[go: up one dir, main page]

JPH0945757A - Electrostatic chuck - Google Patents

Electrostatic chuck

Info

Publication number
JPH0945757A
JPH0945757A JP19385095A JP19385095A JPH0945757A JP H0945757 A JPH0945757 A JP H0945757A JP 19385095 A JP19385095 A JP 19385095A JP 19385095 A JP19385095 A JP 19385095A JP H0945757 A JPH0945757 A JP H0945757A
Authority
JP
Japan
Prior art keywords
base plate
ceramic body
indium
electrostatic chuck
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19385095A
Other languages
Japanese (ja)
Other versions
JP3485390B2 (en
Inventor
Kazuichi Kuchimachi
和一 口町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP19385095A priority Critical patent/JP3485390B2/en
Priority to US08/693,532 priority patent/US5886863A/en
Publication of JPH0945757A publication Critical patent/JPH0945757A/en
Application granted granted Critical
Publication of JP3485390B2 publication Critical patent/JP3485390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

(57)【要約】 【課題】セラミック体とベース板をシリコーン接着剤で
接合した静電チャックでは、シリコーン接着剤の熱伝導
率が比較的低いため、接着厚みのバラツキがあるとウェ
ハ等の被吸着物を均一な温度に保つことが困難であっ
た。 【解決手段】内部電極12を埋設し吸着面11aを有す
るセラミック体11と、ベース板13とをインジウム又
はインジウム合金の接着層14で接合して静電チャック
10を構成する。
(57) Abstract: In an electrostatic chuck in which a ceramic body and a base plate are bonded with a silicone adhesive, the thermal conductivity of the silicone adhesive is relatively low, so if there is a variation in the bonding thickness, the wafer or the like will be covered. It was difficult to keep the adsorbate at a uniform temperature. SOLUTION: An electrostatic chuck 10 is constructed by bonding a ceramic body 11 having an internal electrode 12 embedded therein and having a suction surface 11a and a base plate 13 with an adhesive layer 14 of indium or indium alloy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば半導体製造
装置においてウェハの固定、矯正、搬送等を行うために
用いられる静電チャックに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chuck used for fixing, straightening, and carrying a wafer in a semiconductor manufacturing apparatus, for example.

【0002】[0002]

【従来の技術】静電チャックは半導体製造装置におい
て、被吸着物である半導体ウェハを固定してエッチング
等の加工を行ったり、半導体ウェハを吸着固定して反り
を矯正したり、半導体ウェハを吸着して搬送する工程で
用いられている。
2. Description of the Related Art An electrostatic chuck is a semiconductor manufacturing apparatus in which a semiconductor wafer, which is an object to be adsorbed, is fixed to perform processing such as etching, a semiconductor wafer is adsorbed and fixed to correct warpage, and a semiconductor wafer is adhered It is used in the process of transporting.

【0003】このような静電チャックの構造は、図1に
示すように内部電極12を埋設したセラミック体11の
表面を吸着面11aとし、このセラミック体11を金属
製のベース板13に接合してなるものであった。そし
て、上記内部電極12と被吸着物20間に電圧を印加す
ることによって、静電吸着力を発生させ、被吸着物20
を吸着面11aに吸着固定するようになっている。
In the structure of such an electrostatic chuck, as shown in FIG. 1, the surface of a ceramic body 11 having an internal electrode 12 embedded therein is used as a suction surface 11a, and the ceramic body 11 is bonded to a metal base plate 13. It was a thing. Then, an electrostatic attraction force is generated by applying a voltage between the internal electrode 12 and the attracted object 20, and the attracted object 20 is generated.
Is sucked and fixed to the suction surface 11a.

【0004】上記ベース板13と接合するのは、各種装
置への組付けを容易にするとともに、ベース板13内に
冷却機構(不図示)を備えてウェハ等の被吸着物20を
冷却するためであった。この金属製のベース板13とセ
ラミック体11の間には、メタライズ、有機接着剤、ガ
ラスなどの接着層14を介在させて接合するが、温度変
化が生じると金属製のベース板13とセラミック体11
との熱膨張差のために、セラミック体11が割れてしま
うという問題があった。
Joining with the base plate 13 is for facilitating the assembling to various devices and for cooling the object to be adsorbed 20 such as a wafer by providing a cooling mechanism (not shown) in the base plate 13. Met. The metal base plate 13 and the ceramic body 11 are bonded to each other with an adhesive layer 14 made of metallization, an organic adhesive, glass or the like interposed therebetween. However, when a temperature change occurs, the metal base plate 13 and the ceramic body 11 are joined. 11
There is a problem that the ceramic body 11 is cracked due to the difference in thermal expansion between

