JPH0961421A - Evaluation of healthiness of concrete and repairing of deteriorated concrete - Google Patents
Evaluation of healthiness of concrete and repairing of deteriorated concreteInfo
- Publication number
- JPH0961421A JPH0961421A JP24062895A JP24062895A JPH0961421A JP H0961421 A JPH0961421 A JP H0961421A JP 24062895 A JP24062895 A JP 24062895A JP 24062895 A JP24062895 A JP 24062895A JP H0961421 A JPH0961421 A JP H0961421A
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- test
- sulfuric acid
- sprayed
- color
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000011156 evaluation Methods 0.000 title claims description 8
- 230000036449 good health Effects 0.000 title 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 44
- 230000006866 deterioration Effects 0.000 claims abstract description 24
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 18
- 238000006243 chemical reaction Methods 0.000 claims abstract description 15
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 37
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 abstract description 9
- 229910001626 barium chloride Inorganic materials 0.000 abstract description 9
- -1 sulfuric acid ion Chemical class 0.000 abstract description 5
- 150000002500 ions Chemical class 0.000 abstract description 4
- KVJXQZRHQQUTSM-UHFFFAOYSA-N 4,5-dihydroxy-3,6-bis[(4-methyl-2-sulfophenyl)diazenyl]naphthalene-2,7-disulfonic acid Chemical compound OS(=O)(=O)C1=CC(C)=CC=C1N=NC1=C(O)C2=C(O)C(N=NC=3C(=CC(C)=CC=3)S(O)(=O)=O)=C(S(O)(=O)=O)C=C2C=C1S(O)(=O)=O KVJXQZRHQQUTSM-UHFFFAOYSA-N 0.000 abstract description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 abstract 1
- 238000005470 impregnation Methods 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 40
- 238000006386 neutralization reaction Methods 0.000 description 13
- 239000007864 aqueous solution Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 10
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 8
- 238000007654 immersion Methods 0.000 description 7
- 238000007922 dissolution test Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 230000035515 penetration Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 description 4
- 235000011152 sodium sulphate Nutrition 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000004445 quantitative analysis Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- 239000011398 Portland cement Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 239000012286 potassium permanganate Substances 0.000 description 2
- LMBABJNSZGKTBA-UHFFFAOYSA-N 3,6-bis[(4-chloro-2-phosphonophenyl)diazenyl]-4,5-dihydroxynaphthalene-2,7-disulfonic acid Chemical compound OS(=O)(=O)C1=CC2=CC(S(O)(=O)=O)=C(N=NC=3C(=CC(Cl)=CC=3)P(O)(O)=O)C(O)=C2C(O)=C1N=NC1=CC=C(Cl)C=C1P(O)(O)=O LMBABJNSZGKTBA-UHFFFAOYSA-N 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- HLVXFWDLRHCZEI-UHFFFAOYSA-N chromotropic acid Chemical compound OS(=O)(=O)C1=CC(O)=C2C(O)=CC(S(O)(=O)=O)=CC2=C1 HLVXFWDLRHCZEI-UHFFFAOYSA-N 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000004042 decolorization Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- YZMHQCWXYHARLS-UHFFFAOYSA-N naphthalene-1,2-disulfonic acid Chemical compound C1=CC=CC2=C(S(O)(=O)=O)C(S(=O)(=O)O)=CC=C21 YZMHQCWXYHARLS-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- FCMRBZBGGXLKBC-UHFFFAOYSA-J tetrasodium 2-[[1,8-dioxido-3,6-disulfo-7-[(2-sulfonatophenyl)diazenyl]naphthalen-2-yl]diazenyl]benzenesulfonate Chemical compound [Na+].[Na+].[Na+].[Na+].Oc1c(N=Nc2ccccc2S([O-])(=O)=O)c(cc2cc(c(N=Nc3ccccc3S([O-])(=O)=O)c(O)c12)S([O-])(=O)=O)S([O-])(=O)=O FCMRBZBGGXLKBC-UHFFFAOYSA-J 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Landscapes
- Sewage (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は主として硫酸成分に
より侵食されたコンクリートの健全度評価方法および劣
化コンクリートの補修方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a soundness evaluation method for concrete corroded by a sulfuric acid component and a method for repairing deteriorated concrete.
