JPH0934905A - Key sentence extraction method, abstract method and sentence search method - Google Patents
Key sentence extraction method, abstract method and sentence search methodInfo
- Publication number
- JPH0934905A JPH0934905A JP7182890A JP18289095A JPH0934905A JP H0934905 A JPH0934905 A JP H0934905A JP 7182890 A JP7182890 A JP 7182890A JP 18289095 A JP18289095 A JP 18289095A JP H0934905 A JPH0934905 A JP H0934905A
- Authority
- JP
- Japan
- Prior art keywords
- sentence
- degree
- key
- association
- sentences
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Document Processing Apparatus (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Machine Translation (AREA)
Abstract
(57)【要約】
【課題】 文書内のキーセンテンスを抽出するための文
の重要度の評価において、文書内の他の文との関連度に
基づくことにより、文脈に基づいたより適切な重要度を
与え、キーセンテンスの抽出の精度を高める。
【解決手段】 文切り出し手段2により電子化文書1内
の文間の関連度を評価し、文重要度評価手段4により文
の重要度を評価し、キーセンテンス抽出手段5により文
書1内からキーセンテンスを抽出し、更には、抽出した
キーセンテンスから抄録文を作成する。文間の関連度
は、文内の名詞を主体としたキーワード候補単語間の重
複度に基づき、また、文の重要度は、他の文群との関連
度の強さと関連の有無に基づいて求める。
(57) [Abstract] [PROBLEMS] In evaluating the importance of a sentence for extracting a key sentence in a document, a more appropriate importance based on the context is obtained by being based on the degree of association with other sentences in the document. To improve the accuracy of key sentence extraction. SOLUTION: A sentence cutout unit 2 evaluates the degree of association between sentences in a digitized document 1, a sentence importance degree evaluation unit 4 evaluates the degree of importance of a sentence, and a key sentence extraction unit 5 extracts a key from within the document 1. Sentences are extracted, and an abstract sentence is created from the extracted key sentences. The degree of relevance between sentences is based on the degree of overlap between keyword candidate words, which are mainly nouns in sentences, and the degree of importance of a sentence is based on the degree of relevance to other sentence groups and whether or not they are related. Ask.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、文書から重要文
(キーセンテンス)を抽出するキーセンテンス抽出方
式、及び、該キーセンテテンス抽出方式を用いた抄録方
式、及び、前記キーセンテンス抽出方式における文間関
連度評価手段を用いた文検索方式に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a key sentence extraction method for extracting an important sentence (key sentence) from a document, an abstract method using the key sentence extraction method, and a sentence in the key sentence extraction method. The present invention relates to a sentence search method using an inter-relationship evaluation means.
【0002】[0002]
【従来の技術】文書の要約は、文書の概要を把握する上
で重要であり、自動要約装置が期待されている。しか
し、人間によっても難しい要約の作成を自動化するの
は、さらに難しい。そこで、要約に代わるものとして、
文書中のキーセンテンス(重要文)の抽出や、それらの
重要文をつないで作成する抄録の自動化の方が実現性が
高い。キーセンテンスの抽出には、高い頻度の単語
[1:特開昭61−117658号公報(文章抄録装
置)]やキーワードの重要度[2:特開平3−2782
70号公報(抄録文作成装置)]やキー構文との照合
[3:特開昭61−100861号公報(文書編集装
置)]、重要語と原文の論理的な構造[4:特開平2−
181261号公報(自動抄録生成装置)]、重要部分
を認識する知識[5:特開平4−74259号公報(文
書要約装置)]等に基づく方法等、さまざまな方法があ
る。2. Description of the Related Art Document summarization is important for grasping the outline of a document, and an automatic summarizing device is expected. However, it is even more difficult to automate the creation of summaries that are difficult for humans. So, as an alternative to the summary,
It is more feasible to extract key sentences (important sentences) from documents and to automate the abstract created by connecting those important sentences. To extract key sentences, high-frequency words [1: Japanese Patent Laid-Open No. 61-117658 (text abstraction device)] and keyword importance [2: Japanese Patent Laid-Open No. 3782/1982]
70 (Abstract sentence creating device)], collation with key syntax [3: JP-A-61-100861 (document editing device)], logical structure of important words and original sentence [4: JP-A-2-
No. 181261 (automatic abstract generation device)], knowledge [5: Japanese Patent Laid-Open No. 4-74259 (document summarization device)] for recognizing important parts, and the like.
【0003】なお、前記特開昭61−117658号公
報[1]に記載の発明は、文章をパラグラフ毎等の形に
順次分割し、該分割した各パラグラフ等中に存在する文
単位に用語を夫々分担して当該用語の使用頻度等に基づ
いて文の重要度を夫々判別し、各パラグラフ毎に最重要
度の文を順次つなぐ形で抄録を編集することにより、文
章の抄録を自動的に編集するようにしたものである。In the invention described in JP-A-61-117658 [1], a sentence is sequentially divided into paragraphs and the like, and a term is added to each sentence existing in each divided paragraph. Each sentence is divided and the importance of the sentence is discriminated based on the frequency of use of the term, and the abstract of the sentence is automatically edited by editing the abstract in such a way that the sentences of the highest importance are sequentially connected to each paragraph. It was edited.
【0004】また、前記特開平3−278270号公報
[2]に記載の発明は、キーワード抽出評価手段が入力
された文書中からキーワード候補を抽出すると共にキー
ワード候補の重要度を予め設定された所定条件に基づい
て算定し、この算定されたキーワードの重要度と入力さ
れた文書とから文章評価手段が各文章毎に文書の内容表
現に対する適切さを文章評価値として各々算出すると共
に文章評価値を予め設定された閾値と比較して所定の文
章を選出し、この選出された文章を並べて抄録文を作成
するようにしたものである。Further, in the invention described in JP-A-3-278270 [2], the keyword extraction / evaluation means extracts a keyword candidate from the input document and the importance of the keyword candidate is set in advance. Calculated based on the conditions, and from the calculated importance of the keyword and the input document, the sentence evaluation means calculates the appropriateness for the content expression of the document for each sentence as a sentence evaluation value and the sentence evaluation value. A predetermined sentence is selected by comparing with a preset threshold value, and the selected sentence is arranged to create an abstract sentence.