【0005】そこで、上記ベース板13としてタングス
テン(W)、モリブデン(Mo)、コバール等の低熱膨
張金属を用いて、セラミック体11との熱膨張差を小さ
くすることが行われている。あるいは、ベース板13を
アルミニウム(Al)とし、接着層14としてシリコー
ン接着剤を用いて熱膨張差を吸収することを本出願人は
提案している。(特開平2−287344号公報参
照)。
Therefore, a low thermal expansion metal such as tungsten (W), molybdenum (Mo) or Kovar is used as the base plate 13 to reduce the difference in thermal expansion from the ceramic body 11. Alternatively, the present applicant proposes that the base plate 13 is made of aluminum (Al) and the adhesive layer 14 is made of a silicone adhesive to absorb the difference in thermal expansion. (See Japanese Patent Laid-Open No. 2-287344).

【0006】[0006]

【発明が解決しようとする課題】ところが、ベース板1
3としてタングステン又はモリブデンを用いたもので
は、加工性が悪いため内部に冷却機構を設けることが困
難であり、高価であるという問題があった。また、コバ
ールを用いたものでは、熱伝導率が高くないため、ウェ
ハ等の被吸着物20の冷却効果が悪いという問題点があ
った。
However, the base plate 1
In the case of using tungsten or molybdenum as 3, there is a problem that it is difficult to provide a cooling mechanism inside because of poor workability and it is expensive. Further, in the case of using Kovar, there is a problem that the effect of cooling the adsorbed material 20 such as a wafer is poor because the thermal conductivity is not high.

【0007】一方、セラミック体11とベース板13を
シリコーン接着剤からなる接着層14で接合したもので
は、シリコーン接着剤の熱伝導率が比較的低いため、接
着厚みのバラツキがあるとウェハ等の被吸着物20を均
一な温度に保つことが困難であった。また、ウェハ処理
工程の高速化に伴い、例えばプラズマエッチングにおけ
る高電力化が要求されるが、シリコーン接着剤を用いた
ものではウェハを充分に冷却することができないという
問題点があった。
On the other hand, in the case where the ceramic body 11 and the base plate 13 are joined by the adhesive layer 14 made of a silicone adhesive, the thermal conductivity of the silicone adhesive is relatively low, so that if the adhesive thickness varies, a wafer or the like may be present. It was difficult to keep the adsorbent 20 at a uniform temperature. Further, as the wafer processing speed is increased, higher power is required for plasma etching, for example, but there is a problem that the wafer cannot be sufficiently cooled by using a silicone adhesive.

【0008】[0008]

【課題を解決するための手段】そこで本発明は、内部電
極を埋設し吸着面を有するセラミック体と、ベース板と
をインジウム又はインジウム合金からなる接着層を介し
て接合し、静電チャックを構成したものである。
Therefore, according to the present invention, an electrostatic chuck is constructed by bonding a ceramic body having an internal electrode embedded therein and having a suction surface to a base plate via an adhesive layer made of indium or an indium alloy. It was done.

【0009】即ち、インジウム又はインジウム合金は、
熱伝導率が高く、かつ柔軟性のある金属であるため、ウ
ェハ等の被吸着物に加わった熱を均一かつ急速に放出で
きるとともに、セラミック体とベース板との熱膨張差を
吸収することができる。
That is, indium or indium alloy is
Since it is a flexible metal with high thermal conductivity, it can uniformly and rapidly release the heat applied to the object to be adsorbed such as a wafer, and also absorb the difference in thermal expansion between the ceramic body and the base plate. it can.