【0002】[0002]
【従来の技術】例えば、下水道施設の管渠等に使用され
るコンクリート部材の劣化には、下水や汚泥から発生す
る硫化水素が微生物の働きにより変化した硫酸に起因す
るものが多いことが明らかになっている。こうしたコン
クリート部材を補修するには、脆弱化した部分を完全に
除去し、さらに中性化部をはつり取った後、防食材料で
被覆処理を行っている。この場合、中性化部の判定に
は、通常、フェノールフタレインによる中性化試験が用
いられている。2. Description of the Related Art For example, it is clear that the deterioration of concrete members used for sewer pipes in sewerage facilities is often attributed to sulfuric acid produced by the action of microorganisms in hydrogen sulfide generated from sewage and sludge. Has become. In order to repair such a concrete member, the weakened portion is completely removed, the neutralized portion is removed, and then the concrete member is covered with a corrosion-preventing material. In this case, a neutralization test with phenolphthalein is usually used to determine the neutralization part.
【0003】コンクリート部材の劣化が激しい場合に
は、脆弱化部を除去した後の面から、さらに数mm程度
内部まで中性化が進行しているが、軽微な劣化では、脆
弱化部を取り除けば中性化試験の結果はアルカリ性を示
し、健全であるとみなされている。このように、コンク
リートの劣化の判定には、中性化を1つの指標に用いて
いるのが現状である。If the concrete member is severely deteriorated, neutralization is progressing to a few mm further from the surface after the weakened portion is removed, but if the deterioration is slight, the weakened portion should be removed. For example, the results of the neutralization test show alkalinity and are considered sound. As described above, in the present situation, neutralization is used as one index for determining deterioration of concrete.
【0004】しかしながら、中性化試験においてアルカ
リ性を示し、健全とみなされた部分においても劣化の原
因物質である硫酸イオンが浸透しており、将来劣化を惹
起する虞があり、フェノールフタレインによる中性化試
験だけでは不十分である。従って、劣化コンクリートの
補修に際しては、劣化の指標として硫酸イオンが浸透し
ている範囲を正確に把握し、浸透部分を全て取り除く必
要がある。However, in the neutralization test, the sulfate ion, which is a causative substance of deterioration, permeates even in a portion which is considered to be healthy and is considered to be healthy, and may cause deterioration in the future. The sexualization test alone is not sufficient. Therefore, when repairing deteriorated concrete, it is necessary to accurately grasp the range in which sulfate ions have permeated as an index of deterioration and remove all permeated parts.
【0005】一方、硫酸ナトリウム、硫酸アンモニウ
ム、硫酸アルミニウムなどの硫酸塩に由来する硫酸イオ
ンの浸透深さを測定する方法として、劣化したコンクリ
ートからコアを採取して所定の深さ毎の試料を作成し、
溶出試験により試料中に含まれる硫酸イオンを水中に溶
出させ、その濃度を定量する方法が公知である。しか
し、この方法では硫酸イオン濃度をその場で測定するこ
とができず、現場での適用には問題がある。また、硫酸
塩によるコンクリート劣化の化学的メカニズムは、酸に
よるメカニズムとは相違することも知られている(「コ
ンクリート構造物の耐久性シリーズ−化学的腐食」、
2.2.4硫酸塩による劣化、第32〜35頁、198
6年12月、技報堂出版(株)発行)。On the other hand, as a method for measuring the penetration depth of sulfate ions derived from sulfates such as sodium sulfate, ammonium sulfate and aluminum sulfate, cores are taken from deteriorated concrete to prepare samples at predetermined depths. ,
A method is known in which a sulfate ion contained in a sample is dissolved in water by a dissolution test and the concentration thereof is quantified. However, this method cannot measure the sulfate ion concentration in-situ, and there is a problem in application in the field. It is also known that the chemical mechanism of concrete deterioration by sulfate is different from the mechanism by acid (“Durability series of concrete structures-chemical corrosion”,
2.2.4 Degradation by sulfate, pp. 32-35, 198
Published by Gihodo Publishing Co., Ltd. in December 2006.
【0006】[0006]
【発明が解決しようとする課題】この発明は、硫酸成分
により侵食されたコンクリートの劣化深さを簡易かつ正
確に測定することのできるコンクリートの健全度評価方
法を提供し、併せて、劣化コンクリートの有用な補修方
法を提供することを目的とするものである。DISCLOSURE OF THE INVENTION The present invention provides a concrete soundness evaluation method capable of easily and accurately measuring the deterioration depth of concrete eroded by a sulfuric acid component. It is intended to provide a useful repair method.