【0005】また、前記特開昭61−100861号公
報[3]に記載の発明は、入力された文章中の各文を構
文的または意味的に解析し、この構文的または意味的に
解析された文構造の全体またはその一部分と辞書に予め
登録された部分文構造(文のキー構造)とを照合して、
上記辞書に登録された部分文構造を含む文を前記入力文
章中から抽出し、これらの抽出された文を用いて文章を
再構成するようにしたもので、例えば、辞書に登録され
た部分文構造中の削除規則に該当する文要素を、前記入
力文章中から抽出された文中から削除して文を再構成す
るようにしたものである。Further, the invention described in the above-mentioned JP-A-61-100861 [3] analyzes syntactically or semantically each sentence in an inputted sentence, and analyzes the syntactically or semantically. The whole sentence structure or a part of the sentence structure is compared with the partial sentence structure (sentence key structure) registered in advance in the dictionary,
A sentence including a partial sentence structure registered in the dictionary is extracted from the input sentence, and the sentence is reconstructed using these extracted sentences. For example, a partial sentence registered in the dictionary The sentence element corresponding to the deletion rule in the structure is deleted from the sentence extracted from the input sentence to reconstruct the sentence.
【0006】また、前記特開平2−181261号公報
[4]に記載の発明は、日本語辞書を用いて機能語を完
全に除去し、一般名詞と固有名詞を対象として、これら
の頻度情報および位置情報から、文章の主題や記述の核
となる重要語を高精度に抽出するとともに、原文の文章
の論理的な構造の解析を行い、文章の構造の情報から著
者が重要と思っている内容や強調したい内容に関する記
述を抄録の中に含ませるようにしたものである。Further, the invention described in Japanese Unexamined Patent Publication No. 2-181261 [4] uses a Japanese dictionary to completely remove functional words, and targets general nouns and proper nouns with their frequency information and Contents that the author thinks are important based on the information of the structure of the text, by extracting the important words that are the core of the text and the core of the description from the position information with high accuracy and analyzing the logical structure of the text of the original text. It is intended to include in the abstract a description of what you want to emphasize.
【0007】更に、前記特開平4−74259号公報
[5]に記載の発明は、要約対象とする文書を構成して
いる文をそれぞれ解析し、この解析結果と知識記憶手段
に格納されている文書中の重要な部分を認識するための
知識、例えば、文字修飾情報とを用いて前記文書中の重
要な文を認識判定し、この判定結果に従って前記文書中
から重要な文を抽出して要約文を作成するようにしたも
のである。Further, according to the invention described in Japanese Patent Application Laid-Open No. 4-74259 [5], the sentences constituting the document to be summarized are each analyzed, and the analysis result and the knowledge storage means are stored. Knowledge for recognizing an important part of a document, for example, character modification information is used to recognize and determine an important sentence in the document, and according to the result of the determination, the important sentence is extracted from the document and summarized. It is designed to create sentences.
【0008】[0008]
【発明が解決しようとする課題】しかし、上記従来の方
法は、外部からの情報[前記公報2,3,4,5]や、
構文解析[前記公報3,4,5]を必要としたり、1文
ごとの独立した評価を行っており、文書内の文の関連性
に重きが置かれていない。なお、特開平6−25942
4号公報(文書表示装置及び文書要約装置並びにディジ
タル複写装置)は、文書内の見出しに限っているが、キ
ーワードの可能性の高い文書内の見出しとの関連性の高
い文を見出し内の単語との照合により抽出しており、文
脈的な選択となっている。However, according to the above-mentioned conventional method, information from the outside [the above-mentioned gazettes 2, 3, 4, 5] and
It requires syntactic analysis [the above-mentioned gazettes 3, 4, and 5] and independently evaluates each sentence, so that the relevance of sentences in a document is not emphasized. Incidentally, JP-A-6-25942
In Japanese Patent Laid-Open No. 4 (document display device, document summarizing device, and digital copying device), only a heading in a document is limited, but a sentence highly relevant to a heading in a document is a word in the heading. It is extracted by matching with and is a contextual selection.
【0009】本発明は、上述のごとき実情に鑑みてなさ
れたもので、特に、文書内のキーセンテンスを抽出する
ための文の重要度の評価において、文書内の他の文との
関連度に基づくことにより、文脈に基づいたより適切な
重要度を与え、キーセンテンスの抽出の精度を高めるこ
と、また、文の重要度の評価として、外部知識や構文解
析等の大きな負担のない簡単な方法を適用可能にするこ
とを目的としてなされたものである。The present invention has been made in view of the above-mentioned circumstances, and particularly, in the evaluation of the importance of a sentence for extracting a key sentence in a document, the degree of relevance to other sentences in the document is determined. Based on this, we give more appropriate importance based on context, improve the accuracy of key sentence extraction, and as an evaluation of the importance of the sentence, a simple method without a large burden such as external knowledge and parsing is used. It is intended to be applicable.
【0010】[0010]
【課題を解決するための手段】請求項1の発明は、電子
化された文書から文を切り出す「文切り出し手段」と、
文書内の1文と他の1文との関連度を評価する「文間関
連度評価手段」と、文書内の他の文群との関連度に基づ
き、文の重要度を評価する「文重要度評価手段」と、文
の重要度に基づき、キーセンテンスを抽出する「キーセ
ンテンス抽出手段」とを有すること、請求項2の発明
は、請求項1の発明において、前記「文間関連度評価手
段」は、文からキーワード候補単語群を抽出し、各々の
文に含まれるキーワード候補単語間の類似度に基づき関
連度を評価すること、請求項3の発明は、請求項2の発
明において、前記「文間関連度評価手段」におけるキー
ワード候補単語間の類似度として、キーワード候補単語
の文字列間の文字の重複度を用いること、請求項4の発
明は、請求項1乃至3の発明において、前記「文重要度
評価手段」が、他の文群との関連度の強さと他の文群と
の関連のカバレージ度の一方あるいは双方とによって文
の重要度を評価すること、請求項5の発明は、請求項4
の発明において、前記他の文群との関連度の強さとし
て、他の文との関連度の平均値、前記他の文群との関連
のカバレージ度として、他の文との関連度の有無の平均
値を用いること、請求項6の発明は、請求項4の発明に
おいて、前記文の重要度として、他の文群との関連度の
強さと他の文群との関連のカバレージ度との積を用いる
こと、を特徴としたものであり、これら請求項1乃至請
求項6の発明により、文書内の文間の関連度に基づいた
文の重要度によるキーセンテンスの抽出を可能とし、特
に、請求項2乃至請求項6で提供する文間の関連度と文
の重要度を評価する方式は、外部知識や構文解析等を用
いず、名詞判定程度の解析処理と文字列照合の処理によ
って簡単に得られる効果的な方法である。According to the first aspect of the present invention, there is provided "sentence cutting means" for cutting out a sentence from an electronic document.
