrane has a minimum pore diameter layer having an average pore diameter in the range of 0.01 to 0.05 μm, has an asymmetric structure in which the pore diameter continuously expands in the thickness direction from the surface, and the membrane has porous reinforcement. It is characterized by being joined to the seat in an anchored state and reinforced. With this configuration, submicron-order cells and particles and molecular weight of 1
Efficiently separates and removes polymer substances of the order of, 000,000,
A porous separation membrane having a long membrane life can be realized. Further, it is possible to realize a flat membrane type porous separation membrane having excellent back pressure strength and capable of applying back pressure washing.
【0009】前記本発明のポリスルホン多孔質分離膜に
おいては、多孔性補強シートが不織布であって、厚みが
0.08〜0.15mmの範囲であり、かつ密度が0.
5〜0.8g/cm3 の範囲であることが好ましい。In the polysulfone porous separation membrane of the present invention, the porous reinforcing sheet is a nonwoven fabric, the thickness is in the range of 0.08 to 0.15 mm, and the density is 0.
It is preferably in the range of 5 to 0.8 g / cm 3 .
【0010】また前記本発明のポリスルホン多孔質分離
膜においては、ポリスルホン多孔質分離膜の背圧強度
が、2kg/cm2 以上であることが好ましい。In the polysulfone porous separation membrane of the present invention, the back pressure strength of the polysulfone porous separation membrane is preferably 2 kg / cm 2 or more.
【0011】[0011]
【発明の実施の形態】以下図面を用いて本発明の実施の
形態を説明する。図1は本発明の一実施の形態のポリス
ルホン多孔質分離膜を説明する断面図である。図1にお
いて、多孔性補強シート21の表面に実質的に分離機能
を有する膜22が密着一体化されて存在している。また
膜22を構成する樹脂成分の一部が、多孔性補強シート
21に投錨状態で接合し補強されている。このポリスル
ホン多孔質分離膜20は、最小孔径層が膜表面に存在
し、その平均孔径が通常の精密濾過膜より1オーダー小
さい0.01〜0.05μmの範囲であり、限外濾過膜
に近い表面孔径を有している。このため、サブミクロン
オーダーの菌体や微粒子をほぼ完全に膜表面で阻止で
き、クロスフロー濾過方式では目詰りが生じにくく安定
した濾過性能が維持できる。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view illustrating a polysulfone porous separation membrane according to an embodiment of the present invention. In FIG. 1, the membrane 22 having a substantially separating function is present in close contact with the surface of the porous reinforcing sheet 21. Further, a part of the resin component forming the film 22 is joined to the porous reinforcing sheet 21 in an anchored state to be reinforced. This polysulfone porous separation membrane 20 has a minimum pore diameter layer on the membrane surface, and its average pore diameter is in the range of 0.01 to 0.05 μm, which is one order smaller than that of an ordinary microfiltration membrane, and is close to an ultrafiltration membrane. It has a surface pore size. Therefore, submicron-order bacterial cells and fine particles can be almost completely blocked on the membrane surface, and clogging is less likely to occur in the cross-flow filtration method, and stable filtration performance can be maintained.
【0012】また、膜表面が擦過等傷付いた場合でも膜
孔径が表面から厚み方向に連続的且つ緩やかに拡大し、
膜の中間部であってもサブミクロンオーダーの微粒子を
十分捕捉しうる程度の孔径であるため、微粒子の漏洩を
きたすことはない。Further, even when the surface of the film is scratched or scratched, the pore size of the film is continuously and gradually expanded from the surface in the thickness direction,
Even in the middle part of the membrane, since the pore size is sufficient to capture fine particles of submicron order, there is no leakage of fine particles.
【0013】本発明に用いられる多孔性補強シートとし
ては、ポリエステル、ポリプロピレン、ポリエチレン、
ポリアミド等を素材とする織布、不織布、メッシュ状ネ
ット、発泡焼結シート等が挙げられるが、後述する製膜
性及びコスト面から不織布が好適に用いられる。The porous reinforcing sheet used in the present invention includes polyester, polypropylene, polyethylene,
Examples of the material include woven fabrics, nonwoven fabrics, mesh nets, foamed sintered sheets, and the like made of polyamide or the like, and nonwoven fabrics are preferably used from the viewpoint of film-forming property and cost described later.
【0014】本発明に用いられる不織布としては、厚み
が0.08〜0.15mmであって、且つ密度が0.5
〜0.8g/cm3 であることが好ましい。厚みが0.
08mmより薄いか又は/及び密度が0.5g/cm3
より小さい場合には、補強シートとしての強度が得られ
ず、2g/cm2 以上の背圧強度を保持することが困難
である。一方、厚みが0.15mmより厚いか又は密度
が0.8g/cm3 より大きい場合には、補強膜の濾過
抵抗が大きくなったり、不織布への膜の投錨効果が小さ
くなるため、膜と不織布との界面で剥離が起こりやすく
なり好ましくない。The nonwoven fabric used in the present invention has a thickness of 0.08 to 0.15 mm and a density of 0.5.
It is preferably 0.8 g / cm 3 . The thickness is 0.