【0010】[0010]

【発明の実施の形態】以下本発明の実施形態を図によっ
て説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1に示すように、本発明の静電チャック
10の構造は、内部電極12を埋設したセラミック体1
1の表面を吸着面11aとし、このセラミック体11の
裏面をインジウム又はインジウム合金から成る接着層1
4を介して金属製のベース板13に接合したものであ
る。そして、電源15より上記内部電極12と被吸着物
20間に電圧を印加し、静電吸着力を発生させて被吸着
物20を吸着面11aに吸着固定するようになってい
る。また、ウェハを冷却するためにベース板13の内部
に冷却水を循環させるような冷却機構(不図示)を備え
ることもできる。
As shown in FIG. 1, the structure of the electrostatic chuck 10 of the present invention is such that the ceramic body 1 in which the internal electrodes 12 are embedded.
The front surface of the ceramic body 11 is an adsorption surface 11a, and the back surface of the ceramic body 11 is an adhesive layer 1 made of indium or an indium alloy.
It is joined to the metal base plate 13 via 4. Then, a voltage is applied from the power source 15 between the internal electrode 12 and the object to be adsorbed 20 to generate an electrostatic adsorption force to adsorb and fix the object to be adsorbed 20 on the adsorption surface 11a. Further, a cooling mechanism (not shown) for circulating cooling water inside the base plate 13 for cooling the wafer may be provided.

【0012】上記セラミック体11は、アルミナ(Al
2 3 )又は窒化アルミニウム(AlN)等を主成分と
するセラミックス、あるいはアルミナの単結晶体である
サファイア等から成っており、内部電極12はタングス
テン等の金属から形成されている。
The ceramic body 11 is made of alumina (Al
2 O 3 ) or ceramics containing aluminum nitride (AlN) as a main component, or sapphire which is a single crystal of alumina, and the internal electrodes 12 are formed of a metal such as tungsten.

【0013】また、ベース板13の材質としては、アル
ミニウム(Al)等の金属、あるいはアルミナ等のセラ
ミックスを用いるが、熱伝導性と耐プラズマ性が高く、
かつ加工性の良いアルミニウムが好適である。
As the material of the base plate 13, a metal such as aluminum (Al) or a ceramic such as alumina is used, which has high thermal conductivity and plasma resistance.
Aluminum, which has good workability, is preferable.

【0014】そして、両者を接合する接着層14として
用いるインジウム又はインジウム合金とは、40〜10
0重量%のインジウム(In)と、60〜0重量%のS
n,Ag,Pb,Ab,Zn,Al等の少なくとも一種
以上とからなるものであり、具体的な組成としては、表
1に示すようなものを用いる。
The indium or indium alloy used as the adhesive layer 14 for joining the two is 40 to 10
0% by weight of indium (In) and 60 to 0% by weight of S
It is composed of at least one or more of n, Ag, Pb, Ab, Zn, Al and the like, and the concrete composition is as shown in Table 1.

【0015】これらのインジウム又はインジウム合金
は、表2に示すように各種金属の中でも硬度が低く柔軟
性に優れており、かつ表3に示すようにシリコーン接着
剤よりも遙かに高い熱伝導率を有している。そのため、
セラミック体11とベース板13との熱膨張差を吸収す
るとともに、ウェハ等の被吸着物20に加えられた熱を
急速かつ均一に放出することができる。
These indium or indium alloys have low hardness and excellent flexibility among various metals as shown in Table 2 and have much higher thermal conductivity than silicone adhesives as shown in Table 3. have. for that reason,
It is possible to absorb the difference in thermal expansion between the ceramic body 11 and the base plate 13 and to quickly and uniformly release the heat applied to the object to be adsorbed 20 such as a wafer.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】また、セラミック体11とベース板13と
の接合部の拡大図を図2に示すように、セラミック体1
1の接合面にはメタライズ層16を、ベース板13の接
合面にはメッキ層17をそれぞれ形成し、これらの間に
接着層14を介在して接合してある。上記メタライズ層
16及びメッキ層17は、銀、銅、ニッケル等のインジ
ウムとの濡れ性の良い金属から成り、これらのメタライ
ズ層16及びメッキ層17を備えることにより、接合強
度を高くすることができる。
Further, as shown in FIG. 2 which is an enlarged view of the joint between the ceramic body 11 and the base plate 13, the ceramic body 1
A metallized layer 16 is formed on the joint surface of No. 1 and a plating layer 17 is formed on the joint surface of the base plate 13, and an adhesive layer 14 is interposed between them to join them. The metallized layer 16 and the plated layer 17 are made of a metal having a good wettability with indium such as silver, copper and nickel. By providing the metallized layer 16 and the plated layer 17, the bonding strength can be increased. .

【0020】なお、ベース板13をセラミックスで形成
する場合は、メッキ層17の代わりにメタライズ層を形
成すれば良い。
When the base plate 13 is made of ceramics, a metallized layer may be formed instead of the plated layer 17.