【0007】[0007]
【発明を解決するための手段】本発明に係るコンクリー
トの健全度評価方法は、硫酸成分により侵食されたコン
クリートの劣化深さを測定するに際し、コンクリートの
脆弱化部を除去した後、当該コンクリート中に存在する
硫酸イオンの有無により前記劣化深さを測定することを
特徴とするものである。前記硫酸イオンの有無は、試薬
の呈色反応により測定することが好ましい。The soundness evaluation method for concrete according to the present invention is a method for measuring the depth of deterioration of concrete eroded by a sulfuric acid component, in which the weakened portion of the concrete is removed and The depth of deterioration is measured by the presence or absence of sulfate ions present in the. The presence or absence of the sulfate ion is preferably measured by a color reaction of a reagent.
【0008】本発明に係る劣化コンクリートの補修方法
は、前記コンクリートの健全度評価方法によりコンクリ
ートの劣化深さを測定した後、当該劣化したコンクリー
トを除去し、補修することを特徴とするものである。The method for repairing deteriorated concrete according to the present invention is characterized in that after the deterioration depth of the concrete is measured by the soundness evaluation method for concrete, the deteriorated concrete is removed and repaired. .
【0009】[0009]
【発明の実施の形態】本発明は、硫化水素や亜硫酸ガス
などが変化した硫酸成分により侵食されたコンクリート
の劣化深さを測定するに際し、先ず、コンクリートの脆
弱化部を除去する。脆弱化部とは、硫酸成分によりコン
クリートがボロボロになった部分であり、劣化の程度に
よりその深さは相違する。BEST MODE FOR CARRYING OUT THE INVENTION In measuring the depth of deterioration of concrete eroded by a sulfuric acid component in which hydrogen sulfide, sulfurous acid gas or the like has changed, the present invention first removes the weakened portion of the concrete. The weakened portion is a portion where concrete is broken down due to the sulfuric acid component, and the depth thereof varies depending on the degree of deterioration.
【0010】次に、コンクリート中に浸透した硫酸イオ
ンの有無を測定するのであるが、本発明では、コア抜き
したコンクリートを試験室に持ち帰ることなく、その場
で測定することが望ましい。このような硫酸イオン有無
の判定方法としては、試薬の呈色反応を利用した方法を
挙げることができ、特に、次のような試薬を用いる方法
を例示することができる。Next, the presence or absence of sulfate ions that have penetrated into the concrete is measured. In the present invention, it is desirable to carry out the measurement on the spot without taking the cored concrete back to the test room. Examples of such a method for determining the presence or absence of sulfate ion include a method utilizing a color reaction of a reagent, and in particular, the following method using a reagent can be exemplified.
【0011】クロロホスホナゾIII 〔2,7−ビス
(4−クロロ−2−ホスホノフェニルアゾ)クロモトロ
ーブ酸2ナトリウム〕の0.2%水溶液を噴霧し、続い
て塩化バリウムの2%水溶液を噴霧すると、硫酸イオン
の浸透部分は緑色を呈し、浸透していない部分は赤紫色
を呈する。A 0.2% aqueous solution of chlorophosphonazo III [2,7-bis (4-chloro-2-phosphonophenylazo) chromotropic acid disodium] was sprayed on, followed by a 2% aqueous solution of barium chloride. When sprayed, the portion where the sulfate ions penetrate is green, and the portion where it does not penetrate is magenta.
【0012】ジメチルスルホナゾIII 〔3,6−ビス
((2−スルホ−4−メチルフェニル)アゾ)−4,5
−ジヒドロキシ−2,7−ナフタレンジスルホン酸2ナ
トリウム〕の0.2%水溶液を噴霧し、続いて塩化バリ
ウムの2%水溶液を噴霧すると、硫酸イオンの浸透部分
は赤紫色を呈し、浸透していない部分は青緑色を呈す
る。Dimethylsulfonazo III [3,6-bis ((2-sulfo-4-methylphenyl) azo) -4,5
-Dihydroxy-2,7-naphthalenedisulfonic acid disodium salt] was sprayed with a 0.2% aqueous solution of barium chloride, and then a 2% aqueous solution of barium chloride was sprayed. The part has a blue-green color.
【0013】ジニトロスルホナゾIII 〔3,6−ビス
((4−ニトロ−2−スルホフェニル)アゾ)−4,5
−ジヒドロキシ−2,7−ナフタレンジスルホン酸4ナ
トリウム〕の0.2%水溶液を噴霧し、続いて塩化バリ
ウムの2%水溶液を噴霧すると、硫酸イオンの浸透部分
は青紫色を呈し、浸透していない部分は青色を呈する。Dinitrosulfonazo III [3,6-bis ((4-nitro-2-sulfophenyl) azo) -4,5
-Dihydroxy-2,7-naphthalenedisulfonic acid tetrasodium] was sprayed with a 0.2% aqueous solution of barium chloride, and then a 2% aqueous solution of barium chloride was sprayed, the permeation part of sulfate ion was blue-purple and did not permeate. The part is blue.