Thinner than 08 mm and / or a density of 0.5 g / cm 3
If it is smaller, the strength as a reinforcing sheet cannot be obtained, and it is difficult to maintain a back pressure strength of 2 g / cm 2 or more. On the other hand, when the thickness is thicker than 0.15 mm or the density is higher than 0.8 g / cm 3 , the reinforcing resistance of the membrane is high and the anchoring effect of the membrane on the nonwoven fabric is small, so that the membrane and the nonwoven fabric are small. It is not preferable because peeling easily occurs at the interface with.
【0015】次に、本発明のポリスルホン多孔質分離膜
の製造方法について以下に述べる。ポリスルホンに溶
媒、非溶媒、及び膨潤剤を加えて加熱溶解し、均一な製
膜溶液を調製する。本発明に用いられるポリスルホン系
樹脂は、下記式(化1)に示すように分子構造内に少な
くとも1つに(−SO2 −)部位を有するものであれば
特に限定されない。Next, the method for producing the polysulfone porous separation membrane of the present invention will be described below. A solvent, a non-solvent, and a swelling agent are added to polysulfone and dissolved by heating to prepare a uniform film-forming solution. The polysulfone-based resin used in the present invention is not particularly limited as long as it has at least one (—SO 2 —) site in the molecular structure as shown in the following formula (Formula 1).
【0016】[0016]
【化1】 Embedded image
【0017】(ただし、Rは2価の芳香族、脂環族もし
くは脂肪族炭化水素基、またはこれら炭化水素基が2価
の有機結合基で結合された2価の有機基を示す。) 好ましくは下記式(化2)〜(化4)の構造式で示され
るポリスルホンが用いられる。(However, R represents a divalent aromatic, alicyclic or aliphatic hydrocarbon group, or a divalent organic group in which these hydrocarbon groups are bonded by a divalent organic bonding group.) Is a polysulfone represented by the structural formulas (Formula 2) to (Formula 4) below.
【0018】[0018]
【化2】 Embedded image
【0019】[0019]
【化3】 Embedded image
【0020】[0020]
【化4】 Embedded image
【0021】本発明に用いられるポリスルホン系樹脂は
単独で用いられてもよいが、2種類以上の混合物として
も用いられる。更には、50モル%以下であればポリイ
ミド、フッ素含有ポリイミド樹脂などのポリマーとの共
重合体、もしくは混合物であってもよい。The polysulfone resin used in the present invention may be used alone, but may also be used as a mixture of two or more kinds. Further, if it is 50 mol% or less, it may be a copolymer with a polymer such as polyimide or a fluorine-containing polyimide resin, or a mixture thereof.
【0022】上記ポリスルホンの溶媒としては、N−メ
チル−2−ピロリドン、ジメチルホルムアミド、ジメチ
ルアセトアミド、ジメチルスルホキシドなどが好ましく
用いられる。また、非溶媒としては、エチレングリコー
ル、ジエチレングリコール、プロピレングリコール、ポ
リエチレングリコール、グリセリン等の脂肪族多価アル
コール、メタノール、エタノール、イソプロピルアルコ
ール等の低級脂肪族アルコール、メチルエチルケトン等
の低級脂肪族ケトン等が好ましく用いられる。As the solvent for the polysulfone, N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, dimethylsulfoxide and the like are preferably used. As the non-solvent, aliphatic polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, polyethylene glycol and glycerin, lower aliphatic alcohols such as methanol, ethanol and isopropyl alcohol, lower aliphatic ketones such as methyl ethyl ketone are preferable. Used.
【0023】溶媒と非溶媒の混合溶媒中の非溶媒の含有
量は、得られる混合溶媒が均一である限り特に制限され
ないが、通常、5〜50重量%、好ましくは20〜45
重量%である。The content of the non-solvent in the mixed solvent of the solvent and the non-solvent is not particularly limited as long as the obtained mixed solvent is uniform, but is usually 5 to 50% by weight, preferably 20 to 45.
% By weight.
【0024】多孔質構造の形成を促進または制御するた
めに用いられる膨潤剤としては、塩化リチウム、塩化ナ
トリウム、硝酸リチウム等の金属塩、ポリエチレングリ
コール、ポリビニルアルコール、ポリビニルピロリド
ン、ポリアクリル酸等の水溶性高分子又はその金属塩、
ホルムアミド等が用いられる。混合溶媒中の膨潤剤の含
有量は、製膜溶液が均一である限り特に制限されない
が、通常、1〜50重量%である。Examples of the swelling agent used for promoting or controlling the formation of the porous structure include metal salts such as lithium chloride, sodium chloride and lithium nitrate, water-soluble agents such as polyethylene glycol, polyvinyl alcohol, polyvinylpyrrolidone and polyacrylic acid. Polymer or its metal salt,
Formamide or the like is used. The content of the swelling agent in the mixed solvent is not particularly limited as long as the film forming solution is uniform, but is usually 1 to 50% by weight.