【0021】さらに、接着層14の厚みtは20〜10
0μmの範囲内とすることが好ましい。これは、20μ
m未満であると接着層14内部に欠陥が生じて接合力が
低くなり、一方100μmを超えると静電チャック10
の取付精度が悪くなってしまうためである。
Further, the thickness t of the adhesive layer 14 is 20 to 10
It is preferably within the range of 0 μm. This is 20μ
If it is less than m, a defect is generated inside the adhesive layer 14 and the bonding force is lowered, while if it exceeds 100 μm, the electrostatic chuck 10 is used.
This is because the mounting accuracy of becomes worse.

【0022】また、本発明の他の実施例として、図3に
示すように、接着層14の周囲に保護部材18を備える
こともできる。この保護部材18は、フッ素系樹脂のO
リングやエポキシ系接着剤等の耐プラズマ性に優れた材
質から成り、プラズマに直接曝されるような環境でも使
用することができる。
As another embodiment of the present invention, a protective member 18 may be provided around the adhesive layer 14 as shown in FIG. The protective member 18 is made of fluorine resin O.
It is made of a material having excellent plasma resistance such as a ring and an epoxy adhesive, and can be used even in an environment where it is directly exposed to plasma.

【0023】次に、本発明の静電チャック10の製造方
法を説明する。
Next, a method of manufacturing the electrostatic chuck 10 of the present invention will be described.

【0024】まず内部電極12を埋設したセラミック体
11を作製するが、これはグリーンシートの間に内部電
極12を挟み込んで積層し一体焼成したり、あるいはセ
ラミック体の表面に内部電極12を形成した後、これを
覆うようにCVD法等でセラミック層を形成することに
よって得る。
First, a ceramic body 11 having an internal electrode 12 embedded therein is prepared. The internal electrode 12 is sandwiched between green sheets to be laminated and integrally fired, or the internal electrode 12 is formed on the surface of the ceramic body. After that, a ceramic layer is formed by a CVD method or the like so as to cover it.

【0025】このセラミック体11の裏側の接合面にス
クリーン印刷によって銀ペーストを塗布し、700℃程
度で焼き付けを行ってメタライズ層16を形成する。一
方、アルミニウム等の金属製ベース板13の表面には銀
のメッキ層17を形成しておく。
A silver paste is applied to the bonding surface on the back side of the ceramic body 11 by screen printing and baked at about 700 ° C. to form a metallized layer 16. On the other hand, a silver plating layer 17 is formed on the surface of the base plate 13 made of metal such as aluminum.

【0026】その後、インジウム粉末をアルコールで溶
かしたペーストを、上記セラミック体11及びベース板
13のメタライズ層16とメッキ層17の上に塗布す
る。塗布方法は、200〜400メッシュのスクリーン
を用いて印刷し、最終的な厚みtが20〜100μmと
なるようにする。塗布後、アルコールが充分蒸発するま
で乾燥させ、セラミック体11とベース板13を重ね合
わせ、インジウムの液相温度(157℃)よりも高い温
度まで昇温し、インジウムの接着層14がメタライズ層
16とメッキ層17に充分濡れた状態とした後、降温さ
せれば良い。
Thereafter, a paste obtained by dissolving indium powder in alcohol is applied on the metallized layer 16 and the plated layer 17 of the ceramic body 11 and the base plate 13. As a coating method, printing is performed using a screen of 200 to 400 mesh so that the final thickness t becomes 20 to 100 μm. After the application, it is dried until the alcohol is sufficiently evaporated, the ceramic body 11 and the base plate 13 are overlapped with each other, and the temperature is raised to a temperature higher than the liquidus temperature of indium (157 ° C.), so that the indium adhesive layer 14 becomes the metallized layer 16. After making the plating layer 17 sufficiently wet, the temperature may be lowered.

【0027】なお、接着層14の形成方法として、イン
ジウムの箔を用いることもできる。即ち、予め厚みが2
0〜100μmとなるようにしたインジウム箔を、上記
メタライズ層16とメッキ層17の間に挟み込んで、セ
ラミック体11とベース板13を重ね合わせ、インジウ
ムの液相温度(157℃)よりも高い温度まで昇温して
接合することもできる。
As a method of forming the adhesive layer 14, indium foil can be used. That is, the thickness is 2
An indium foil having a thickness of 0 to 100 μm is sandwiched between the metallized layer 16 and the plated layer 17, the ceramic body 11 and the base plate 13 are superposed, and the temperature is higher than the liquidus temperature of indium (157 ° C.). It is also possible to raise the temperature up to and join.