A "sentence relevance evaluation means" that evaluates the degree of relevance between one sentence in the document and another sentence, and a "sentence" that evaluates the degree of importance of the sentence based on the degree of relevance between other sentences in the document And a "key sentence extraction means" for extracting a key sentence based on the degree of importance of the sentence. According to the invention of claim 2, in the invention of claim 1, the "sentence degree between sentences" is included. The “evaluation means” extracts a keyword candidate word group from the sentence and evaluates the degree of association based on the similarity between the keyword candidate words included in each sentence. The invention of claim 3 provides the invention of claim 2 The degree of overlap of characters between the character strings of the keyword candidate words is used as the similarity between the keyword candidate words in the “inter-sentence degree evaluation unit”, and the invention of claim 4 is the invention of claims 1 to 3. In the above, "the sentence importance evaluation means" is Evaluating the severity of the sentence by the one or both of the associated coverage degree with relevance strength and other Bungun the group, the invention of claim 5, claim 4
In the invention of, as the strength of the degree of association with the other sentence group, the average value of the degree of association with other sentences, as the coverage degree of the association with the other sentence group, of the degree of association with other sentences The invention of claim 6 uses the average value of presence or absence, and in the invention of claim 4, as the importance of the sentence, the degree of association with other sentence groups and the degree of coverage of association with other sentence groups. The invention of claims 1 to 6 makes it possible to extract a key sentence based on the degree of importance of a sentence based on the degree of association between the sentences in the document. In particular, the method for evaluating the degree of association between sentences and the degree of importance of a sentence provided in claims 2 to 6 does not use external knowledge or syntactic analysis, but does not use external knowledge or syntactic analysis, This is an effective method that can be easily obtained by processing.
【0011】請求項7の発明は、請求項1乃至6のいず
れかのキーセンテンス抽出方式を用いて、文の重要度の
高いキーセンテンスを抽出し、文書内の文の順番に並べ
ることを特徴としたものであり、これにより、文書内に
文間の関連度に基づいた文の重要度によるキーセンテン
スの抽出、抄録作成を行うようにしたものである。The invention of claim 7 is characterized in that the key sentence extraction method according to any one of claims 1 to 6 is used to extract key sentences having a high degree of importance in a sentence and arrange them in the order of sentences in a document. By this, the key sentence is extracted and the abstract is created in the document based on the degree of importance of the sentence based on the degree of association between the sentences.
【0012】請求項8の発明は、請求項1乃至3のいず
れかに記載のキーセンテンス抽出方式における「文間関
連度評価手段」に基づき、検索要求の文あるいは単語群
との関連度に基づき文書内の文を検索することを特徴と
したものであり、これにより、請求項1乃至請求項3の
発明の文間の関連度を利用して、文書内から選択した特
定の文、外部から与えた検索文やキーワード群と関連の
大きい文を検索する方式としても効果があるようにした
ものである。The invention of claim 8 is based on the "sentence relevance evaluation means" in the key sentence extraction method according to any one of claims 1 to 3, and is based on the degree of relevance with the sentence or word group of the search request. The present invention is characterized in that a sentence in a document is searched for. By using the degree of relevance between sentences according to the inventions of claims 1 to 3, a specific sentence selected from within the document or from the outside can be used. This is also effective as a method for searching a sentence that is highly related to a given search sentence or keyword group.
【0013】[0013]
【発明の実施の形態】図1は、本発明によるキーセンテ
ンス抽出方式、抄録方式、及び、文検索方式を説明する
ための構成図で、図中、1は電子化文書、2は文切り出
し手段、3は文間関連度評価手段、4は文重要度評価手
段、5はキーセンテンス抽出手段で、「文切り出し手
段」2は、電子化文書1から文を1文づつ切り出す。通
常、文書内の文は、句点「。」で1文づつ区切られてい
るか、見出しのように句点なしに1行が1文をなしたり
する。一般に、電子化された文書ファイルから文を1文
づつ切り出す技術は、機械翻訳システム等で既に実現さ
れている技術であり、ここでは詳細を述べない。図2
に、以下の説明に用いる文書の内容を示し、図3には、
「文切り出し手段」によって切り出された文を示す(各
文の先頭に付加されているのは文番号である。なお、図
2に示した原文では、最初の3文が見出しとなってい
る)。1 is a block diagram for explaining a key sentence extraction method, an abstract method, and a sentence search method according to the present invention. In FIG. 1, 1 is a digitized document, and 2 is a sentence segmentation means. Reference numeral 3 is an inter-sentence degree evaluation means, 4 is a sentence importance degree evaluation means, 5 is a key sentence extraction means, and a "sentence cutout means" 2 cuts out a sentence from the digitized document 1 one by one. Usually, the sentences in a document are separated by one sentence by a punctuation mark ".", Or one line forms one sentence without a punctuation like a heading. In general, the technique of cutting out sentences one by one from an electronic document file is a technique already realized by a machine translation system or the like, and a detailed description thereof will not be given here. FIG.
Shows the contents of the document used in the following explanation.
Shows the sentences cut out by the "sentence cutting means" (the sentence number is added to the beginning of each sentence. In the original sentence shown in FIG. 2, the first three sentences are headings). .