【0025】製膜溶液中のポリスルホンの濃度は、通常
10〜30重量%が好ましい。30重量%を越えるとき
は、得られる多孔質分離膜の透水性が実用性に乏しく、
一方、10重量%より少ないときは、得られる多孔質分
離膜の機械的強度が乏しく、充分な背圧強度が得られな
い。The concentration of polysulfone in the membrane forming solution is usually preferably 10 to 30% by weight. When it exceeds 30% by weight, the water permeability of the obtained porous separation membrane is poor in practicality,
On the other hand, when it is less than 10% by weight, the mechanical strength of the obtained porous separation membrane is poor and sufficient back pressure strength cannot be obtained.
【0026】次に、上記製膜溶液を図2に示すような連
続製膜装置により不織布支持体上に製膜する。即ち、繰
出し機1から不織布等の支持体シート2を繰り出し、そ
の表面に製膜溶液を塗布する。塗布方法は、ナイフコー
ターやロールコーターのようなギャップコーターによ
り、製膜溶液を不織布支持体上に塗布する。本実施形態
ではロールコーター4を使用し、2本のロールの間に製
膜溶液3を溜め、不織布支持体2上に塗布と同時に不織
布内部に充分含浸させた後、低湿度雰囲気を通過させる
間に塗布した液膜5の表面より、雰囲気中の微量水分を
吸収させ、液膜5の表面層にミクロ相分離を起こさせ
る。6が相分離ゾーンである。しかる後、凝固水槽7に
浸漬し、液膜全体を相分離・凝固させ、水洗槽9で溶媒
を洗浄除去することにより、本発明のポリスルホン多孔
質分離膜8を得、巻取機10で巻き取る。Next, the above film forming solution is formed into a film on the nonwoven fabric support by a continuous film forming apparatus as shown in FIG. That is, the support sheet 2 such as a nonwoven fabric is delivered from the delivery machine 1 and the film-forming solution is applied to the surface thereof. The coating method is to coat the nonwoven fabric support with the film-forming solution using a gap coater such as a knife coater or a roll coater. In the present embodiment, the roll coater 4 is used, the film-forming solution 3 is accumulated between two rolls, and while being applied onto the nonwoven fabric support 2, the inside of the nonwoven fabric is sufficiently impregnated. A minute amount of water in the atmosphere is absorbed from the surface of the liquid film 5 applied to the surface of the liquid film 5 to cause microphase separation in the surface layer of the liquid film 5. 6 is a phase separation zone. Then, the polysulfone porous separation membrane 8 of the present invention is obtained by immersing it in the coagulating water tank 7, phase-separating and coagulating the whole liquid film, and washing and removing the solvent in the water washing tank 9, and winding it with the winder 10. take.
【0027】上記製膜法はいわゆるドライウェット法の
一種であるが、液膜表面のミクロ相分離は、液膜表面か
らの溶媒の蒸発による相分離よりは、むしろ雰囲気中か
らの吸湿による相分離のほうが支配的であり、雰囲気湿
度及び吸湿時間の制御が重要である。製膜溶液の特性に
もよるが、通常、ミクロ相分離を起こさせる雰囲気は、
温度20〜40℃、相対湿度40%以下、好ましくは1
0〜30%、また、相分離時間即ち吸湿時間は4〜10
秒が好ましい。さらに、雰囲気内は実質的に無風状態に
することが好ましい。The above-mentioned film-forming method is a kind of so-called dry-wet method, but the micro-phase separation on the surface of the liquid film is not the phase separation by evaporation of the solvent from the surface of the liquid film, but rather the phase separation by absorption of moisture from the atmosphere. Is more dominant, and control of atmospheric humidity and moisture absorption time is important. Depending on the characteristics of the film forming solution, the atmosphere that causes microphase separation is usually
Temperature 20-40 ° C, relative humidity 40% or less, preferably 1
0 to 30%, and the phase separation time, that is, the moisture absorption time is 4 to 10
Seconds are preferred. Further, it is preferable that the atmosphere is substantially windless.
【0028】液膜表面に風を吹き付け強制的に吸湿させ
たり、吸湿時間を長くすると、前記した特開昭62−2
7006号公報に開示されているような膜の内部に最小
孔径層を有する構造となり、最小孔径層が膜表面に存在
する本発明の膜構造とは異なるので好ましくない。ま
た、相対湿度を高くしたり40℃以上の高温にすると表
面の平均孔径が0.05μmより大きくなったり、最小
孔径層が膜内部に形成されるため好ましくない。一方、
逆に相対湿度が低く且つ吸湿時間が短いとミクロ相分離
が不十分となり、スキン層といわれる不連続な緻密層が
膜表面に形成されるため好ましくない。When air is blown onto the surface of the liquid film to forcibly absorb the moisture or the moisture absorption time is lengthened, the above-mentioned JP-A-62-2 is used.
The structure has a minimum pore size layer inside the membrane as disclosed in Japanese Patent No. 7006, which is different from the membrane structure of the present invention in which the minimum pore size layer exists on the membrane surface, which is not preferable. Further, if the relative humidity is increased or the temperature is increased to 40 ° C. or higher, the average pore diameter on the surface becomes larger than 0.05 μm and the minimum pore diameter layer is formed inside the membrane, which is not preferable. on the other hand,
On the other hand, when the relative humidity is low and the moisture absorption time is short, microphase separation becomes insufficient, and a discontinuous dense layer called a skin layer is formed on the film surface, which is not preferable.