【0028】なお、図1では単極型の静電チャックを示
したが、複数の内部電極を備え、これらの内部電極間に
通電するようにした双極型の静電チャックとすることも
可能である。
Although the single-pole type electrostatic chuck is shown in FIG. 1, it is also possible to use a bipolar type electrostatic chuck having a plurality of internal electrodes and energizing between these internal electrodes. is there.

【0029】以上のような本発明の静電チャック10
は、半導体製造工程におけるウェハの搬送や加工時に吸
着固定するために用いることができるが、その他に液晶
基板等の各種基板の吸着固定にも用いることができる。
The electrostatic chuck 10 of the present invention as described above.
Can be used for adsorbing and fixing wafers during transportation and processing in a semiconductor manufacturing process, but can also be used for adsorbing and fixing various substrates such as liquid crystal substrates.

【0030】[0030]

【実施例】ここで、図1に示す本発明の静電チャックを
試作し、比較例として接着層14をシリコーン接着剤で
形成したものを用意した。それぞれ、接着層14の厚み
tのばらつき量を測定した後、プラズマエッチング装置
に組み込んで被吸着物20の均熱性を比較する実験を行
った。被吸着物20として、直径8インチのシリコンウ
ェハを用い、4kWの熱量(プラズマ)を入射した場合
の、ウェハ上の温度のばらつき幅を測定した。
EXAMPLES Here, an electrostatic chuck of the present invention shown in FIG. 1 was prototyped, and a comparative example in which the adhesive layer 14 was formed of a silicone adhesive was prepared. After measuring the amount of variation in the thickness t of the adhesive layer 14, the experiment was carried out by incorporating the adhesive layer 14 into a plasma etching apparatus and comparing the thermal uniformity of the adsorbed material 20. A silicon wafer having a diameter of 8 inches was used as the object to be adsorbed 20, and the variation width of the temperature on the wafer was measured when a heat quantity (plasma) of 4 kW was incident.

【0031】結果は表4に示すように、接着層14とし
てシリコーン接着剤を用いたものでは、ウェハ上に5〜
20℃の温度ばらつきが生じた。これは、接着層14の
熱伝導率が低いために、厚みのばらつきに応じて冷却性
が部分的に異なるためである。
The results are shown in Table 4, in the case of using the silicone adhesive as the adhesive layer 14, 5 to 5 are formed on the wafer.
There was a temperature variation of 20 ° C. This is because the adhesive layer 14 has a low thermal conductivity, so that the cooling property is partially different depending on the variation in thickness.

【0032】これに対し、接着層14としてインジウム
を用いた本発明実施例では、ウェハ上の温度ばらつきが
1℃以下と低かった。これはインジウムからなる接着層
14の熱伝導率が高いため、厚みtにばらつきがあって
も冷却性に影響を与えないためである。このように、本
発明の静電チャック10は、接着層14の厚みにばらつ
きがあってもウェハの温度を均一に保持できることがわ
かる。
On the other hand, in the example of the present invention using indium as the adhesive layer 14, the temperature variation on the wafer was as low as 1 ° C. or less. This is because the adhesive layer 14 made of indium has a high thermal conductivity, so that even if the thickness t varies, the cooling property is not affected. As described above, it is understood that the electrostatic chuck 10 of the present invention can maintain the temperature of the wafer uniformly even if the thickness of the adhesive layer 14 varies.

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【発明の効果】以上のように本発明によれば、内部電極
を埋設し吸着面を有するセラミック体と、ベース板とを
インジウム又はインジウム合金からなる接着層を介して
接合し、静電チャックを構成したことによって、インジ
ウム又はインジウム合金は柔軟性があるためセラミック
体とベース板との熱膨張差を吸収することができ、急激
な温度変化があってもセラミック体が破損することを防
止できる。
As described above, according to the present invention, the ceramic body having the internal electrodes embedded therein and having the adsorption surface and the base plate are joined together via the adhesive layer made of indium or indium alloy to form an electrostatic chuck. With this structure, since the indium or indium alloy is flexible, the difference in thermal expansion between the ceramic body and the base plate can be absorbed, and the ceramic body can be prevented from being damaged even if there is a rapid temperature change.