【0014】文間関連度評価手段3では、切り出された
各文と他の各文との関連がどの程度あるかを評価し、関
連度として求める。文間の関連度を求める方法は、さま
ざま考えられるが、請求項2の発明では、各文からキー
ワード候補単語群を抽出し、各々の文に含まれるキーワ
ード候補単語間の類似度に基づき関連度を評価するよう
にしている。The inter-sentence relevance evaluation means 3 evaluates the degree of relevance between each clipped sentence and each of the other sentences, and obtains the relevance. Although various methods are conceivable for obtaining the degree of relevance between sentences, in the invention of claim 2, the degree of relevance is extracted based on the similarity between the keyword candidate words included in each sentence by extracting a group of keyword candidate words from each sentence. I am trying to evaluate.
【0015】キーワード候補単語としては、一般には名
詞が挙げられる。図4に、各文からキーワードになりに
くい日付け等の数名詞や1字漢字の名詞を除く名詞を抽
出した結果を示す。名詞の抽出は、従来の日本語文の形
態素解析技術に依ることができる。あるいは、漢字、カ
タカナやアルファベットの文字列を切り出すだけでも、
ほぼ同等の結果を得ることができる。As a keyword candidate word, a noun is generally mentioned. FIG. 4 shows the results of extracting nouns from each sentence, excluding numerical nouns such as dates and nouns with one kanji character that are difficult to be keywords. Extraction of nouns can rely on conventional morphological analysis techniques for Japanese sentences. Or you can just cut out kanji, katakana, or alphabetic strings,
It is possible to obtain almost the same result.
【0016】キーワード候補単語の類似に基づき文間の
関連度を得る方法もさまざまありえるが、請求項3の発
明では、キーワード候補単語間の類似度として、キーワ
ード候補単語の文字列間の文字の重複度を用いる。ここ
では、文iの文jに対する関連度R(i,j)を、文i
のキーワード候補単語文字の総数に対する文iのキーワ
ード候補単語文字のうち、一方の文jのキーワード候補
単語の文字と重複する文字の総数の比とする。There may be various methods of obtaining the degree of association between sentences based on the similarity of keyword candidate words, but in the invention of claim 3, the degree of similarity between keyword candidate words is the overlap of characters between character strings of keyword candidate words. Use degrees. Here, the degree of association R (i, j) of sentence i with respect to sentence j is
Among the keyword candidate word characters of the sentence i, the total number of the character strings of the keyword candidate word of the sentence j and the character of the keyword candidate word of the sentence j is defined as a ratio of the total number of the keyword candidate word characters.
【0017】たとえば、第5文と第6文のキーワード候
補単語は、次のようになっているが、 [5]英米 主要先進 G7 合意 規制 イラク 対
象 対共産圏輸出統制委員会 ココム リスト [6]G7 対象 品目 話し合い 冷戦終結 輸出規
制 両文のキーワード候補単語間の組合せでの部分文字列照
合により、容易に重複する文字は「G7」、「規制」、
「対象」、「輸出」であることがわかる。重複する文字
の数は8であり、一方、各文のキーワード候補単語の文
字の総数は、各々34と18であるので、その比は、各
文について、 R(5,6):8/34=0.235 R(6,5):8/18=0.444 となる。For example, the keyword candidate words of the fifth and sixth sentences are as follows: [5] Anglo-American major advanced G7 agreement regulated Iraq Target communist zone export control committee COCOM list [6] ] G7 target item Talks End of Cold War Export Control By substring matching in combination between keyword candidate words in both sentences, easily duplicate characters are "G7", "regulation",
It can be seen that they are “target” and “export”. Since the number of overlapping characters is 8, while the total number of characters of the keyword candidate words in each sentence is 34 and 18, respectively, the ratio is R (5,6): 8/34 for each sentence. = 0.235 R (6,5): 8/18 = 0.444.
【0018】図5に第5文の他の文との関連度を示し、
図6に文間の関連度をマトリクスで示す(なお、図中、
関連度は上記の値を100倍[パーセント化]し、整数
化して示してある)。上記の方法は、単語文字列の部分
一致に基づいているが、キーワード候補単語が一致する
単語数の割合をとれば、上記の場合は、「G7」、「規
制」、「対象」の3単語が一致し、一方、各々の単語数
は10と6であるので、次のようになる。 R(5,6):3/10=0.30 R(6,5):3/6 =0.50FIG. 5 shows the degree of association of the fifth sentence with other sentences,
The degree of relevance between sentences is shown in a matrix in FIG. 6 (note that in the figure,
The degree of association is shown as an integer by multiplying the above value by 100 [percentage]. The above method is based on partial matching of word character strings, but if the ratio of the number of words that match the keyword candidate words is taken, in the above case, the three words “G7”, “restriction”, and “target” , While the number of words in each is 10 and 6, so: R (5,6): 3/10 = 0.30 R (6,5): 3/6 = 0.50
【0019】また、請求項2の発明に立ち戻って、より
一般的な関連度としては、たとえば、文jに対する文i
の関連度R(i,j)を、文i内の単語の文j内の各単
語との類似度の和の平均とする等が考えられる。これ
は、文i内のキーワード候補単語の集合をW(i)、単
語xと単語yの類似度をr(x,y)[0〜1]、文i
内のキーワード候補単語数をN(i)とすると、次の式
(1)で示す表わすことができる。Further, returning to the invention of claim 2, as a more general degree of relevance, for example, the sentence i with respect to the sentence j is
It is conceivable that the degree of association R (i, j) of is the average of the sums of the similarities of the words in sentence i with each word in sentence j. This is because the set of keyword candidate words in sentence i is W (i), the similarity between word x and word y is r (x, y) [0 to 1], sentence i
If the number of keyword candidate words in the above is N (i), it can be expressed by the following equation (1).
【0020】[0020]
【数1】 [Equation 1]
【0021】単語間の類似度を厳密に考えると、単語間
の上位・下位関係が与えられたシソーラス体系を利用す
る方法等も考えられる。When the degree of similarity between words is strictly considered, a method of using a thesaurus system in which upper and lower relationships between words are given can be considered.