【0014】スルホナゾIII 〔4,5−ジヒドロキシ
−3,6ビス((o−スルホフェニル)アゾ)−2,7
−ナフタレンジスルホン酸4ナトリウム〕の0.2%水
溶液を噴霧し、続いて塩化バリウムの2%水溶液を噴霧
すると、硫酸イオンの浸透部分は赤紫色を呈し、浸透し
ていない部分は青色を呈する。Sulfonazo III [4,5-dihydroxy-3,6bis ((o-sulfophenyl) azo) -2,7
When a 0.2% aqueous solution of naphthalenedisulfonic acid] is sprayed, and then a 2% aqueous solution of barium chloride is sprayed, the part where the sulfate ion penetrates exhibits a reddish purple color and the part that does not penetrate exhibits a blue color.
【0015】0.2mol/リットルの塩化バリウム
溶液と過マンガン酸カリウム溶液を3:1で混合した溶
液を噴霧し、約1分間蒸留水で洗浄すると、硫酸イオン
の浸透部分は赤色を呈し、浸透していない部分は紫色を
呈する。When a solution of 0.2 mol / liter barium chloride solution and potassium permanganate solution mixed at 3: 1 was sprayed and washed with distilled water for about 1 minute, the permeation part of sulfate ion became red and permeated. The part that has not been shown has a purple color.
【0016】上記方法によりコンクリートの劣化深さが
測定できれば、当該劣化部分を除去し、コンクリートを
補修または補強する。補修または補強は、通常行われて
いる工法と材料を用いて行うことができ、例えば、補修
であれば、樹脂系、セメント系、FRP系などの補修材
料を用いて、表面防護、断面補修、注入などの工法を採
用することができる。If the depth of deterioration of the concrete can be measured by the above method, the deteriorated portion is removed and the concrete is repaired or reinforced. The repair or reinforcement can be performed by using commonly used construction methods and materials. For example, in the case of repair, surface protection, cross-section repair, surface protection, cross-section repair, using resin-based, cement-based, FRP-based repair materials, etc. A construction method such as injection can be adopted.
【0017】[0017]
【実施例】硫酸イオンの検出試薬による呈色反応の確認
と、その有効性を把握するため、硫酸溶液中にコンクリ
ート試験体を浸漬し、その浸漬暴露試験体を用いて、硫
酸イオンの有無およびその浸透深さを測定した。[Examples] In order to confirm the color reaction by a detection reagent of sulfate ion and to confirm its effectiveness, a concrete test body was immersed in a sulfuric acid solution, and the immersion test specimen was used to determine the presence or absence of sulfate ion. The penetration depth was measured.
【0018】〔実施例1〕試験方法 10×10×40cmの普通ポルトランドセメント供試
体A、Bを準備し、供試体AのW/Cは55%とし、供
試体BのW/Cは100%とした。この供試体A、Bを
5%硫酸溶液中に20℃の一定温度下で4週間浸漬し
た。[Example 1] Test method : Standard Portland cement specimens A and B having a size of 10 x 10 x 40 cm were prepared. The W / C of the specimen A was 55% and the W / C of the specimen B was 100%. And The specimens A and B were immersed in a 5% sulfuric acid solution at a constant temperature of 20 ° C. for 4 weeks.
【0019】試験項目および分析方法 4週間後に各試験体を取り出し、表面の脆弱化部を除去
した後の試験体について、次の試験を行った。 Test Items and Analytical Method After 4 weeks, each test body was taken out, and the following test was performed on the test body after removing the weakened portion on the surface.
【0020】(1)中性化試験 試験体を割断し、その割断面にフェノールフタレイン1
%溶液を噴霧し、中性化の判断を行った。(1) Neutralization test A test piece was cut into pieces, and phenolphthalein 1 was added to the cut surface.
% Solution was sprayed and neutralization was judged.
【0021】(2)試薬による呈色反応試験 試験体を割断し、その割断面に、0.2mol/リット
ルの塩化バリウム溶液と過マンガン酸カリウム溶液を
3:1で混合した溶液を噴霧し、呈色反応の確認と呈色
深さを測定した。(2) Color reaction test with a reagent A test piece was cut and sprayed with a solution in which a 0.2 mol / liter barium chloride solution and a potassium permanganate solution were mixed at a ratio of 3: 1. The color reaction was confirmed and the color depth was measured.