【0035】また、インジウム又はインジウム合金は熱
伝導率が高いため、被吸着物に熱が加わっても均一にか
つ急速に冷却することができる。そのため、半導体製造
工程に用いれば、高電力のプラズマを使用することがで
き、プロセスを高速化し、パターンを微細化し、ウェハ
を大口径化することができる。また、ウェハの均熱性を
高められることからICチップの歩留りを向上させるこ
とができるなどの多くの特徴をもった静電チャックを提
供できる。
Further, since indium or an indium alloy has a high thermal conductivity, even if heat is applied to the object to be adsorbed, it can be cooled uniformly and rapidly. Therefore, when used in a semiconductor manufacturing process, high-power plasma can be used, the process can be sped up, the pattern can be miniaturized, and the diameter of the wafer can be increased. Further, it is possible to provide an electrostatic chuck having many characteristics such that the yield of IC chips can be improved because the soaking property of the wafer can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】一般的な静電チャックの構造を示す断面図であ
る。
FIG. 1 is a cross-sectional view showing a structure of a general electrostatic chuck.

【図2】本発明の静電チャックの接合部を示す断面図で
ある。
FIG. 2 is a sectional view showing a joint portion of the electrostatic chuck of the present invention.

【図3】本発明の静電チャックの他の実施例の接合部を
示す断面図である。
FIG. 3 is a cross-sectional view showing a joint portion of another embodiment of the electrostatic chuck of the present invention.

【符号の説明】[Explanation of symbols]

10 :静電チャック 11 :セラミック体 11a:吸着面 12 :内部電極 13 :ベース板 14 :接着層 15 :電源 16 :メタライズ層 17 :メッキ層 18 :保護部材 10: Electrostatic chuck 11: Ceramic body 11a: Adsorption surface 12: Internal electrode 13: Base plate 14: Adhesive layer 15: Power supply 16: Metallization layer 17: Plating layer 18: Protective member

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】内部電極を埋設し吸着面を有するセラミッ
ク体と、ベース板とをインジウム又はインジウム合金か
らなる接着層を介して接合したことを特徴とする静電チ
ャック。
1. An electrostatic chuck characterized in that a ceramic body having an internal electrode embedded therein and having an attracting surface is joined to a base plate via an adhesive layer made of indium or an indium alloy.
JP19385095A 1995-05-09 1995-07-28 Electrostatic chuck Expired - Fee Related JP3485390B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19385095A JP3485390B2 (en) 1995-07-28 1995-07-28 Electrostatic chuck
US08/693,532 US5886863A (en) 1995-05-09 1996-07-25 Wafer support member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19385095A JP3485390B2 (en) 1995-07-28 1995-07-28 Electrostatic chuck

Publications (2)

Publication Number Publication Date
JPH0945757A true JPH0945757A (en) 1997-02-14
JP3485390B2 JP3485390B2 (en) 2004-01-13