【0029】以上のように、本発明のポリスルホン多孔
質分離膜を製造するにはミクロ相分離の雰囲気の制御が
重要であるが、第2図に示す製膜装置のコーター下部の
周囲をフィルム等で囲うことによって外気からの水分の
供給を遮断し、さらに凝固水槽に蓋をして水面からの水
蒸気の流入を抑制することによって液膜表面からの吸湿
とバランスがとられ、比較的容易に40%以下の低湿度
に制御することができる。As described above, in order to produce the polysulfone porous separation membrane of the present invention, it is important to control the atmosphere of microphase separation. However, a film or the like is formed around the lower part of the coater of the film forming apparatus shown in FIG. By shutting off the supply of moisture from the outside by surrounding it with a box, and further by covering the coagulation water tank to suppress the inflow of water vapor from the surface of the water, it is balanced with the absorption of moisture from the surface of the liquid film. It can be controlled to low humidity of less than%.
【0030】[0030]
【実施例】以下に実施例を挙げて本発明を説明するが、
本発明はこれら実施例により何ら限定されるものではな
い。The present invention will be described below with reference to examples.
The present invention is not limited to these examples.
【0031】[0031]
【実施例1〜3、比較例1、2】ポリスルホン(アモコ
社製、P−3500)16.5重量部、N−メチル−2
ピロリドン58重量部、ジエチレングリコール24.5
重量部、及びホルムアミド1重量部を加熱溶解し、均一
な製膜溶液を得た。厚み0.1mm、密度0.8g/c
m3 のポリエステル製不織布を用いた。Examples 1 to 3 and Comparative Examples 1 and 2 16.5 parts by weight of polysulfone (P-3500, manufactured by Amoco), N-methyl-2
Pyrrolidone 58 parts by weight, diethylene glycol 24.5
By weight, 1 part by weight of formamide and 1 part by weight of formamide were dissolved by heating to obtain a uniform film-forming solution. Thickness 0.1 mm, density 0.8 g / c
using a polyester nonwoven fabric of m 3.
【0032】上記製膜溶液を図2に示す製膜装置を用い
てコーターギャップを0.13mmに調整したロールコ
ーターにより上記不織布上に含浸塗布した。次いで、相
対湿度25%、温度30℃雰囲気中を製膜速度を変える
ことによって1秒間、4.5秒間、6秒間、9秒間、2
0秒間それぞれ通過させミクロ相分離を生じさせた後、
35℃の凝固水槽中に浸漬して脱溶媒、凝固させ、しか
る後水洗槽で残存溶媒を洗浄除去することによりポリス
ルホン多孔質分離膜を得た。The above film-forming solution was impregnated and coated on the above-mentioned non-woven fabric with a roll coater having a coater gap adjusted to 0.13 mm using the film-forming apparatus shown in FIG. Then, by changing the film forming speed in an atmosphere of relative humidity 25% and temperature 30 ° C., 1 second, 4.5 seconds, 6 seconds, 9 seconds, 2 seconds.
After passing each for 0 seconds to cause microphase separation,
The polysulfone porous separation membrane was obtained by immersing in a coagulation water tank at 35 ° C. for solvent removal and coagulation, and then washing and removing the residual solvent in a water rinsing tank.
【0033】得られたそれぞれの膜について、走査型電
子顕微鏡により観察される膜表面の平均孔径、透水量、
平均分子量100万のポリエチレンオキサイドの阻止
率、および背圧強度を測定し、表1に示した。図3に実
施例1で得られた分離膜の表層部分の電子顕微鏡(SE
M)写真(倍率4,000)を示す。For each of the obtained membranes, the average pore diameter of the membrane surface, the amount of water permeation, observed by a scanning electron microscope,
The inhibition rate of polyethylene oxide having an average molecular weight of 1,000,000 and the back pressure strength were measured and are shown in Table 1. FIG. 3 shows an electron microscope (SE for the surface layer of the separation membrane obtained in Example 1).
M) A photograph (magnification: 4,000) is shown.
【0034】ここで、ポリエチレンオキサイドの阻止率
は、濃度500ppmのポリエチレンオキサイド溶液を
圧力1kgf/cm2 にて透過させ、原液及び透過液の
濃度から次式(数1)により求めた。Here, the rejection rate of polyethylene oxide was obtained by the following equation (Equation 1) from the concentrations of the stock solution and the permeated solution after permeating a polyethylene oxide solution having a concentration of 500 ppm at a pressure of 1 kgf / cm 2 .
【0035】[0035]
【数1】阻止率(%)=[1−(透過液濃度/原液濃
度)]×100[Formula 1] Rejection rate (%) = [1- (permeate concentration / stock solution concentration)] × 100
【0036】また、背圧強度は、直径47mmの膜を背
圧強度ホルダー(有効直径23mm)にセットし、多孔
性補強シート上に製膜された多孔質分離膜の裏面即ち不
織布側より水圧を徐々に加え、膜が不織布から剥離する
か、または膜と不織布が同時に破裂するときの圧力であ
る。結果を表1に示す。As for the back pressure strength, a membrane having a diameter of 47 mm is set in a back pressure strength holder (effective diameter of 23 mm), and water pressure is applied from the back surface of the porous separation membrane formed on the porous reinforcing sheet, that is, the nonwoven fabric side. The pressure at which the film is peeled off from the nonwoven fabric or the membrane and the nonwoven fabric burst at the same time by gradually adding. The results are shown in Table 1.
【0037】[0037]
【表1】 表1に示す通り、実施例1〜3で得られた本発明のポリ
スルホン多孔質分離膜は、いずれも表面の平均孔径が
0.01〜0.05μmであり、ポリエチレンオキサイ
ドの阻止率も90%以上と優れた分離性能を示した。さ
らに、背圧強度も2kgf/cm2 以上と優れた機械的
強度を有していた。なお、電子顕微鏡(SEM)により
膜の断面構造を観察したところ、実施例1〜3の膜はい
ずれも表面から膜厚方向に向かって連続的に孔径が拡大
する非対称構造であった。図3に実施例1で得られた電
子顕微鏡(SEM)写真(倍率4,000)を示す。ま
た、不織布の空隙に製膜溶液が含浸し一部は不織布の裏
面まで到達し、膜が不織布と一体となり投錨状態で不織
布に接合されていた。[Table 1] As shown in Table 1, each of the polysulfone porous separation membranes of the present invention obtained in Examples 1 to 3 has an average pore diameter of the surface of 0.01 to 0.05 μm and a polyethylene oxide blocking rate of 90%. The above shows excellent separation performance. Further, the back pressure strength was 2 kgf / cm 2 or more, which was an excellent mechanical strength. When the cross-sectional structure of the film was observed with an electron microscope (SEM), the films of Examples 1 to 3 all had an asymmetric structure in which the pore diameter continuously increased from the surface in the film thickness direction. FIG. 3 shows an electron microscope (SEM) photograph (magnification: 4,000) obtained in Example 1. Further, the voids of the non-woven fabric were impregnated with the film-forming solution and a part thereof reached the back surface of the non-woven fabric, and the film was united with the non-woven fabric and bonded to the non-woven fabric in an anchored state.
【0038】一方、比較例1で得られた多孔性補強シー
ト上に製膜された多孔質分離膜は、表面に不連続な緻密
層を有し膜内部に指状空洞が存在する典型的な限外濾過
膜の構造であり、本発明のポリスルホン多孔質分離膜と
は構造が異なるものであった。On the other hand, the porous separation membrane formed on the porous reinforcing sheet obtained in Comparative Example 1 has a discontinuous dense layer on the surface and has a typical finger-shaped cavity inside. The structure of the ultrafiltration membrane was different from that of the polysulfone porous separation membrane of the present invention.
【0039】また、比較例2の多孔性補強シート上に製
膜された多孔質分離膜は、最小孔径層が膜と不織布の界
面付近に存在し、しかも界面には空洞が見られた。この
空洞は、ミクロ相分離が不織布の界面付近まで起こった
ために凝固時に収縮により生じたものと考えられ、この
ために背圧強度が低くなったものと推定される。Further, in the porous separation membrane formed on the porous reinforcing sheet of Comparative Example 2, the minimum pore size layer was present near the interface between the membrane and the nonwoven fabric, and voids were observed at the interface. This cavity is considered to have been generated by shrinkage during solidification due to microphase separation occurring near the interface of the nonwoven fabric, and it is presumed that the back pressure strength was reduced due to this.
【0040】[0040]
【実施例4】実施例2において、厚み0.14mm、密
度0.5g/cm3 のポリプロピレン製不織布を用いた
以外は実施例2と同様にしてポリスルホン多孔質分離膜
を得た。この膜の背圧強度を測定したところ、3.5k
gf/cm2 以上と優れた機械的強度を有していた。。Example 4 A polysulfone porous separation membrane was obtained in the same manner as in Example 2 except that a polypropylene nonwoven fabric having a thickness of 0.14 mm and a density of 0.5 g / cm 3 was used. The back pressure strength of this membrane was measured to be 3.5k.
It had excellent mechanical strength of gf / cm 2 or more. .
【0041】[0041]
【比較例3】実施例2において、厚み0.06mm、密
度0.4g/cm3 のポリエステル製不織布を用いた以
外は実施例2と同様にして多孔性補強シート上に製膜さ
れた多孔質分離膜を得た。この膜の背圧強度を測定した
ところ、1kgf/cm2 で不織布と共に膜が破裂し、
極めて機械的強度に乏しいものであった。Comparative Example 3 A porous film formed on a porous reinforcing sheet in the same manner as in Example 2 except that a polyester non-woven fabric having a thickness of 0.06 mm and a density of 0.4 g / cm 3 was used. A separation membrane was obtained. When the back pressure strength of this membrane was measured, the membrane ruptured together with the nonwoven fabric at 1 kgf / cm 2 ,
It was extremely poor in mechanical strength.
【0042】[0042]
【比較例4】実施例2において、厚み0.17mm、密
度0.85g/cm3 のポリエステル製不織布を用いた
以外は実施例2と同様にして多孔性補強シート上に製膜
された多孔質分離膜を得た。この膜の背圧強度を測定し
たところ、1.5kgf/cm2 で膜が剥離した。不織
布が緻密であるため不織布への膜の投錨性が不十分なた
めと推定される。Comparative Example 4 A porous film formed on a porous reinforcing sheet in the same manner as in Example 2 except that a polyester nonwoven fabric having a thickness of 0.17 mm and a density of 0.85 g / cm 3 was used. A separation membrane was obtained. When the back pressure strength of this film was measured, the film peeled off at 1.5 kgf / cm 2 . It is presumed that the anchoring property of the film on the non-woven fabric is insufficient because the non-woven fabric is dense.
【0043】[0043]
【実施例5】実施例2で得た多孔性補強シート上に製膜
された多孔質分離膜を用いて背圧強度測定用のホルダー
にセットし、0kgf/cm2 −2kgf/cm2 の背
圧を6秒サイクルで繰り返す背圧疲労テストを実施した
ところ、10万回のテスト後においても膜の剥離はまっ
たく生じなかった。Example 5 was set on a holder for the back pressure strength measured using a porous separation membrane which is formed into a film porous reinforcing sheet obtained in Example 2, the back of 0kgf / cm 2 -2kgf / cm 2 When a back pressure fatigue test in which the pressure was repeated in a cycle of 6 seconds was carried out, no peeling of the film occurred even after 100,000 tests.
【0044】[0044]
【発明の効果】以上のように、本発明のポリスルホン多
孔質分離膜は極めて機械的強度に優れた平膜であり、従
来適用が困難とされていた平膜モジュールへの逆圧洗浄
の適用が可能であり、膜の目詰りによる膜寿命が短く適
用が困難とされていた高濁質液の分野への応用が可能と
なった。INDUSTRIAL APPLICABILITY As described above, the polysulfone porous separation membrane of the present invention is a flat membrane having extremely excellent mechanical strength, and the back pressure cleaning can be applied to the flat membrane module which has been difficult to apply conventionally. It is possible, and it has become possible to apply it to the field of highly turbid liquids, which had a short membrane life due to clogging of the membrane and was considered difficult to apply.
【0045】また、本発明のポリスルホン多孔質分離膜
はサブミクロンオーダーの菌体や微粒子を高精度に分離
・除去できると共に、分子量100万程度の高分子物質
をも分離できる極めて特徴的な分離性能を有し、従来の
精密濾過と限外濾過の中間的な分野への応用が可能であ
る。Further, the polysulfone porous separation membrane of the present invention is capable of separating and removing submicron-order bacterial cells and fine particles with high accuracy, and is also capable of separating a high molecular weight substance having a molecular weight of about 1,000,000. Therefore, it can be applied to an intermediate field between conventional microfiltration and ultrafiltration.
【図1】本発明の一実施の形態のポリスルホン多孔質分
離膜を説明する断面図である。FIG. 1 is a cross-sectional view illustrating a polysulfone porous separation membrane according to an embodiment of the present invention.
【図2】本発明の一実施の形態の連続製膜方法を説明す
る工程図である。FIG. 2 is a process diagram illustrating a continuous film forming method according to an embodiment of the present invention.
【図3】本発明の実施例1で得られた分離膜の表層部分
の電子顕微鏡(SEM)写真(倍率4,000)を示
す。FIG. 3 shows an electron microscope (SEM) photograph (magnification: 4,000) of the surface layer portion of the separation membrane obtained in Example 1 of the present invention.
1 繰出し機 2 支持体 3 製膜溶液 4 ロールコーター 5 液膜 6 相分離ゾーン 7 凝固水槽 8 多孔質分離膜 9 水洗槽 10 巻取機 20 ポリスルホン多孔質分離膜 21 多孔性補強シート 22 分離機能を有する膜 1 Feeder 2 Support 3 Membrane forming solution 4 Roll coater 5 Liquid membrane 6 Phase separation zone 7 Coagulation water tank 8 Porous separation membrane 9 Washing tank 10 Winder 20 Polysulfone porous separation membrane 21 Porous reinforcement sheet 22 Separation function Film with
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成8年9月3日[Submission date] September 3, 1996
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項3[Correction target item name] Claim 3
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【手続補正2】[Procedure amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0010[Correction target item name] 0010
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0010】また前記本発明のポリスルホン多孔質分離
膜においては、ポリスルホン多孔質分離膜の背圧強度
が、2kgf/cm2 以上であることが好ましい。In the polysulfone porous separation membrane of the present invention, the back pressure strength of the polysulfone porous separation membrane is preferably 2 kg f / cm 2 or more.
【手続補正3】[Procedure 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0014[Correction target item name] 0014
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0014】本発明に用いられる不織布としては、厚み
が0.08〜0.15mmであって、且つ密度が0.5
〜0.8g/cm3 であることが好ましい。厚みが0.
08mmより薄いか又は/及び密度が0.5g/cm3
より小さい場合には、補強シートとしての強度が得られ
ず、2kgf/cm2 以上の背圧強度を保持することが
困難である。一方、厚みが0.15mmより厚いか又は
密度が0.8g/cm 3 より大きい場合には、補強膜の
濾過抵抗が大きくなったり、不織布への膜の投錨効果が
小さくなるため、膜と不織布との界面で剥離が起こりや
すくなり好ましくない。The nonwoven fabric used in the present invention has a thickness
Is 0.08 to 0.15 mm and the density is 0.5
~ 0.8 g / cmThreeIt is preferred that The thickness is 0.
Thinner than 08mm and / or density 0.5g / cmThree
If it is smaller, strength as a reinforcing sheet is obtained.
No, 2kgf/ CmTwoIt is possible to maintain the above back pressure strength
Have difficulty. On the other hand, if the thickness is greater than 0.15 mm or
Density 0.8g / cm ThreeIf it is larger,
The filtration resistance becomes large and the anchoring effect of the membrane on the non-woven fabric
Since it becomes smaller, peeling may occur at the interface between the membrane and the non-woven fabric.
It is not preferable because it becomes faster.
Claims (3)
機能を有する膜が存在するポリスルホン多孔質分離膜に
おいて、前記膜の表面には平均孔径0.01〜0.05
μmの範囲の最小孔径層を有し、表面から厚み方向に連
続的に孔径が拡大する非対称構造を有し、前記膜が多孔
性補強シートに投錨状態で接合し補強されていることを
特徴とするポリスルホン多孔質分離膜。1. A polysulfone porous separation membrane in which a membrane having a substantially separating function is present on the surface of a porous reinforcing sheet, wherein the surface of the membrane has an average pore diameter of 0.01 to 0.05.
It has a minimum pore size layer in the range of μm, has an asymmetric structure in which the pore size continuously expands from the surface in the thickness direction, and the membrane is joined to a porous reinforcing sheet in an anchored state and reinforced, A polysulfone porous separation membrane.
みが0.08〜0.15mmの範囲であり、かつ密度が
0.5〜0.8g/cm3 の範囲である請求項1に記載
のポリスルホン多孔質分離膜。2. The porous reinforcing sheet is a non-woven fabric, the thickness is in the range of 0.08 to 0.15 mm, and the density is in the range of 0.5 to 0.8 g / cm 3. The polysulfone porous separation membrane described.
が、2kg/cm2 以上である請求項1又は2に記載の
ポリスルホン多孔質分離膜。3. The polysulfone porous separation membrane according to claim 1, wherein the back pressure strength of the polysulfone porous separation membrane is 2 kg / cm 2 or more.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP15314596A JP3681219B2 (en) | 1996-05-23 | 1996-05-23 | Polysulfone porous separation membrane |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP15314596A JP3681219B2 (en) | 1996-05-23 | 1996-05-23 | Polysulfone porous separation membrane |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH09313905A true JPH09313905A (en) | 1997-12-09 |
| JP3681219B2 JP3681219B2 (en) | 2005-08-10 |
Family
ID=15556006
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP15314596A Expired - Lifetime JP3681219B2 (en) | 1996-05-23 | 1996-05-23 | Polysulfone porous separation membrane |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3681219B2 (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001079368A (en) * | 1999-09-20 | 2001-03-27 | Hour Seishi Kk | Separation membrane support and method for producing the same |
| JP2002301342A (en) * | 2001-04-09 | 2002-10-15 | Nitto Denko Corp | Polyvinylidene fluoride porous separation membrane |
| WO2003049843A1 (en) * | 2001-12-10 | 2003-06-19 | Toray Industries, Inc. | Separation membrane |
| WO2011118486A1 (en) | 2010-03-23 | 2011-09-29 | 東レ株式会社 | Separation membrane and method for producing same |
| WO2013113928A1 (en) * | 2012-02-03 | 2013-08-08 | Vito Nv (Vlaamse Instelling Voor Technologisch Onderzoek Nv) | Backwashable filtration element |
| WO2016203701A1 (en) | 2015-06-16 | 2016-12-22 | 川崎重工業株式会社 | Diaphragm for alkaline water electrolysis, and method for manufacturing same |
| KR20180104630A (en) * | 2016-01-29 | 2018-09-21 | 도레이 카부시키가이샤 | Membrane |
| CN113877448A (en) * | 2021-11-22 | 2022-01-04 | 启成(江苏)净化科技有限公司 | Preparation process and device of ultrathin composite membrane base membrane |
| CN116672896A (en) * | 2023-06-12 | 2023-09-01 | 山东威高血液净化制品股份有限公司 | Microfiltration membrane and preparation method thereof |
-
1996
- 1996-05-23 JP JP15314596A patent/JP3681219B2/en not_active Expired - Lifetime
Cited By (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001079368A (en) * | 1999-09-20 | 2001-03-27 | Hour Seishi Kk | Separation membrane support and method for producing the same |
| JP2002301342A (en) * | 2001-04-09 | 2002-10-15 | Nitto Denko Corp | Polyvinylidene fluoride porous separation membrane |
| WO2003049843A1 (en) * | 2001-12-10 | 2003-06-19 | Toray Industries, Inc. | Separation membrane |
| CN1331577C (en) * | 2001-12-10 | 2007-08-15 | 东丽株式会社 | Separation membrane |
| JP2009233666A (en) * | 2001-12-10 | 2009-10-15 | Toray Ind Inc | Separation membrane |
| US7615105B2 (en) | 2001-12-10 | 2009-11-10 | Toray Industries, Inc. | Separation membrane |
| KR100979418B1 (en) * | 2001-12-10 | 2010-09-02 | 도레이 카부시키가이샤 | Separator |
| US9617683B2 (en) | 2010-03-23 | 2017-04-11 | Toray Industries, Inc. | Separation membrane and method for producing same |
| WO2011118486A1 (en) | 2010-03-23 | 2011-09-29 | 東レ株式会社 | Separation membrane and method for producing same |
| WO2013113928A1 (en) * | 2012-02-03 | 2013-08-08 | Vito Nv (Vlaamse Instelling Voor Technologisch Onderzoek Nv) | Backwashable filtration element |
| JP2015509837A (en) * | 2012-02-03 | 2015-04-02 | フェート・エンフェー (フラームス・インステリング・フーア・テクノロジシュ・オンダーゾエク・エンフェー) | Backwashable filter element |
| US9919273B2 (en) | 2012-02-03 | 2018-03-20 | Vito Nv (Vlaamse Instelling Voor Technologisch Onderzoek Nv) | Backwashable filtration element |
| WO2016203701A1 (en) | 2015-06-16 | 2016-12-22 | 川崎重工業株式会社 | Diaphragm for alkaline water electrolysis, and method for manufacturing same |
| CN107709622A (en) * | 2015-06-16 | 2018-02-16 | 川崎重工业株式会社 | Separator for alkaline water electrolysis and manufacturing method thereof |
| JP2017002389A (en) * | 2015-06-16 | 2017-01-05 | 川崎重工業株式会社 | Diaphragm for alkaline water electrolysis and method for producing the same |
| EP3312306B1 (en) * | 2015-06-16 | 2020-08-12 | Kawasaki Jukogyo Kabushiki Kaisha | Diaphragm for alkaline water electrolysis, and method for manufacturing same |
| CN107709622B (en) * | 2015-06-16 | 2020-10-27 | 川崎重工业株式会社 | Separator for alkaline water electrolysis and method for producing same |
| US10914014B2 (en) | 2015-06-16 | 2021-02-09 | Kawasaki Jukogyo Kabushiki Kaisha | Alkaline water electrolysis diaphragm and method of manufacturing same |
| KR20180104630A (en) * | 2016-01-29 | 2018-09-21 | 도레이 카부시키가이샤 | Membrane |
| CN113877448A (en) * | 2021-11-22 | 2022-01-04 | 启成(江苏)净化科技有限公司 | Preparation process and device of ultrathin composite membrane base membrane |
| CN116672896A (en) * | 2023-06-12 | 2023-09-01 | 山东威高血液净化制品股份有限公司 | Microfiltration membrane and preparation method thereof |
| WO2024255585A1 (en) * | 2023-06-12 | 2024-12-19 | 山东威高血液净化制品股份有限公司 | Microfiltration membrane and preparation method therefor |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3681219B2 (en) | 2005-08-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9463422B2 (en) | Forward osmosis membranes | |
| JP6573249B2 (en) | Method for improving water flux through a TFC membrane | |
| JP6772840B2 (en) | Separation membrane, separation membrane element, water purifier and method for manufacturing separation membrane | |
| JP6771865B2 (en) | Composite semipermeable membrane and composite semipermeable membrane element | |
| JP3681219B2 (en) | Polysulfone porous separation membrane | |
| US20170282129A1 (en) | Composite semipermeable membrane and method for producing the same, spiral wound separation membrane element | |
| JPH10225626A (en) | Spiral type membrane element | |
| JP3999367B2 (en) | Manufacturing method of sheet-like separation membrane | |
| EP3357562B1 (en) | Composite semipermeable membrane | |
| JP7403524B2 (en) | Composite hollow fiber membrane and method for manufacturing composite hollow fiber membrane | |
| JP2002301342A (en) | Polyvinylidene fluoride porous separation membrane | |
| JP7593512B2 (en) | Composite semipermeable membrane, composite semipermeable membrane element and filtration device | |
| JP3105610B2 (en) | Spiral type membrane separation module and its cleaning method. | |
| KR20190088225A (en) | Water treatment membrane and method for preparing thereof | |
| JP2004243198A (en) | Composite semipermeable membrane and sewage disposal method | |
| US20170274328A1 (en) | Composite semipermeable membrane, separation membrane element, and process for producing said membrane | |
| JP4321927B2 (en) | Processing system provided with spiral membrane element and operation method thereof | |
| AU2015227384A1 (en) | Forward osmosis membranes | |
| JP2001113140A (en) | Spiral type membrane element and its operation method | |
| JP2019081147A (en) | Composite semipermeable membrane and manufacturing method therefor | |
| JP2018069148A (en) | Composite semipermeable membrane and manufacturing method thereof | |
| JPH07313852A (en) | Production of semipermeable laminated membrane |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040621 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040706 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040902 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050512 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050517 |
|
| R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080527 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110527 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140527 Year of fee payment: 9 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| EXPY | Cancellation because of completion of term |