【0022】(3)溶出試験による硫酸イオンの定量分
析 上記呈色反応試験に用いたものと同一の割断片からコア
(φ20mm)を抜き取り、そのコアをダイアモンドカ
ッターにて一定間隔毎に裁断した後、さらにメノウ乳鉢
で微粉砕した。得られた粉末試料を蒸留水と混合し、イ
オンクロマトグラフを用いて溶出液中の硫酸イオン濃度
を定量した。(3) Quantitative Analysis of Sulfate Ion by Elution Test After extracting cores (φ20 mm) from the same split pieces used in the above color reaction test, and cutting the cores at regular intervals with a diamond cutter. Further, it was pulverized in an agate mortar. The obtained powder sample was mixed with distilled water, and the sulfate ion concentration in the eluate was quantified using an ion chromatograph.
【0023】試験結果 上記中性化試験(1)の結果では、試験体A、B共、脆
弱化した部分を除去した面は赤紫色を呈し、アルカリ性
を示していた。 Test Results In the result of the neutralization test (1), the surfaces of the test bodies A and B from which the weakened portions were removed exhibited a reddish purple color and were alkaline.
【0024】図1と図2は、試験体A、Bにおける上記
溶出試験(3)による硫酸イオンの分析結果をそれぞれ
示したものであり、横軸は試験体表面の脆弱化部を除去
した後の面からの深さを表し、縦軸は硫酸イオン濃度を
表している。FIG. 1 and FIG. 2 show the results of the analysis of sulfate ion in the above-mentioned dissolution test (3) in the test bodies A and B, respectively. Represents the depth from the plane, and the vertical axis represents the sulfate ion concentration.
【0025】また、図1と図2中には、前記試薬を用
いた呈色反応(2)による変色点を破線で示した。破線
より左側の領域(図1では、表面から4〜6mmまでの
範囲、図2では、表面から2〜4mmまでの範囲)が、
硫酸イオンの浸透により試験体が赤着色した部分であ
る。Further, in FIGS. 1 and 2, the color change point due to the color reaction (2) using the above-mentioned reagent is shown by a broken line. A region on the left side of the broken line (in FIG. 1, a range from the surface to 4 to 6 mm, in FIG. 2, a range from the surface to 2 to 4 mm) is
This is the portion where the test body was colored red due to the permeation of sulfate ions.
【0026】上記試験結果から、フェノールフタレイン
による中性化試験では健全と見なされた部分から、さら
に数mm程度内部まで硫酸イオンの浸透が確認された。
また、外部から浸入した硫酸イオンの浸透深さと、呈色
反応による発色深さとはほぼ一致しており、試薬による
硫酸イオンの判定方法が有効であることが判る。From the above-mentioned test results, it was confirmed that the permeation of sulfate ions was carried out from a portion considered healthy in the neutralization test with phenolphthalein to the inside by about several mm.
Further, the penetration depth of the sulfate ions that have entered from the outside and the color development depth due to the color reaction are almost the same, which shows that the method for determining the sulfate ions by the reagent is effective.
【0027】〔実施例2〕試験方法 実施例1で準備した供試体A、Bを5%硫酸溶液中に2
0℃の一定温度下で8か月間浸漬した。[Example 2] Test method Samples A and B prepared in Example 1 were added to a 2% 5% sulfuric acid solution.
Immersion was carried out at a constant temperature of 0 ° C. for 8 months.
【0028】試験項目および分析方法 8か月後に、各試験体を取り出し、表面の脆弱化部を除
去した後の試験体について、実施例1と同様に中性化試
験と試薬による呈色反応試験を行った。 Test Items and Analytical Method After 8 months, each test body was taken out, and the test body after removing the weakened portion on the surface was subjected to a neutralization test and a color reaction test with a reagent as in Example 1. I went.
【0029】試験結果 フェノールフタレインによる中性化深さと試薬による
呈色深さを比較した結果、供試体A、B共、後者の方が
前者よりも平均2〜3mm大きい値であった。即ち、従
来、コンクリートの劣化度を評価する目安として用いら
れている中性化試験では、硫酸イオンの浸透による劣化
を判定するのは難しいことが判る。 Test Results As a result of comparing the neutralization depth by phenolphthalein and the coloring depth by the reagent, both of the samples A and B, the latter had a value larger by an average of 2 to 3 mm than the former. That is, it can be seen that it is difficult to judge the deterioration due to the permeation of sulfate ions in the neutralization test which has been conventionally used as a standard for evaluating the deterioration degree of concrete.
【0030】〔比較例〕硫酸成分による劣化を判定した
試薬と同じ試薬を用いて、硫酸塩による劣化コンクリー
トについて呈色試験を行い、両者の違いを比較した。[Comparative Example] Using the same reagent as the reagent judged to be deteriorated by the sulfuric acid component, a color test was carried out on the deteriorated concrete by the sulfuric acid salt to compare the difference between the two.
【0031】試験方法 φ10×20cmの普通ポルトランドセメント供試体C
(W/C:55%)を準備し、この供試体Cを5%およ
び10%の硫酸ナトリウム水溶液中に20℃の一定温度
で12か月間浸漬した。 Test Method Ordinary Portland Cement Specimen C of φ10 × 20 cm
(W / C: 55%) was prepared, and this sample C was immersed in a 5% and 10% sodium sulfate aqueous solution at a constant temperature of 20 ° C. for 12 months.
【0032】試験項目および分析方法 浸漬3か月毎に供試体Cを取り出し、次の試験を行っ
た。 (1)前記試薬、およびを用い、実施例1と同様
にして、呈色反応試験を実施した。 (2)実施例1と同様、溶出試験による硫酸イオンの定
量分析を行った。 (3)その他、外観目視観察や電子顕微鏡による表面観
察を行った。 Test Items and Analytical Method Immersion Specimen C was taken out every 3 months and the following tests were conducted. (1) A color reaction test was conducted in the same manner as in Example 1 using the above reagents and. (2) In the same manner as in Example 1, the sulfate ion was quantitatively analyzed by the dissolution test. (3) In addition, the appearance was visually observed and the surface was observed with an electron microscope.
【0033】試験結果 呈色反応については、浸漬期間に関係なく、いずれの試
薬を用いた場合も、硫酸成分による劣化のように呈色の
境界が明確ではなかった。このため、本試験により硫酸
イオンの浸透深さを測定することができなかった。 Test Results Regarding the color reaction, regardless of the dipping period, no matter what reagent was used, the boundary of color development was not clear, such as deterioration due to the sulfuric acid component. For this reason, the depth of permeation of sulfate ions could not be measured by this test.
【0034】外観の目視や電子顕微鏡による観察では、
表面から数mmの範囲内において、脱色や緻密さの欠如
などが見られたが、硫酸浸漬の場合のような脆弱化は見
られなかった。溶出試験による硫酸イオンの分析結果
は、浸漬12か月時点において、5%硫酸ナトリウム水
溶液で表面から5〜10mm程度、10%水溶液で表面
から10〜15mm程度であった。In visual observation and observation with an electron microscope,
Within a range of several mm from the surface, decolorization and lack of denseness were observed, but weakening as in the case of immersion in sulfuric acid was not observed. The analysis result of the sulfate ion by the dissolution test was about 5 to 10 mm from the surface with the 5% sodium sulfate aqueous solution and about 10 to 15 mm from the surface with the 10% aqueous solution at the 12th month of immersion.
【0035】以上の試験結果から、硫酸ナトリウムによ
るコンクリートの劣化の場合には、硫酸浸漬の場合と比
べて硫酸イオンの浸透深さ(硫酸浸漬の場合の脆弱化部
を除去した後の浸透深さ)が深いにも関わらず、呈色試
薬による硫酸イオンの判定は不確実であり、有効ではな
いことが判る。From the above test results, in the case of deterioration of concrete due to sodium sulfate, the depth of penetration of sulfate ions (the depth of penetration after removal of the weakened portion in the case of sulfuric acid immersion is greater than that in the case of sulfuric acid immersion). ) Is deep, the determination of sulfate ion by the color reagent is uncertain and not effective.
【0036】[0036]
【発明の効果】本発明方法は、硫酸成分により侵食され
たコンクリート中の硫酸イオンの有無を判定することに
より、コンクリートの劣化深さを正確に測定することが
できる。また、試薬の噴霧による呈色反応を利用すれ
ば、コンクリート中の硫酸イオン濃度を現場で測定する
ことができ、現場に適した極めて簡便なコンクリートの
健全度評価方法である。According to the method of the present invention, the depth of deterioration of concrete can be accurately measured by determining the presence or absence of sulfate ions in the concrete eroded by the sulfuric acid component. Further, by utilizing the color reaction by spraying the reagent, the sulfate ion concentration in the concrete can be measured on site, which is a very simple concrete soundness evaluation method suitable for the site.
【0037】従って、本発明方法は下水道管渠および枡
その他の下水道付帯設備の他、浄化槽、ビルピット、化
学工場等の排水施設、化学薬品等の貯蔵タンクなど、硫
酸を直接的または間接的原因とするコンクリート部材の
劣化に対して、特に有用な補修方法となる。また、硫酸
成分を含有する酸性雨等に起因する劣化コンクリート部
材の補修に対しても有効である。Therefore, in the method of the present invention, in addition to sewer pipes, basins and other sewer incidental equipment, sulfuric acid is used as a direct or indirect cause of sulfuric acid in septic tanks, building pits, drainage facilities such as chemical plants, storage tanks for chemicals and the like. This is a particularly useful repairing method against the deterioration of the concrete member. It is also effective for repairing deteriorated concrete members due to acid rain containing sulfuric acid components.
【図1】実施例1において、試験体Aの溶出試験におけ
る硫酸イオンの定量分析結果を示す。FIG. 1 shows the results of quantitative analysis of sulfate ions in the dissolution test of test sample A in Example 1.
【図2】実施例1において、試験体Bの溶出試験におけ
る硫酸イオンの定量分析結果を示す。FIG. 2 shows the results of quantitative analysis of sulfate ions in the dissolution test of test sample B in Example 1.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木静郎 茨城県つくば市大字鬼ヶ窪字下山1043番1 株式会社熊谷組技術研究所内 (72)発明者 松村 高宏 茨城県つくば市大字鬼ヶ窪字下山1043番1 株式会社熊谷組技術研究所内 (72)発明者 石田 良平 茨城県つくば市大字鬼ヶ窪字下山1043番1 株式会社熊谷組技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shizuro Sasaki 1043-1, Shimoyama, Onigakushi, Tsukuba, Ibaraki Prefecture Inside Kumagai Technical Research Institute (72) Takahiro Matsumura Onigagaku, Tsukuba, Ibaraki 1043-1, Shimoyama, Kumagai Gumi Research Laboratory, Ltd. (72) Inventor, Ryohei Ishida, Onigakubo, Tsukuba, Ibaraki Prefecture 1043-1, Shimoyama, Kumagai Gumi Research Laboratory
Claims (3)
の劣化深さを測定するに際し、コンクリートの脆弱化部
を除去した後、当該コンクリート中に存在する硫酸イオ
ンの有無により前記劣化深さを測定することを特徴とす
るコンクリートの健全度評価方法。1. When measuring the deterioration depth of concrete eroded by a sulfuric acid component, after removing the weakened part of the concrete, measuring the deterioration depth by the presence or absence of sulfate ions existing in the concrete. A method for evaluating the soundness of concrete, characterized by.
有無を測定する請求項1記載のコンクリートの健全度評
価方法。2. The soundness evaluation method for concrete according to claim 1, wherein the presence or absence of the sulfate ion is measured by a color reaction of a reagent.
ートの健全度評価方法によりコンクリートの劣化深さを
測定した後、当該劣化したコンクリートを除去し、補修
することを特徴とする劣化コンクリートの補修方法。3. Repair of deteriorated concrete, characterized in that the deteriorated concrete is removed and repaired after the deterioration depth of the concrete is measured by the concrete soundness evaluation method according to claim 1 or 2. Method.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP24062895A JP3482044B2 (en) | 1995-08-26 | 1995-08-26 | Concrete soundness evaluation method and deterioration concrete repair method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP24062895A JP3482044B2 (en) | 1995-08-26 | 1995-08-26 | Concrete soundness evaluation method and deterioration concrete repair method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH0961421A true JPH0961421A (en) | 1997-03-07 |
| JP3482044B2 JP3482044B2 (en) | 2003-12-22 |
Family
ID=17062334
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP24062895A Expired - Fee Related JP3482044B2 (en) | 1995-08-26 | 1995-08-26 | Concrete soundness evaluation method and deterioration concrete repair method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3482044B2 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6398945B1 (en) | 1999-07-22 | 2002-06-04 | Infrastructure Repair Technologies, Inc. | Method of treating corrosion in reinforced concrete structures by providing a uniform surface potential |
| WO2003076916A1 (en) * | 2002-03-13 | 2003-09-18 | Burn-Am Co., Ltd. | Device and method for inspecting inside of underground pipe line and method of inspecting concrete on inside of underground pipe line for deterioration |
| JP2012202731A (en) * | 2011-03-24 | 2012-10-22 | Taiheiyo Cement Corp | Prediction method for diffusion state of chemical species in concrete and prediction method for corrosion occurrence period of steel material in concrete using the same |
| CN114133763A (en) * | 2021-08-24 | 2022-03-04 | 南京理工大学 | Preparation method and detection method of concrete neutralization detection reagent based on anthocyanin |
-
1995
- 1995-08-26 JP JP24062895A patent/JP3482044B2/en not_active Expired - Fee Related
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6398945B1 (en) | 1999-07-22 | 2002-06-04 | Infrastructure Repair Technologies, Inc. | Method of treating corrosion in reinforced concrete structures by providing a uniform surface potential |
| WO2003076916A1 (en) * | 2002-03-13 | 2003-09-18 | Burn-Am Co., Ltd. | Device and method for inspecting inside of underground pipe line and method of inspecting concrete on inside of underground pipe line for deterioration |
| JPWO2003076916A1 (en) * | 2002-03-13 | 2005-07-07 | 株式会社バーナム | Embedded pipe inspection device and method, and buried pipe concrete deterioration inspection method |
| US7131344B2 (en) | 2002-03-13 | 2006-11-07 | Burn-Am Co., Ltd. | Device and method for inspecting inside of underground pipe line and method of inspecting concrete on inside of underground pipe line for deterioration |
| JP2012202731A (en) * | 2011-03-24 | 2012-10-22 | Taiheiyo Cement Corp | Prediction method for diffusion state of chemical species in concrete and prediction method for corrosion occurrence period of steel material in concrete using the same |
| CN114133763A (en) * | 2021-08-24 | 2022-03-04 | 南京理工大学 | Preparation method and detection method of concrete neutralization detection reagent based on anthocyanin |
| CN114133763B (en) * | 2021-08-24 | 2022-11-04 | 南京理工大学 | Preparation method and detection method of concrete neutralization detection reagent based on anthocyanin |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3482044B2 (en) | 2003-12-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Nilsson et al. | HETEK, Chloride penetration into concrete, State-of-the-Art, Transport processes, corrosion initiation, test methods and prediction models | |
| Angst | Challenges and opportunities in corrosion of steel in concrete | |
| Bouteiller et al. | Corrosion initiation of reinforced concretes based on Portland or GGBS cements: Chloride contents and electrochemical characterizations versus time | |
| California. Transportation Laboratory et al. | Corrosion testing of bridge decks | |
| Samson et al. | Calculation of ionic diffusion coefficients on the basis of migration test results | |
| Lindquist et al. | Effect of cracking on chloride content in concrete bridge decks | |
| Yoon et al. | Experimental examination on chloride penetration through micro-crack in concrete | |
| JP3482044B2 (en) | Concrete soundness evaluation method and deterioration concrete repair method | |
| Melchers et al. | Long-term durability of reinforced concrete piles from the Hornibrook Highway bridge | |
| Russo et al. | Effects of cracks on chloride‐induced corrosion initiation and propagation of carbon and stainless steel rebar | |
| Topcu et al. | Experimental investigation of utilizing chemical additives and new generation corrosion inhibitors on reinforced concrete | |
| Andrade¹ | REFERENCE: Andrade, C. and Alonso, C.," Progress on Design and Residual Life Calculation with Regard to Rebar Corrosion of Reinforced Concrete | |
| Chen et al. | Monitoring microbial corrosion in large oilfield water systems | |
| Cao et al. | Evaluation of migrating corrosion inhibitors for the protection of steel reinforcement in concrete exposed to coastal marine conditions in Khanh Hoa (Vietnam) | |
| Boschmann Käthler | Chloride-induced reinforcement corrosion in concrete: the role of the steel-concrete interface and implications for engineering | |
| Michael | Chloride threshold ingress evaluation of corrosion probability using concrete electrical resistivity and half-cell potential measurements | |
| Ukpaka | Detrimental effect of water soluble contaminant on steel/paint interface | |
| DE19634533A1 (en) | Determining physical and/or chemical parameters in mineral solid media | |
| TR2023011489A1 (en) | A METHOD FOR DETERMINATION OF THE AMOUNT OF SALT IN STRUCTURES | |
| Boschmann Käthler et al. | Critical chloride content in concrete: realistic determination and influence of air voids | |
| Persson | Investigation of the impact of load-induced cracking on the initiation time on steel corrosion in concrete | |
| Dauberschmidt et al. | Corrosion behaviour of rebars 1.4003 in cracks of RC structures containing chlorides | |
| Wilson et al. | The square root law with an offset applied to chloride diffusion in slowly reacting blended cement pastes | |
| Foster et al. | Corrosion Assessment and Repair for Aging Concrete Infrastructure | |
| Chinchón-Payá et al. | Use of a Handheld X-ray Fluorescence Analyser to Quantify Chloride Ions In Situ: A Case Study of Structural Repair. Materials 2021, 14, 571 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030930 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081010 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091010 Year of fee payment: 6 |
|
| LAPS | Cancellation because of no payment of annual fees |