Family

ID=16314797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19385095A Expired - Fee Related JP3485390B2 (en) 1995-05-09 1995-07-28 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP3485390B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054928A1 (en) * 1998-04-21 1999-10-28 Applied Materials, Inc. Electrostatic chuck formed by integral ceramic and metal sintering
US6280584B1 (en) * 1998-07-29 2001-08-28 Applied Materials, Inc. Compliant bond structure for joining ceramic to metal
US6462928B1 (en) 1999-05-07 2002-10-08 Applied Materials, Inc. Electrostatic chuck having improved electrical connector and method
US6490146B2 (en) 1999-05-07 2002-12-03 Applied Materials Inc. Electrostatic chuck bonded to base with a bond layer and method
US6490144B1 (en) * 1999-11-29 2002-12-03 Applied Materials, Inc. Support for supporting a substrate in a process chamber
US6538872B1 (en) 2001-11-05 2003-03-25 Applied Materials, Inc. Electrostatic chuck having heater and method
US6820795B2 (en) * 2001-09-05 2004-11-23 Ngk Insulators, Ltd. Joined article of a supporting member for a semiconductor wafer and a method of producing the same
US6838646B2 (en) 2002-08-22 2005-01-04 Sumitomo Osaka Cement Co., Ltd. Susceptor device
JP2006044087A (en) * 2004-08-05 2006-02-16 Shinko Electric Co Ltd Thermal head and printer
EP1258918A4 (en) * 2000-01-21 2006-12-06 Tocalo Co Ltd Electrostatic chuck member and method of producing the same
JP2007110023A (en) * 2005-10-17 2007-04-26 Shinko Electric Ind Co Ltd Substrate holding apparatus
US7381673B2 (en) 2003-10-27 2008-06-03 Kyocera Corporation Composite material, wafer holding member and method for manufacturing the same
WO2008068567A3 (en) * 2006-05-01 2008-11-20 Beijert Engineering Integrated circuit probe card analyzer
US7480129B2 (en) 2004-03-31 2009-01-20 Applied Materials, Inc. Detachable electrostatic chuck for supporting a substrate in a process chamber
US7589950B2 (en) 2006-10-13 2009-09-15 Applied Materials, Inc. Detachable electrostatic chuck having sealing assembly
US7678197B2 (en) 2002-08-09 2010-03-16 Sumitomo Osaka Cement Co., Ltd. Susceptor device
USRE42175E1 (en) 2002-04-16 2011-03-01 Canon Anelva Corporation Electrostatic chucking stage and substrate processing apparatus
JP2011238682A (en) * 2010-05-07 2011-11-24 Ngk Insulators Ltd Wafer mounting device and manufacturing method for the same
JP2013516084A (en) * 2009-12-29 2013-05-09 ノベルス・システムズ・インコーポレーテッド Electrostatic chuck and repair method thereof
US9275887B2 (en) 2006-07-20 2016-03-01 Applied Materials, Inc. Substrate processing with rapid temperature gradient control
JP2016031956A (en) * 2014-07-28 2016-03-07 株式会社日立ハイテクノロジーズ Plasma processing device
US9969022B2 (en) 2010-09-28 2018-05-15 Applied Materials, Inc. Vacuum process chamber component and methods of making
JP2021111688A (en) * 2020-01-10 2021-08-02 日本特殊陶業株式会社 Retainer
WO2025154609A1 (en) * 2024-01-15 2025-07-24 京セラ株式会社 Sample holder

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11575335B2 (en) 2020-03-26 2023-02-07 Samsung Electronics Co., Ltd. Electrostatic chuck device
JP7633794B2 (en) 2020-03-26 2025-02-20 三星電子株式会社 Electrostatic Chuck Device
CN115066408B (en) 2020-08-21 2023-12-05 日本特殊陶业株式会社 Joint body, holding device and electrostatic chuck
JP7498283B2 (en) 2020-09-02 2024-06-11 日本特殊陶業株式会社 Joint, holding device, and electrostatic chuck
US12434341B2 (en) 2022-04-22 2025-10-07 Samsung Electronics Co., Ltd. Electrostatic chuck apparatus