【0022】文重要度評価手段4では、各文について得
られた他の文との関連度に基づいて、文の重要度を評価
する。請求項4の発明では、文の重要度を他の文群との
関連度の強さ及び他の文群との関連のカバレージによっ
て評価する。前者は、他の文とどれだけ強く関連してい
るかを示し、後者は、どれだけ広く他の文と関連してい
るかを示す。具体的な算出方法としては、請求項6の発
明において、他の文群との関連度の強さは、他の文との
関連度の平均値、他の文群との関連のカバレージ度は、
他の文との関連度の有無の平均値を用いる。第5文につ
いて見れば、表1のようになる。The sentence importance level evaluation means 4 evaluates the importance level of each sentence based on the degree of association of each sentence with other sentences. In the invention of claim 4, the degree of importance of the sentence is evaluated by the degree of the degree of association with other sentence groups and the coverage of the association with other sentence groups. The former shows how strongly they are related to other sentences, and the latter shows how widely they are related to other sentences. As a specific calculation method, in the invention of claim 6, the strength of the degree of association with another sentence group, the average value of the degree of association with another sentence, and the coverage degree of the association with another sentence group are ,
The average value of the degree of association with other sentences is used. Table 5 shows the fifth sentence.
【0023】[0023]
【表1】 [Table 1]
【0024】図7に、図6の関連度に基づいた各文の関
連度の強さとカバレージとその積の値を示す(いずれも
100倍し、整数化してある。積は‘=>’の右に示
す)。関連度の強さに着目すると、第2文、第3文が.
33,.27と高く、第4,6,7,10文が.15〜.
17の範囲の第2グループをなしている。関連のカバレ
ージに着目すると、第5文、第7文が.91と高く、第
4,6文が.73で続く。FIG. 7 shows the strength of the degree of relevance of each sentence based on the degree of relevance of FIG. 6, the coverage, and the value of the product thereof (multiplied by 100 and integerized. The product is '=>'). (Shown on the right). Focusing on the strength of relevance, the second and third sentences are.
It is as high as 33, 27, and the fourth, sixth, seventh and tenth sentences are .15 ~.
It forms the second group of 17 ranges. Focusing on the related coverage, the fifth and seventh sentences are high at .91, and the fourth and sixth sentences continue at .73.
【0025】関連度の強さが高い文群は、見出しが高く
なっているように、文書のテーマに強く関わっている文
であることが想定される。また、関連のカバレージが高
い文は、新聞記事等で要約的な内容をもつといわれる第
1段落の文を含んでおり、全体の内容を含んでいる可能
性が高いことが想定される。逆に、この値が低い文は、
非常に個別的な話題を述べている文であると考えられ
る。このように、いずれの値もキーセンテンスを抽出す
るための文の重要度として意味のあるものになってい
る。It is assumed that a sentence group having a high degree of relevance is a sentence that is strongly related to the theme of the document, as the headline is high. In addition, the sentence having a high related coverage includes the sentence of the first paragraph which is said to have a summary content in newspaper articles and the like, and it is assumed that there is a high possibility that it includes the entire content. Conversely, a sentence with this low value
It is considered to be a sentence that describes a very specific topic. As described above, all the values are significant as the importance of the sentence for extracting the key sentence.
【0026】さらに、請求項6の発明では、この両者の
積によって、双方の効果を加味した文の重要度を与え
る。この重要度に基づくと、.10以上では、第2文、
第7文、第6文、第4文、第10文、第5文の順とな
り、見出し第2文、第1段落の3文(第4,5,6
文)、第2段落の第1文(第7文)と最終文(第10
文)がキーセンテンスとして抽出される。Further, in the invention of claim 6, the product of both of them gives the importance of the sentence in consideration of both effects. Based on this importance, for .10 and above, the second sentence,
The 7th sentence, the 6th sentence, the 4th sentence, the 10th sentence and the 5th sentence are in this order, and the 3rd sentence of the heading 2nd sentence and the 1st paragraph (4th, 5th, 6th
Sentence), the first sentence (seventh sentence) and the final sentence (second sentence) of the second paragraph
Sentence) is extracted as a key sentence.
【0027】請求項7の発明は、抽出されたキーセンテ
ンスを順に示して、抄録となすもので、上記の重要度に
基づけば、抄録として、図8(上位2文:第2文、第7
文)や図9(上位6文:第2文、第4文、第5文、第6
文、第7文、第10文)が得られる。According to the invention of claim 7, the extracted key sentences are shown in order to form an abstract. Based on the above-mentioned importance, the abstract is shown in FIG. 8 (upper 2 sentences: second sentence, seventh sentence).
Sentence) and FIG. 9 (upper 6 sentences: second sentence, fourth sentence, fifth sentence, sixth sentence)
Sentence, the 7th sentence, the 10th sentence) are obtained.
【0028】請求項8の発明は、検索要求として与えた
文やキーワード群に対して関連する文を本発明の文の関
連度により検索するものである。たとえば、見出し文が
重要なキーワードを含んでいると考えられることから、
見出し文の第1文「通常兵器関連の工業製品」を検索文
とすれば、第4文「通常兵器の部品や加工機械に転用で
きる工業製品の輸出規制が二十日、…」が検索され(図
10)、見出し文の第2文によれば、第1段落の3文と
最終段落の第1文が関連度が高い文として検索される
(図11)。According to the eighth aspect of the present invention, a sentence related to the sentence or keyword group given as the retrieval request is retrieved by the degree of relevance of the sentence of the present invention. For example, because the headline is considered to contain important keywords,
If the first sentence of the heading sentence, “Industrial products related to conventional weapons”, is used as the search sentence, the fourth sentence, “Export restrictions on industrial products that can be diverted to conventional weapon parts and processing machines, is ...” is searched. According to the second sentence of the headline sentence (FIG. 10), the three sentences of the first paragraph and the first sentence of the last paragraph are searched as the sentences having a high degree of association (FIG. 11).
【0029】[0029]
【発明の効果】請求項1の発明は、電子化された文書か
ら文を切り出す「文切り出し手段」と、文書内の1文と
他の1文との関連度を評価する「文間関連度評価手段」
と、文書内の他の文群との関連度に基づき、文の重要度
を評価する「文重要度評価手段」と、文の重要度に基づ
き、キーセンテンスを抽出する「キーセンテンス抽出手
段」とを有することを特徴としたものであり、請求項2
の発明は、請求項1の発明において、前記「文間関連度
評価手段」は、文からキーワード候補単語群を抽出し、
各々の文に含まれるキーワード候補単語間の類似度に基
づき関連度を評価すること、請求項3の発明は、請求項
2の発明において、前記「文間関連度評価手段」におけ
るキーワード候補単語間の類似度として、キーワード候
補単語の文字列間の文字の重複度を用いること、請求項
4の発明は、請求項1乃至3の発明において、前記「文
重要度評価手段」が、他の文群との関連度の強さと他の
文群との関連のカバレージ度の一方あるいは双方とによ
って文の重要度を評価すること、請求項5の発明は、請
求項4の発明において、前記他の文群との関連度の強さ
として、他の文との関連度の平均値、前記他の文群との
関連のカバレージ度として、他の文との関連度の有無の
平均値を用いること、請求項6の発明は、請求項4の発
明において、前記文の重要度として、他の文群との関連
度の強さと他の文群との関連のカバレージ度との積を用
いることを特徴としたものであり、これら請求項1乃至
請求項6の発明により、文書内の文間の関連度に基づい
た文の重要度によるキーセンテンスの抽出を可能とし、
特に、請求項2乃至請求項6で提供する文間の関連度と
文の重要度を評価する方式は、外部知識や構文解析等を
用いず、名詞判定程度の解析処理と文字列照合の処理に
よって簡単に得られる効果的な方式である。According to the first aspect of the present invention, the "sentence cut-out means" for cutting out a sentence from an electronic document and the "sentence relevance between sentences" for evaluating the degree of relevance between one sentence and another sentence in the document. Evaluation means "
And a "sentence importance evaluation means" that evaluates the importance of the sentence based on the degree of association with other sentence groups in the document, and a "key sentence extraction means" that extracts the key sentence based on the importance of the sentence. 3. The method according to claim 2, wherein
The invention of claim 1 is the invention of claim 1, wherein the “sentence relevance evaluation means” extracts a keyword candidate word group from a sentence,
The degree of relevance is evaluated based on the degree of similarity between the keyword candidate words included in each sentence. The invention of claim 3 is the invention of claim 2, wherein the keyword candidate words in the "inter-sentence relevance evaluation means" are The degree of overlap of characters between the character strings of the keyword candidate words is used as the degree of similarity. In the invention of claim 4, in the inventions of claims 1 to 3, the “sentence importance evaluation means” is another sentence. The importance of a sentence is evaluated based on one or both of the degree of association with a group and the degree of coverage of association with another sentence group. The invention of claim 5 is the invention of claim 4, wherein Use the average value of the degree of association with other sentences as the degree of association with the sentence group, and the average value of the degree of association with other sentences as the degree of coverage of the association with the other sentence group. The invention of claim 6 is the same as the invention of claim 4, Is used as the degree of importance of the relation between the degree of relevance to another sentence group and the degree of coverage of the relation to another sentence group. The invention according to any one of claims 1 to 6 is characterized in that Enables the extraction of key sentences based on the degree of importance of the sentence based on the degree of relation between the sentences in the document,
In particular, the method of evaluating the degree of association between sentences and the degree of importance of a sentence provided in claims 2 to 6 does not use external knowledge or syntactic analysis, but performs analysis processing of noun determination degree and character string matching processing. It is an effective method that can be easily obtained by.
【0030】請求項7の発明は、請求項1乃至6の発明
のいずれかのキーセンテンス抽出方式を用いて、文の重
要度の高いキーセンテンスを抽出し、文書内の文の順番
に並べることを特徴としたものであり、これにより、文
書内に文間の関連度に基づいた文の重要度によるキーセ
ンテンスの抽出、抄録作成を行うようにしたものであ
る。The invention of claim 7 uses the key sentence extraction method according to any one of claims 1 to 6 to extract key sentences with high importance in sentences and arrange them in the order of sentences in a document. In this way, a key sentence is extracted and an abstract is created in a document based on the degree of importance of the sentence based on the degree of association between the sentences.
【0031】請求項8の発明は、請求項1乃至3のいず
れかに記載のキーセンテンス抽出方式における「文間関
連度評価手段」に基づき、検索要求の文あるいは単語群
との関連度に基づき文書内の文を検索することを特徴と
したものであり、これにより、請求項1乃至請求項3の
発明の文間の関連度を利用して、文書内から選択した特
定の文、外部から与えた検索文やキーワード群と関連の
大きい文を検索する方式としても効果があるようにした
ものである。The invention according to claim 8 is based on the "sentence relevance evaluation means" in the key sentence extraction method according to any one of claims 1 to 3, and is based on the relevance to the sentence or word group of the search request. The present invention is characterized in that a sentence in a document is searched for. By using the degree of relevance between sentences according to the inventions of claims 1 to 3, a specific sentence selected from within the document or from the outside can be used. This is also effective as a method for searching a sentence that is highly related to a given search sentence or keyword group.
【図1】 本発明によるキーセンテンス抽出方式、抄録
方式、及び、文検索方式を説明するための構成図であ
る。FIG. 1 is a configuration diagram for explaining a key sentence extraction method, an abstract method, and a sentence search method according to the present invention.
【図2】 本発明の一実施例を説明するための電子化文
書の一例(原文)を示す図である。FIG. 2 is a diagram showing an example (original text) of a digitized document for explaining an embodiment of the present invention.
【図3】 図2に示した原文の文切り出し結果を示す図
である。FIG. 3 is a diagram showing a result of sentence segmentation of the original sentence shown in FIG.
【図4】 文ごとのキーワード候補単語を示す図であ
る。FIG. 4 is a diagram showing keyword candidate words for each sentence.
【図5】 第5文の他の文との関連度を示す図である。FIG. 5 is a diagram showing a degree of association of a fifth sentence with another sentence.
【図6】 文間の関連度マトリクスを示す図である。FIG. 6 is a diagram showing a relevance matrix between sentences.
【図7】 関連度の強さ、関連のカバレージ、及びその
積を示す図である。FIG. 7 is a diagram showing strength of association, coverage of association, and a product thereof.
【図8】 抄録の一例(抄録1)を示す図である。FIG. 8 is a diagram showing an example of an abstract (abstract 1).
【図9】 抄録の他の例(抄録2)を示す図である。FIG. 9 is a diagram showing another example of abstract (abstract 2).
【図10】 見出し第1文による関連文の検索結果を示
す図である。FIG. 10 is a diagram showing a search result of a related sentence based on a heading first sentence.
【図11】 見出し第2文による関連文の検索結果を示
す図である。FIG. 11 is a diagram showing a search result of a related sentence based on a heading second sentence.
1…電子化文書、2…文切り出し手段、3…文間関連度
評価手段、4…文重要度評価手段、5…キーセンテンス
抽出手段。DESCRIPTION OF SYMBOLS 1 ... Digitized document, 2 ... Sentence extraction means, 3 ... Inter-sentence degree evaluation means, 4 ... Sentence importance evaluation means, 5 ... Key sentence extraction means.
Claims (8)
り出し手段と、文書内の1文と他の1文との関連度を評
価する文間関連度評価手段と、文書内の他の文群との関
連度に基づいて、文の重要度を評価する文重要度評価手
段と、文の重要度に基づいて、キーセンテンスを抽出す
るキーセンテンス抽出手段とを有することを特徴とする
キーセンテンス抽出方式。1. A sentence segmentation unit for segmenting a sentence from an electronic document, an inter-sentence degree evaluation unit for assessing the degree of association between one sentence in the document and another sentence, and another sentence in the document. A key sentence characterized by having a sentence importance degree evaluation means for evaluating the importance degree of a sentence based on the degree of association with a group and a key sentence extraction means for extracting a key sentence based on the importance degree of the sentence. Extraction method.
ワード候補単語群を抽出し、各々の文に含まれるキーワ
ード候補単語間の類似度に基づいて関連度を評価するこ
とを特徴とする請求項1に記載のキーセンテンス抽出方
式。2. The inter-sentence relevance evaluation means extracts a keyword candidate word group from a sentence and evaluates the relevance based on the similarity between the keyword candidate words included in each sentence. The key sentence extraction method according to claim 1.
ード候補単語間の類似度として、キーワード候補単語の
文字列間の文字の重複度を用いることを特徴とする請求
項2に記載のキーセンテンス抽出方式。3. The key sentence extraction according to claim 2, wherein the degree of overlapping of characters between the character strings of the keyword candidate words is used as the similarity between the keyword candidate words in the inter-sentence degree evaluating unit. method.
関連度の強さと他の文群との関連のカバレージ度の一方
あるいは双方とによって文の重要度を評価することを特
徴とする請求項1乃至3のいずれかに記載のキーセンテ
ンス抽出方式。4. The sentence importance level evaluation means evaluates the importance level of a sentence based on one or both of the strength of the degree of association with another sentence group and the coverage degree of the association with another sentence group. The key sentence extraction method according to any one of claims 1 to 3.
他の文との関連度の平均値、前記他の文群との関連のカ
バレージ度として、他の文との関連度の有無の平均値を
用いることを特徴とする請求項4に記載のキーセンテン
ス抽出方式。5. As the strength of the degree of association with the other sentence group,
5. The key according to claim 4, wherein an average value of the degree of association with other sentences is used as the average value of the degree of association with other sentences and the coverage degree of the association with the other sentence group. Sentence extraction method.
連度の強さと他の文群との関連のカバレージ度との積を
用いることを特徴とする請求項4に記載のキーセンテン
ス抽出方式。6. The key according to claim 4, wherein a product of a degree of association with another sentence group and a coverage degree of association with another sentence group is used as the importance of the sentence. Sentence extraction method.
ンス抽出方式を用いて、文の重要度の高いキーセンテン
スを抽出し、文書内の文の順番に並べることを特徴とす
る抄録方式。7. An abstract method, wherein the key sentence extraction method according to any one of claims 1 to 6 is used to extract a key sentence having a high degree of importance in a sentence and arrange the sentences in a document in order.
センテンス抽出方式における文間関連度評価手段に基づ
いて、検索要求の文あるいは単語群との関連度に基づき
文書内の文を検索することを特徴とする文検索方式。8. A sentence in a document is searched based on the degree of relevance to a sentence or a word group in a search request, based on the inter-statement relevance evaluation means in the key sentence extraction method according to any one of claims 1 to 3. A sentence search method characterized by:
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP18289095A JP3594701B2 (en) | 1995-07-19 | 1995-07-19 | Key sentence extraction device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP18289095A JP3594701B2 (en) | 1995-07-19 | 1995-07-19 | Key sentence extraction device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH0934905A true JPH0934905A (en) | 1997-02-07 |
| JP3594701B2 JP3594701B2 (en) | 2004-12-02 |
Family
ID=16126196
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP18289095A Expired - Fee Related JP3594701B2 (en) | 1995-07-19 | 1995-07-19 | Key sentence extraction device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3594701B2 (en) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH09319768A (en) * | 1996-05-29 | 1997-12-12 | Oki Electric Ind Co Ltd | Main point extracting method |
| JPH10301956A (en) * | 1997-04-30 | 1998-11-13 | Ricoh Co Ltd | Key sentence extraction method, abstract method, and document display method |
| JPH11238064A (en) * | 1998-02-20 | 1999-08-31 | Toshiba Corp | Database creation method, information storage and retrieval device, and recording medium |
| JPH11259521A (en) * | 1998-03-13 | 1999-09-24 | Fujitsu Ltd | Document understanding support device, summary sentence generation method, and computer-readable recording medium storing document understanding support program |
| JPH11272664A (en) * | 1998-03-19 | 1999-10-08 | Sharp Corp | Text structure analyzer, abstracter, and program recording medium |
| JP2001034638A (en) * | 1999-07-27 | 2001-02-09 | Fujitsu Ltd | Index generation apparatus and method, and recording medium |
| US6424429B1 (en) | 1997-11-14 | 2002-07-23 | Ricoh Company, Ltd. | File system and a recording medium with a program used in the system stored therein |
| KR100434526B1 (en) * | 1997-06-12 | 2004-09-04 | 삼성전자주식회사 | Sentence extracting method from document by using context information and local document form |
| JP2009015795A (en) * | 2007-07-09 | 2009-01-22 | Nippon Telegr & Teleph Corp <Ntt> | Text segmentation device, text segmentation method, program, and recording medium |
| JP2015132899A (en) * | 2014-01-09 | 2015-07-23 | 日本放送協会 | Important word extraction device and program |
| JP2016538616A (en) * | 2013-09-29 | 2016-12-08 | ペキン ユニバーシティ ファウンダー グループ カンパニー,リミティド | Knowledge extraction method and system |
| CN111291214A (en) * | 2020-01-15 | 2020-06-16 | 腾讯音乐娱乐科技(深圳)有限公司 | Method and device for identifying retrieval text and storage medium |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH06215049A (en) * | 1993-01-20 | 1994-08-05 | Sharp Corp | Document summarizing device |
| JPH06259424A (en) * | 1993-03-02 | 1994-09-16 | Ricoh Co Ltd | Document display device and document summary device and digital copying device |
-
1995
- 1995-07-19 JP JP18289095A patent/JP3594701B2/en not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH06215049A (en) * | 1993-01-20 | 1994-08-05 | Sharp Corp | Document summarizing device |
| JPH06259424A (en) * | 1993-03-02 | 1994-09-16 | Ricoh Co Ltd | Document display device and document summary device and digital copying device |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH09319768A (en) * | 1996-05-29 | 1997-12-12 | Oki Electric Ind Co Ltd | Main point extracting method |
| JPH10301956A (en) * | 1997-04-30 | 1998-11-13 | Ricoh Co Ltd | Key sentence extraction method, abstract method, and document display method |
| KR100434526B1 (en) * | 1997-06-12 | 2004-09-04 | 삼성전자주식회사 | Sentence extracting method from document by using context information and local document form |
| US6424429B1 (en) | 1997-11-14 | 2002-07-23 | Ricoh Company, Ltd. | File system and a recording medium with a program used in the system stored therein |
| JPH11238064A (en) * | 1998-02-20 | 1999-08-31 | Toshiba Corp | Database creation method, information storage and retrieval device, and recording medium |
| JPH11259521A (en) * | 1998-03-13 | 1999-09-24 | Fujitsu Ltd | Document understanding support device, summary sentence generation method, and computer-readable recording medium storing document understanding support program |
| JPH11272664A (en) * | 1998-03-19 | 1999-10-08 | Sharp Corp | Text structure analyzer, abstracter, and program recording medium |
| JP2001034638A (en) * | 1999-07-27 | 2001-02-09 | Fujitsu Ltd | Index generation apparatus and method, and recording medium |
| JP2009015795A (en) * | 2007-07-09 | 2009-01-22 | Nippon Telegr & Teleph Corp <Ntt> | Text segmentation device, text segmentation method, program, and recording medium |
| JP2016538616A (en) * | 2013-09-29 | 2016-12-08 | ペキン ユニバーシティ ファウンダー グループ カンパニー,リミティド | Knowledge extraction method and system |
| JP2015132899A (en) * | 2014-01-09 | 2015-07-23 | 日本放送協会 | Important word extraction device and program |
| CN111291214A (en) * | 2020-01-15 | 2020-06-16 | 腾讯音乐娱乐科技(深圳)有限公司 | Method and device for identifying retrieval text and storage medium |
| CN111291214B (en) * | 2020-01-15 | 2023-09-12 | 腾讯音乐娱乐科技(深圳)有限公司 | Search text recognition method, search text recognition device and storage medium |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3594701B2 (en) | 2004-12-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5278980A (en) | Iterative technique for phrase query formation and an information retrieval system employing same | |
| Kannan et al. | Preprocessing techniques for text mining | |
| US5937422A (en) | Automatically generating a topic description for text and searching and sorting text by topic using the same | |
| Vossen | Extending, trimming and fusing WordNet for technical documents | |
| KR20010015368A (en) | A method of retrieving data and a data retrieving apparatus | |
| KR100406671B1 (en) | Method of searching for piracy and steal on a piece of writing | |
| JP3594701B2 (en) | Key sentence extraction device | |
| JP2572314B2 (en) | Keyword extraction device | |
| CN111209737B (en) | Method for screening out noise document and computer readable storage medium | |
| Chaibi et al. | Topic segmentation for textual document written in arabic language | |
| JPH0844771A (en) | Information retrieval device | |
| Ramirez et al. | ACE: improving search engines via Automatic Concept Extraction | |
| Boleda et al. | CUCWeb: a Catalan corpus built from the Web | |
| Atwan et al. | Impact of stemmer on arabic text retrieval | |
| EP3203384A1 (en) | Method, device, and computer program for providing a definition or a translation of a word belonging to a sentence as a function of neighbouring words and of databases | |
| KR20020054254A (en) | Analysis Method for Korean Morphology using AVL+Trie Structure | |
| Kiyota et al. | Automatic summarization of Japanese sentences and its application to a WWW KWIC index | |
| JP3578618B2 (en) | Document splitting device | |
| Panunzi et al. | Keyword extraction in open-domain multilingual textual resources | |
| Rosner et al. | MultiSum: query-based multi-document summarisation | |
| Yoshioka et al. | On a combination of probabilistic and Boolean IR models for WWW document retrieval | |
| Bortolin et al. | SEUPD@ CLEF: Team NEON. A Memoryless Approach To Longitudinal Evaluation | |
| Kozłowski | PKE: a novel Polish keywords extraction method | |
| Saetia et al. | Enhancing Thai Keyphrase Extraction Using Syntactic Relations: An Adoption of Universal Dependencies Framework | |
| Tuni et al. | Afaan Oromo Hybrid Modelling: A Case based Optimized Intelligence in Information Retrieval System’s Localization |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040302 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040412 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040831 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040901 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080910 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080910 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090910 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090910 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100910 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110910 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120910 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130910 Year of fee payment: 9 |
|
| LAPS | Cancellation because of no payment of annual fees |