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054928A1 (en) * 1998-04-21 1999-10-28 Applied Materials, Inc. Electrostatic chuck formed by integral ceramic and metal sintering
US6104596A (en) * 1998-04-21 2000-08-15 Applied Materials, Inc. Apparatus for retaining a subtrate in a semiconductor wafer processing system and a method of fabricating same
US6280584B1 (en) * 1998-07-29 2001-08-28 Applied Materials, Inc. Compliant bond structure for joining ceramic to metal
US6462928B1 (en) 1999-05-07 2002-10-08 Applied Materials, Inc. Electrostatic chuck having improved electrical connector and method
US6490146B2 (en) 1999-05-07 2002-12-03 Applied Materials Inc. Electrostatic chuck bonded to base with a bond layer and method
US6490144B1 (en) * 1999-11-29 2002-12-03 Applied Materials, Inc. Support for supporting a substrate in a process chamber
EP1258918A4 (en) * 2000-01-21 2006-12-06 Tocalo Co Ltd Electrostatic chuck member and method of producing the same
US6820795B2 (en) * 2001-09-05 2004-11-23 Ngk Insulators, Ltd. Joined article of a supporting member for a semiconductor wafer and a method of producing the same
US6538872B1 (en) 2001-11-05 2003-03-25 Applied Materials, Inc. Electrostatic chuck having heater and method
USRE42175E1 (en) 2002-04-16 2011-03-01 Canon Anelva Corporation Electrostatic chucking stage and substrate processing apparatus
US7678197B2 (en) 2002-08-09 2010-03-16 Sumitomo Osaka Cement Co., Ltd. Susceptor device
US6838646B2 (en) 2002-08-22 2005-01-04 Sumitomo Osaka Cement Co., Ltd. Susceptor device
US7381673B2 (en) 2003-10-27 2008-06-03 Kyocera Corporation Composite material, wafer holding member and method for manufacturing the same
CN100429756C (en) * 2003-10-27 2008-10-29 京瓷株式会社 Composite material, wafer holding member and method for manufacturing the same
US7480129B2 (en) 2004-03-31 2009-01-20 Applied Materials, Inc. Detachable electrostatic chuck for supporting a substrate in a process chamber
US7697260B2 (en) 2004-03-31 2010-04-13 Applied Materials, Inc. Detachable electrostatic chuck
US7907384B2 (en) 2004-03-31 2011-03-15 Applied Materials, Inc. Detachable electrostatic chuck for supporting a substrate in a process chamber
JP2006044087A (en) * 2004-08-05 2006-02-16 Shinko Electric Co Ltd Thermal head and printer
JP2007110023A (en) * 2005-10-17 2007-04-26 Shinko Electric Ind Co Ltd Substrate holding apparatus
WO2008068567A3 (en) * 2006-05-01 2008-11-20 Beijert Engineering Integrated circuit probe card analyzer
US9275887B2 (en) 2006-07-20 2016-03-01 Applied Materials, Inc. Substrate processing with rapid temperature gradient control
US10257887B2 (en) 2006-07-20 2019-04-09 Applied Materials, Inc. Substrate support assembly
US9883549B2 (en) 2006-07-20 2018-01-30 Applied Materials, Inc. Substrate support assembly having rapid temperature control
US7589950B2 (en) 2006-10-13 2009-09-15 Applied Materials, Inc. Detachable electrostatic chuck having sealing assembly
US8968503B2 (en) 2009-12-29 2015-03-03 Novellus Systems, Inc. Electrostatic chucks and methods for refurbishing same
JP2013516084A (en) * 2009-12-29 2013-05-09 ノベルス・システムズ・インコーポレーテッド Electrostatic chuck and repair method thereof
US8940115B2 (en) 2010-05-07 2015-01-27 Ngk Insulators, Ltd. Wafer mount device and manufacturing method thereof
JP2011238682A (en) * 2010-05-07 2011-11-24 Ngk Insulators Ltd Wafer mounting device and manufacturing method for the same
US9969022B2 (en) 2010-09-28 2018-05-15 Applied Materials, Inc. Vacuum process chamber component and methods of making
JP2016031956A (en) * 2014-07-28 2016-03-07 株式会社日立ハイテクノロジーズ Plasma processing device
JP2021111688A (en) * 2020-01-10 2021-08-02 日本特殊陶業株式会社 Retainer
WO2025154609A1 (en) * 2024-01-15 2025-07-24 京セラ株式会社 Sample holder

Also Published As

Publication number Publication date
JP3485390B2 (en) 2004-01-13

Similar Documents

Publication Publication Date Title
JPH0945757A (en) Electrostatic chuck
JP5968651B2 (en) Components for semiconductor manufacturing equipment
TW200414456A (en) Heat spreader and semiconductor device and package using the same
JP2002313781A (en) Substrate processing equipment
JP2003273202A (en) Semiconductor supporter
JPH1041377A (en) Electrostatic chuck
JP2004040000A (en) Susceptor with built-in electrode and its manufacturing method
JPH04287344A (en) Bonding structure of electrostatic chuck
JP2003080375A (en) Manufacturing method of semiconductor wafer supporting member joined body and semiconductor wafer supporting member joined body
JP2005026252A (en) Ceramic circuit board, heat radiating module, and semiconductor device
JPH0982788A (en) Electrostatic chuck and method of manufacturing the same
JP5343802B2 (en) Electrostatic chuck device
JP2001144234A (en) Semiconductor mounting insulation circuit substrate
JPH09213773A (en) Wafer holding member and plasma resistant member
JP2003086519A (en) Workpiece holder, method of manufacturing the same, and processing apparatus
JP4744015B2 (en) Wafer support member
JP2000021962A (en) Electrostatic suction device
JP2004071647A (en) Complex heater
JPH06291175A (en) Electrostatic chuck
JP2003142567A (en) Wafer mounting stage
JP2836986B2 (en) Electrostatic chuck and method of manufacturing the same
JPH08102570A (en) Ceramics circuit board
TW202420491A (en) Ceramic substrate, method of manufacturing the ceramic substrate, electrostatic chuck, substrate fixing device, and package for semiconductor device
JP2004259805A (en) Electrostatic chuck
JP3370489B2 (en) Electrostatic chuck

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees