[go: up one dir, main page]

JPH0963573A - Manufacture of hydrogen storage alloy electrode - Google Patents

Manufacture of hydrogen storage alloy electrode

Info

Publication number
JPH0963573A
JPH0963573A JP7214512A JP21451295A JPH0963573A JP H0963573 A JPH0963573 A JP H0963573A JP 7214512 A JP7214512 A JP 7214512A JP 21451295 A JP21451295 A JP 21451295A JP H0963573 A JPH0963573 A JP H0963573A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
hydrogen
alloy electrode
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7214512A
Other languages
Japanese (ja)
Inventor
Yasushi Kawase
裕史 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP7214512A priority Critical patent/JPH0963573A/en
Publication of JPH0963573A publication Critical patent/JPH0963573A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing process of a hydrogen storage alloy electrode with high initial activation characteristics and high internal conductivity. SOLUTION: Oxide of misch metal attached onto the surface nickel layer of hydrogen storage alloy powder, having a property easily soluble to a acid or an alkali is removed by acid treatment or alkali treatment. A nickel oxide film or a nickel hydroxide film, which was not yet sufficiently removed by the acid treatment or the alkali treatment on the surface of a nickel rich layer is removed by reduction treatment. The reactivity and conductivity of the hydrogen storage alloy powder are enhanced, and the initial activation characteristics and the conductivity of a hydrogen storage alloy electrode are enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金電極
の製造方法に関し、詳しくはその初期活性化特性の改善
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen storage alloy electrode, and more particularly to improving the initial activation characteristics thereof.

【0002】[0002]

【従来の技術】従来、水素吸蔵合金粉末を結着剤と混合
して形成したペーストを金属集電体に被着して形成する
水素吸蔵合金電極の製造方法において、水素吸蔵合金粉
末にニッケルメッキや銅メッキを施して水素吸蔵合金電
極の初期活性化特性やサイクル寿命や内部導電性などを
向上させることが提案されている。
2. Description of the Related Art Conventionally, in a method for producing a hydrogen storage alloy electrode in which a paste formed by mixing hydrogen storage alloy powder with a binder is applied to a metal current collector, the hydrogen storage alloy powder is plated with nickel. It has been proposed to improve the initial activation characteristics, the cycle life, the internal conductivity, etc. of the hydrogen storage alloy electrode by applying copper plating or copper plating.

【0003】また、結着剤との混合前に、酸処理やアル
カリ処理により水素吸蔵合金粉末表面に突出する易酸化
性のLaなどのミッシュメタルやその酸化物を除去し
て、水素吸蔵合金粉末の表面部にニッケルリッチ層を形
成して上記ニッケルメッキと同様の効果を得ることも提
案されている。例えば特開平3ー152868号公報
は、結着剤混合前に水素吸蔵合金粉末を酸性水溶液で処
理し、その後、アルカリ水溶液で処理して初期活性化特
性を改善することを提案し、特開平5ー101821号
公報は、結着剤混合前に水素吸蔵合金粉末を高温アルカ
リ水溶液で処理して初期活性化特性を改善することを提
案し、特開平5ー13077号公報は、高温アルカリ水
溶液で処理した水素吸蔵合金粉末を用いて形成した水素
吸蔵合金電極を再度、高温アルカリ水溶液で処理して初
期活性化特性を改善することを提案している。
Prior to mixing with the binder, miscible metal such as La that is easily oxidized and its oxide protruding on the surface of the hydrogen storage alloy powder and its oxide are removed by acid treatment or alkali treatment to remove the hydrogen storage alloy powder. It has also been proposed to form a nickel-rich layer on the surface portion of the above to obtain the same effect as the above nickel plating. For example, JP-A-3-152868 proposes to treat the hydrogen-absorbing alloy powder with an acidic aqueous solution before mixing with a binder, and then with an alkaline aqueous solution to improve the initial activation characteristics. No. 101821 proposes treating a hydrogen storage alloy powder with a high temperature alkaline aqueous solution before mixing with a binder to improve initial activation characteristics, and JP-A-5-13077 discloses treating with a high temperature alkaline aqueous solution. It is proposed that the hydrogen storage alloy electrode formed by using the above hydrogen storage alloy powder is treated again with a high temperature alkaline aqueous solution to improve the initial activation characteristics.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た酸処理やアルカリ処理は水素吸蔵合金粉末の表面に形
成されたミッシュメタルの酸化物は除去するが、ニッケ
ルリッチ層(ニッケル)の表面の酸化膜や水酸化膜を充
分に除去できず、水素吸蔵合金電極の初期活性化特性や
内部導電性などを劣化させるという不具合があった。
However, although the above-mentioned acid treatment or alkali treatment removes the oxide of the misch metal formed on the surface of the hydrogen storage alloy powder, the oxide film on the surface of the nickel rich layer (nickel) is removed. However, there was a problem that the hydrogen hydroxide film could not be removed sufficiently and the initial activation characteristics and internal conductivity of the hydrogen storage alloy electrode were deteriorated.

【0005】本発明は上記観点に着目してなされたもの
であり、初期活性化特性や内部導電性を向上した水素吸
蔵合金電極の製造方法を提供することを、その解決すべ
き課題としている。
The present invention has been made in view of the above point of view, and it is an object to be solved to provide a method for producing a hydrogen storage alloy electrode having improved initial activation characteristics and internal conductivity.

【0006】[0006]

【課題を解決するための手段及び発明の効果】本発明の
第1の構成は、酸及びアルカリの少なくとも一方で処理
した後、水洗、乾燥した水素吸蔵合金粉末を増粘剤又は
結着剤と混合して形成したペーストを金属集電体に被着
して形成する水素吸蔵合金電極の製造方法において、前
記水洗、乾燥後、前記水素吸蔵合金粉末を還元処理した
後、前記増粘剤又は結着剤と混合することを特徴とする
水素吸蔵合金電極の製造方法である。
[Means for Solving the Problems and Effects of the Invention] The first constitution of the present invention is to use hydrogen storage alloy powder, which has been treated with at least one of acid and alkali, washed with water and dried, as a thickener or a binder. In the method for producing a hydrogen storage alloy electrode, which is formed by depositing a mixed paste on a metal current collector, after washing with water and drying, after reducing the hydrogen storage alloy powder, the thickener or binder A method for producing a hydrogen storage alloy electrode, which comprises mixing with a binder.

【0007】本構成によれば、酸化又はアルカリに溶解
しやすい性質をもち、水素吸蔵合金粉末の表面ニッケル
層から突出しているミッシュメタルの酸化物などを酸処
理又はアルカリ処理後で除去することができる。更にそ
の後の還元処理により、これら酸処理又はアルカリ処理
では充分に除去できなかったニッケルリッチ層の表面の
ニッケル酸化膜やニッケル水酸化膜を除去できる。この
ため水素吸蔵合金粉末の反応性や導電性が向上し、水素
吸蔵合金電極の初期活性化特性や導電性を向上すること
ができる。
According to this structure, the misch metal oxide having a property of being easily oxidized or dissolved in alkali and protruding from the surface nickel layer of the hydrogen storage alloy powder can be removed after the acid treatment or the alkali treatment. it can. Further, the subsequent reduction treatment can remove the nickel oxide film and the nickel hydroxide film on the surface of the nickel-rich layer, which could not be sufficiently removed by these acid treatment or alkali treatment. Therefore, the reactivity and conductivity of the hydrogen storage alloy powder are improved, and the initial activation characteristics and conductivity of the hydrogen storage alloy electrode can be improved.

【0008】なお、従来の水素吸蔵二次電池の一例で
は、1充放電サイクルを10時間で完了するとし、初期
活性化に必要なサイクル数を7とすれば、初期活性化に
必要な時間(最大容量の95%程度の容量実現までの所
要時間)は70時間となり、それに必要な電力も無視す
ることができず、初期活性化特性の向上は生産性や製造
設備利用率の向上の点から重要な意味を有している。
In an example of a conventional hydrogen storage secondary battery, one charge / discharge cycle is completed in 10 hours, and if the number of cycles required for initial activation is 7, the time required for initial activation ( The time required to achieve a capacity of about 95% of the maximum capacity) is 70 hours, and the power required for it cannot be ignored. Improving the initial activation characteristics will improve productivity and manufacturing facility utilization rate. It has important meaning.

【0009】本発明の第2の構成は、酸及びアルカリの
少なくとも一方で処理した後、水洗、乾燥した水素吸蔵
合金粉末を増粘剤又は結着剤と混合して形成したペース
トを金属集電体に被着して形成する水素吸蔵合金電極の
製造方法において、前記ペーストを前記金属集電体に被
着して形成された前記水素吸蔵合金電極を還元処理する
ことを特徴とする水素吸蔵合金電極の製造方法である。
本発明によれば、水素吸蔵合金電極を還元処理するの
で、上記第1の構成において還元処理した後、電極を形
成するまでに水素吸蔵合金粉末の表面に形成されるニッ
ケル酸化膜も還元することができるので、効果を一層向
上することができる。
A second structure of the present invention is a metal current collector comprising a paste formed by mixing hydrogen-absorbing alloy powder, which has been treated with at least one of acid and alkali, washed with water and dried, with a thickener or a binder. In the method for producing a hydrogen storage alloy electrode formed by depositing on a body, the hydrogen storage alloy electrode, wherein the hydrogen storage alloy electrode formed by depositing the paste on the metal current collector is subjected to reduction treatment. It is a manufacturing method of an electrode.
According to the present invention, since the hydrogen storage alloy electrode is subjected to the reduction treatment, it is possible to reduce the nickel oxide film formed on the surface of the hydrogen storage alloy powder before forming the electrode after the reduction treatment in the first configuration. Therefore, the effect can be further improved.

【0010】本発明の第3の構成は、上記第1及び第2
の構成において更に、酸及びアルカリの少なくとも一方
で処理した後、水洗、乾燥した水素吸蔵合金粉末を増粘
剤又は結着剤と混合して形成したペーストを金属集電体
に被着して形成する水素吸蔵合金電極の製造方法におい
て、前記水洗、乾燥後、前記水素吸蔵合金粉末を還元処
理した後、前記増粘剤又は結着剤と混合するとともに、
前記ペーストを前記金属集電体に被着して形成された前
記水素吸蔵合金電極を還元処理することを特徴としてい
る。本発明によれば還元処理を二重に行うので上記作用
効果を一層向上することができる。
A third structure of the present invention is the above first and second embodiments.
Further, in the above-mentioned constitution, after being treated with at least one of acid and alkali, washed and dried, hydrogen-absorbing alloy powder is mixed with a thickener or a binder to form a paste on a metal current collector. In the method for producing a hydrogen storage alloy electrode, which is washed with water, dried, after reduction treatment of the hydrogen storage alloy powder, while mixing with the thickener or binder,
The hydrogen storage alloy electrode formed by applying the paste to the metal current collector is reduced. According to the present invention, since the reduction treatment is performed twice, the above-mentioned effects can be further improved.

【0011】本発明の第4の構成は、上記第1乃至第3
のいずれかの構成において更に、前記還元処理を過酸化
水素水を用いて行うことを特徴としている。過酸化水素
水は上述した酸処理やアルカリ処理のようにその後に多
量の洗浄水で洗浄する必要が無く工程上簡単である。本
発明の第5の構成は、上記第1乃至第3のいずれかの構
成において更に、前記還元処理を高温水素ガスを用いて
行うことを特徴としている。高温水素ガスは上述した酸
処理やアルカリ処理のようなその後の水洗浄を必要とし
ないので簡単である。
A fourth structure of the present invention is the above first to third structures.
In any one of the above configurations, the reduction treatment is further performed using hydrogen peroxide solution. The hydrogen peroxide solution does not need to be washed with a large amount of washing water after the acid treatment or alkali treatment described above, and is simple in process. A fifth configuration of the present invention is characterized in that, in any one of the first to third configurations, the reduction treatment is further performed using high temperature hydrogen gas. Hot hydrogen gas is simple as it does not require subsequent water washing such as the acid and alkali treatments described above.

【0012】[0012]

【発明を実施する形態】本発明の好適な態様を以下の実
施例に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described based on the following examples.

【0013】[0013]

【実施例】以下、本発明の水素吸蔵合金電極の製造方法
の各実施例を説明する。 (実施例1)組成がMmNi3.6 Co0.75Al0.3 Mn
0.35(La/Mm=0.6)である水素吸蔵合金を機械
粉砕して150メッシュ以下とした水素吸蔵合金粉末を
80℃の6NKOH水溶液中に24時間浸漬して合金表
面をアルカリエッチングし、その後、水洗、乾燥(空気
中)後、CMC(カルボキシメチルセルロース)2wt
%水溶液を合金重量に対して20wt%加えて攪拌し、
ペーストを形成した。
EXAMPLES Examples of the method for manufacturing a hydrogen storage alloy electrode according to the present invention will be described below. (Example 1) composition MmNi 3.6 Co 0.75 Al 0.3 Mn
Hydrogen storage alloy powder of 0.35 (La / Mm = 0.6) was mechanically crushed to 150 mesh or less, and hydrogen storage alloy powder was immersed in 6NKOH aqueous solution at 80 ° C. for 24 hours to alkali-etch the alloy surface. After washing with water and drying (in air), CMC (carboxymethyl cellulose) 2wt
% Aqueous solution to the alloy weight of 20 wt% and stirred,
A paste was formed.

【0014】次に、このペーストを発泡ニッケル集電体
(10cm×10cm、550g/m2 )に充填し、7
0〜80℃で乾燥し、ロールプレスにて厚さを0.6m
mにした。次に、この電極を30wt%過酸化水素水に
3時間浸漬した後、水洗、乾燥した。得られた水素吸蔵
合金電極をセパレータを介して一対の焼結式ニッケル極
で挟持し、6NKOH水溶液に浸漬して負極規制の電池
(実施例品)を10個作製し、その後、負極理論容量を
基準として0.1Cで10.5時間充電し、その後、
0.1Cで0.8Vまで放電させる充放電サイクルを活
性化処理のために実施した。更に、比較例として上記実
施例品と同じ製造工程でただ過酸化水素水への浸漬だけ
を省略した比較例品を同じく10個作製した。この時の
充放電サイクル数と容量利用率(負極理論容量に対する
実際容量の比)との測定結果を図1に示す。図1におい
て、実施例品の平均値を白丸で示し、比較例品の平均値
を黒丸で示す。図1から還元処理により格段に初期活性
化特性を向上できることがわかる。 (実施例2)次に、実施例1で作製した水素吸蔵合金電
極3枚をそれぞれセパレータを介して4枚の焼結式ニッ
ケル極で挟んで角型密閉電池を実施例品として10個構
成し、正極理論容量(負極理論容量の100%)を基準
として0.1Cで10.5時間充電し、その後、0.1
Cで1.0Vまで放電させる充放電サイクルを活性化処
理のために実施した。同構成でただ水素吸蔵合金電極を
実施例1の比較例品とした比較例品10個を作製し、そ
れらの充電終了時点における電池内圧を測定した。各実
施例品の電池内圧の平均値(白丸)と各比較例品の電池
内圧の平均値(黒丸)とを図2に示す。図2から還元処
理により格段に電池内圧を低減できることがわかる。
Next, this paste was filled in a foamed nickel current collector (10 cm × 10 cm, 550 g / m 2 ) and
Dry at 0-80 ℃ and roll press to a thickness of 0.6m
It was set to m. Next, this electrode was immersed in 30 wt% hydrogen peroxide water for 3 hours, then washed with water and dried. The obtained hydrogen storage alloy electrode was sandwiched between a pair of sintered nickel electrodes via a separator and immersed in a 6NKOH aqueous solution to prepare 10 negative electrode regulated batteries (example products), and then the negative electrode theoretical capacity was set. As a reference, charge at 0.1C for 10.5 hours, then
A charge / discharge cycle of discharging to 0.8 V at 0.1 C was performed for the activation treatment. Further, as comparative examples, 10 comparative example products were produced in the same manufacturing steps as those of the above-described example products, except that only immersion in hydrogen peroxide solution was omitted. The measurement results of the number of charge / discharge cycles and the capacity utilization rate (ratio of the actual capacity to the negative electrode theoretical capacity) at this time are shown in FIG. In FIG. 1, the average value of the example product is shown by a white circle, and the average value of the comparative example product is shown by a black circle. It can be seen from FIG. 1 that the initial activation characteristics can be remarkably improved by the reduction treatment. (Example 2) Next, three hydrogen-absorbing alloy electrodes produced in Example 1 were sandwiched between four sintered nickel electrodes via separators to form 10 prismatic sealed batteries as Example products. , 0.1 C based on the theoretical capacity of the positive electrode (100% of the theoretical capacity of the negative electrode) for 10.5 hours, and then 0.1
A charging / discharging cycle of discharging to 1.0 V at C was performed for the activation treatment. With the same structure, only 10 hydrogen-absorbing alloy electrodes were manufactured, and the internal pressures of the batteries were measured at the end of charging. FIG. 2 shows the average value (white circle) of the battery internal pressure of each Example product and the average value (black circle) of the battery internal pressure of each Comparative Example product. It can be seen from FIG. 2 that the internal pressure of the battery can be significantly reduced by the reduction treatment.

【0015】なお、電池内圧は電池のサイクル寿命に対
して強く負の相関を有することが周知であり、図2から
本実施例品のサイクル寿命が格段に改善できることが推
定される。 (実施例3)上記実施例1におけるアルカリエッチング
の代わりに30℃の1N蟻酸水溶液中に24時間浸漬し
て合金表面を酸エッチングした他は、実施例1と同じ工
程で作製した実施例品を10個作製し、その後、負極理
論容量を基準として0.1Cで10.5時間充電し、そ
の後、0.1Cで0.8Vまで放電させる充放電サイク
ルを活性化処理のために実施した。更に、比較例として
上記実施例品と同じ製造工程でただ過酸化水素水への浸
漬だけを省略した比較例品を同じく10個作製した。こ
の時の充放電サイクル数と容量利用率(負極理論容量に
対する実際容量の比)との測定結果を図3に示す。図3
において、実施例品の平均値を白丸で示し、比較例品の
平均値を黒丸で示す。図3から還元処理により格段に初
期活性化特性を向上できることがわかる。 (実施例4)次に、実施例3で作製した水素吸蔵合金電
極3枚をそれぞれセパレータを介して4枚の焼結式ニッ
ケル極で挟んで角型密閉電池を実施例品として10個構
成し、正極理論容量(負極理論容量の100%)を基準
として0.1Cで10.5時間充電し、その後、0.1
Cで1.0Vまで放電させる充放電サイクルを活性化処
理のために実施した。同構成でただ水素吸蔵合金電極を
実施例3の比較例品とした比較例品10個を作製し、そ
れらの充電終了時点における電池内圧を測定した。各実
施例品の電池内圧の平均値(白丸)と各比較例品の電池
内圧の平均値(黒丸)とを図4に示す。図4から還元処
理により格段に電池内圧を低減できることがわかる。 (実施例5)組成がMmNi3.6 Co0.75Al0.3 Mn
0.35(La/Mm=0.6)である水素吸蔵合金を機械
粉砕して150メッシュ以下とした水素吸蔵合金粉末を
80℃の6NKOH水溶液中に24時間浸漬して合金表
面をアルカリエッチングし、その後、水洗、乾燥(空気
中)した。次に、この水素吸蔵合金粉末を30wt%過
酸化水素水に3時間浸漬した後、水洗、乾燥した。次
に、CMC2wt%水溶液を合金重量に対して20wt
%加えて攪拌し、ペーストを形成した。次に、このペー
ストを発泡ニッケル集電体(10cm×10cm、55
0g/m2 )に充填し、70〜80℃で乾燥し、ロール
プレスにて厚さを0.6mmにした。
It is well known that the battery internal pressure has a strong negative correlation with the cycle life of the battery, and it is estimated from FIG. 2 that the cycle life of the product of this embodiment can be remarkably improved. (Example 3) An example product prepared in the same process as in example 1 was used except that the surface of the alloy was acid-etched by immersing it in a 1N formic acid aqueous solution at 30 ° C for 24 hours instead of the alkali etching in the above-mentioned example 1. Ten pieces were produced, and then, a charge / discharge cycle was performed for activation treatment, in which the battery was charged at 0.1 C for 10.5 hours based on the theoretical capacity of the negative electrode, and then discharged to 0.8 V at 0.1 C. Further, as comparative examples, 10 comparative example products were produced in the same manufacturing steps as those of the above-described example products, except that only immersion in hydrogen peroxide solution was omitted. FIG. 3 shows the measurement results of the number of charge / discharge cycles and the capacity utilization rate (ratio of the actual capacity to the negative electrode theoretical capacity) at this time. FIG.
In, the average value of the example product is shown by a white circle, and the average value of the comparative example product is shown by a black circle. It can be seen from FIG. 3 that the initial activation characteristics can be remarkably improved by the reduction treatment. (Example 4) Next, three hydrogen-absorbing alloy electrodes produced in Example 3 were sandwiched between four sintered nickel electrodes via separators to form ten prismatic sealed batteries as Example products. , 0.1 C based on the theoretical capacity of the positive electrode (100% of the theoretical capacity of the negative electrode) for 10.5 hours, and then 0.1
A charging / discharging cycle of discharging to 1.0 V at C was performed for the activation treatment. With the same structure, only 10 hydrogen-absorbing alloy electrodes were prepared, which were the hydrogen-absorbing alloy electrodes of Comparative Example 3, and the battery internal pressures at the end of charging were measured. FIG. 4 shows the average value (white circle) of the battery internal pressure of each Example product and the average value (black circle) of the battery internal pressure of each Comparative Example product. It can be seen from FIG. 4 that the internal pressure of the battery can be significantly reduced by the reduction treatment. (Example 5) composition MmNi 3.6 Co 0.75 Al 0.3 Mn
Hydrogen storage alloy powder of 0.35 (La / Mm = 0.6) was mechanically crushed to 150 mesh or less, and hydrogen storage alloy powder was immersed in 6NKOH aqueous solution at 80 ° C. for 24 hours to alkali-etch the alloy surface. It was washed with water and dried (in air). Next, this hydrogen storage alloy powder was immersed in a 30 wt% hydrogen peroxide solution for 3 hours, then washed with water and dried. Next, 20 wt% of CMC 2 wt% aqueous solution with respect to alloy weight
% And stirred to form a paste. Next, this paste was applied to a foamed nickel current collector (10 cm × 10 cm, 55
0 g / m < 2 >), dried at 70-80 [deg.] C., and rolled to a thickness of 0.6 mm.

【0016】得られた水素吸蔵合金電極をセパレータを
介して一対の焼結式ニッケル極で挟持し、6NKOH水
溶液に浸漬して負極規制の電池(実施例品)を10個作
製し、その後、負極理論容量を基準として0.1Cで1
0.5時間充電し、その後、0.1Cで0.8Vまで放
電させる充放電サイクルを活性化処理のために実施し
た。更に、比較例として上記実施例品と同じ製造工程で
ただ過酸化水素水への浸漬だけを省略した比較例品を同
じく10個作製した。この時の充放電サイクル数と容量
利用率(負極理論容量に対する実際容量の比)との測定
結果を図5に示す。図5において、実施例品の平均値を
白丸で示し、比較例品の平均値を黒丸で示す。図5から
還元処理により格段に初期活性化特性を向上できること
がわかる。 (実施例6)次に、実施例5で作製した水素吸蔵合金電
極3枚をそれぞれセパレータを介して4枚の焼結式ニッ
ケル極で挟んで角型密閉電池を実施例品として10個構
成し、正極理論容量(負極理論容量の100%)を基準
として0.1Cで10.5時間充電し、その後、0.1
Cで1.0Vまで放電させる充放電サイクルを活性化処
理のために実施した。同構成でただ水素吸蔵合金電極を
実施例1の比較例品とした比較例品10個を作製し、そ
れらの充電終了時点における電池内圧を測定した。各実
施例品の電池内圧の平均値(白丸)と各比較例品の電池
内圧の平均値(黒丸)とを図6に示す。図6から還元処
理により格段に電池内圧を低減できることがわかる。 (実施例7)上記実施例5におけるアルカリエッチング
の代わりに30℃の1N蟻酸水溶液中に24時間浸漬し
て合金表面を酸エッチングした他は、実施例5と同じ工
程で作製した実施例品を10個作製し、その後、負極理
論容量を基準として0.1Cで10.5時間充電し、そ
の後、0.1Cで0.8Vまで放電させる充放電サイク
ルを活性化処理のために実施した。更に、比較例として
上記実施例品と同じ製造工程でただ過酸化水素水への浸
漬だけを省略した比較例品を同じく10個作製した。こ
の時の充放電サイクル数と容量利用率(負極理論容量に
対する実際容量の比)との測定結果を図7に示す。図7
において、実施例品の平均値を白丸で示し、比較例品の
平均値を黒丸で示す。図7から還元処理により格段に初
期活性化特性を向上できることがわかる。 (実施例8)次に、実施例7で作製した水素吸蔵合金電
極3枚をそれぞれセパレータを介して4枚の焼結式ニッ
ケル極で挟んで角型密閉電池を実施例品として10個構
成し、正極理論容量(負極理論容量の100%)を基準
として0.1Cで10.5時間充電し、その後、0.1
Cで1.0Vまで放電させる充放電サイクルを活性化処
理のために実施した。同構成でただ水素吸蔵合金電極を
実施例3の比較例品とした比較例品10個を作製し、そ
れらの充電終了時点における電池内圧を測定した。各実
施例品の電池内圧の平均値(白丸)と各比較例品の電池
内圧の平均値(黒丸)とを図8に示す。図8から還元処
理により格段に電池内圧を低減できることがわかる。 (実施例9)上記各実施例1〜6に比較して還元処理を
過酸化水素水への浸漬の代わりに高温水素ガス(好適に
は300〜600℃、圧力0.1〜1MPa)に雰囲気
内に1時間保持して行ったものを作製した。これらの水
素吸蔵合金電極は上記実施例1〜5の水素吸蔵合金電極
とほぼ等しい容量利用率特性及び電池内圧特性を示し
た。この事実から還元処理に用いる還元剤は過酸化水素
水に限定されないことがわかる。
The obtained hydrogen storage alloy electrode was sandwiched between a pair of sintered nickel electrodes via a separator and immersed in a 6NKOH aqueous solution to prepare 10 negative electrode regulated batteries (example products), and then the negative electrode. 1 at 0.1C based on the theoretical capacity
A charging / discharging cycle of charging for 0.5 hour and then discharging to 0.8 V at 0.1 C was performed for the activation treatment. Further, as comparative examples, 10 comparative example products were produced in the same manufacturing steps as those of the above-described example products, except that only immersion in hydrogen peroxide solution was omitted. The measurement results of the number of charge / discharge cycles and the capacity utilization rate (ratio of the actual capacity to the negative electrode theoretical capacity) at this time are shown in FIG. In FIG. 5, the average value of the example product is shown by a white circle, and the average value of the comparative example product is shown by a black circle. It can be seen from FIG. 5 that the initial activation characteristics can be remarkably improved by the reduction treatment. (Example 6) Next, three hydrogen absorbing alloy electrodes prepared in Example 5 were sandwiched between four sintered nickel electrodes via separators, and ten prismatic sealed batteries were constructed as Example products. , 0.1 C based on the theoretical capacity of the positive electrode (100% of the theoretical capacity of the negative electrode) for 10.5 hours, and then 0.1
A charging / discharging cycle of discharging to 1.0 V at C was performed for the activation treatment. With the same structure, only 10 hydrogen-absorbing alloy electrodes were manufactured, and the internal pressures of the batteries were measured at the end of charging. FIG. 6 shows the average value of the battery internal pressure (white circle) of each example product and the average value of the battery internal pressure (black circle) of each comparative example product. It can be seen from FIG. 6 that the reduction process can significantly reduce the internal pressure of the battery. (Example 7) An example product manufactured in the same process as that of Example 5 except that the surface of the alloy was acid-etched by immersing the alloy surface in a 1N formic acid aqueous solution at 30 ° C for 24 hours instead of the alkali etching in Example 5 described above. Ten pieces were produced, and then, a charge / discharge cycle was performed for activation treatment, in which the battery was charged at 0.1 C for 10.5 hours based on the theoretical capacity of the negative electrode, and then discharged to 0.8 V at 0.1 C. Further, as comparative examples, 10 comparative example products were produced in the same manufacturing steps as those of the above-described example products, except that only immersion in hydrogen peroxide solution was omitted. FIG. 7 shows the measurement results of the number of charge / discharge cycles and the capacity utilization rate (ratio of the actual capacity to the negative electrode theoretical capacity) at this time. Figure 7
In, the average value of the example product is shown by a white circle, and the average value of the comparative example product is shown by a black circle. It can be seen from FIG. 7 that the initial activation characteristics can be remarkably improved by the reduction treatment. (Embodiment 8) Next, three hydrogen-absorbing alloy electrodes prepared in Embodiment 7 are sandwiched between four sintered nickel electrodes via separators to form 10 prismatic sealed batteries as embodiment products. , 0.1 C based on the theoretical capacity of the positive electrode (100% of the theoretical capacity of the negative electrode) for 10.5 hours, and then 0.1
A charging / discharging cycle of discharging to 1.0 V at C was performed for the activation treatment. With the same structure, only 10 hydrogen-absorbing alloy electrodes were prepared, which were the hydrogen-absorbing alloy electrodes of Comparative Example 3, and the battery internal pressures at the end of charging were measured. FIG. 8 shows the average value (white circle) of the battery internal pressure of each Example product and the average value (black circle) of the battery internal pressure of each Comparative Example product. It can be seen from FIG. 8 that the internal pressure of the battery can be significantly reduced by the reduction process. (Example 9) Compared to each of Examples 1 to 6 described above, the reduction treatment was carried out in an atmosphere of high-temperature hydrogen gas (preferably 300 to 600 ° C, pressure of 0.1 to 1 MPa) instead of immersion in hydrogen peroxide solution. What was held for 1 hour was prepared. These hydrogen storage alloy electrodes exhibited substantially the same capacity utilization characteristics and battery internal pressure characteristics as the hydrogen storage alloy electrodes of Examples 1 to 5 above. From this fact, it is understood that the reducing agent used for the reduction treatment is not limited to hydrogen peroxide solution.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の水素吸蔵合金電極の初期活性化特性
を示す図である。
FIG. 1 is a diagram showing initial activation characteristics of a hydrogen storage alloy electrode of Example 1.

【図2】実施例1の水素吸蔵合金電極を用いた密閉電池
の電池内圧特性を示す図である。
FIG. 2 is a diagram showing battery internal pressure characteristics of a sealed battery using the hydrogen storage alloy electrode of Example 1.

【図3】実施例3の水素吸蔵合金電極の初期活性化特性
を示す図である。
FIG. 3 is a diagram showing initial activation characteristics of a hydrogen storage alloy electrode of Example 3.

【図4】実施例3の水素吸蔵合金電極を用いた密閉電池
の電池内圧特性を示す図である。
FIG. 4 is a diagram showing battery internal pressure characteristics of a sealed battery using the hydrogen storage alloy electrode of Example 3.

【図5】実施例5の水素吸蔵合金電極の初期活性化特性
を示す図である。
5 is a diagram showing initial activation characteristics of the hydrogen storage alloy electrode of Example 5. FIG.

【図6】実施例5の水素吸蔵合金電極を用いた密閉電池
の電池内圧特性を示す図である。
FIG. 6 is a diagram showing battery internal pressure characteristics of a sealed battery using the hydrogen storage alloy electrode of Example 5.

【図7】実施例7の水素吸蔵合金電極の初期活性化特性
を示す図である。
FIG. 7 is a diagram showing initial activation characteristics of a hydrogen storage alloy electrode of Example 7.

【図8】実施例7の水素吸蔵合金電極を用いた密閉電池
の電池内圧特性を示す図である。
FIG. 8 is a diagram showing battery internal pressure characteristics of a sealed battery using the hydrogen storage alloy electrode of Example 7.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】酸及びアルカリの少なくとも一方で処理し
た後、水洗、乾燥した水素吸蔵合金粉末を増粘剤又は結
着剤と混合して形成したペーストを金属集電体に被着し
て形成する水素吸蔵合金電極の製造方法において、 前記水洗、乾燥後、前記水素吸蔵合金粉末を還元処理
し、その後、前記増粘剤又は結着剤と混合することを特
徴とする水素吸蔵合金電極の製造方法。
1. A metal current collector is coated with a paste formed by mixing hydrogen storage alloy powder, which has been treated with at least one of acid and alkali, washed with water and dried, with a thickener or a binder. In the method for producing a hydrogen storage alloy electrode, the method for producing a hydrogen storage alloy electrode, comprising: washing with water, drying, reducing the hydrogen storage alloy powder, and then mixing with the thickener or binder. Method.
【請求項2】酸及びアルカリの少なくとも一方で処理し
た後、水洗、乾燥した水素吸蔵合金粉末を増粘剤又は結
着剤と混合して形成したペーストを金属集電体に被着し
て形成する水素吸蔵合金電極の製造方法において、 前記ペーストを前記金属集電体に被着して形成された前
記水素吸蔵合金電極を還元処理することを特徴とする水
素吸蔵合金電極の製造方法。
2. A metal current collector is coated with a paste formed by mixing hydrogen-absorbing alloy powder, which has been treated with at least one of acid and alkali, washed with water and dried, with a thickener or a binder. The method for manufacturing a hydrogen storage alloy electrode according to claim 1, wherein the hydrogen storage alloy electrode formed by applying the paste to the metal current collector is subjected to a reduction treatment.
【請求項3】酸及びアルカリの少なくとも一方で処理し
た後、水洗、乾燥した水素吸蔵合金粉末を増粘剤又は結
着剤と混合して形成したペーストを金属集電体に被着し
て形成する水素吸蔵合金電極の製造方法において、 前記水洗、乾燥後、前記水素吸蔵合金粉末を還元処理し
た後、前記増粘剤又は結着剤と混合するとともに、前記
ペーストを前記金属集電体に被着して形成された前記水
素吸蔵合金電極を還元処理することを特徴とする水素吸
蔵合金電極の製造方法。
3. A metal current collector is coated with a paste formed by mixing hydrogen-absorbing alloy powder, which has been treated with at least one of acid and alkali, washed with water and dried, with a thickener or a binder. In the method for producing a hydrogen storage alloy electrode according to the above, after washing with water and drying, after reducing treatment of the hydrogen storage alloy powder, while mixing with the thickener or binder, the paste is coated on the metal current collector. A method of manufacturing a hydrogen storage alloy electrode, which comprises subjecting the hydrogen storage alloy electrode formed by deposition to a reduction treatment.
【請求項4】前記還元処理は過酸化水素水を用いて行わ
れる請求項1乃至3のいずれか記載の水素吸蔵合金電極
の製造方法。
4. The method for producing a hydrogen storage alloy electrode according to claim 1, wherein the reduction treatment is performed using hydrogen peroxide solution.
【請求項5】前記還元処理は高温水素ガスを用いて行わ
れる請求項1乃至3のいずれか記載の水素吸蔵合金電極
の製造方法。
5. The method for producing a hydrogen storage alloy electrode according to claim 1, wherein the reduction treatment is performed using high temperature hydrogen gas.
JP7214512A 1995-08-23 1995-08-23 Manufacture of hydrogen storage alloy electrode Pending JPH0963573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7214512A JPH0963573A (en) 1995-08-23 1995-08-23 Manufacture of hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7214512A JPH0963573A (en) 1995-08-23 1995-08-23 Manufacture of hydrogen storage alloy electrode

Publications (1)

Publication Number Publication Date
JPH0963573A true JPH0963573A (en) 1997-03-07

Family

ID=16656956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7214512A Pending JPH0963573A (en) 1995-08-23 1995-08-23 Manufacture of hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JPH0963573A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066573A1 (en) * 1998-06-18 1999-12-23 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy for alkaline storage battery and method for production thereof, and hydrogen absorbing alloy electrode for alkaline storage battery and method for production thereof
JP3662939B2 (en) * 1997-01-31 2005-06-22 三洋電機株式会社 Hydrogen storage alloy powder and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3662939B2 (en) * 1997-01-31 2005-06-22 三洋電機株式会社 Hydrogen storage alloy powder and method for producing the same
EP0975033A4 (en) * 1997-01-31 2006-05-24 Sanyo Electric Co ALLOY POWDER FOR HYDROGEN STORAGE AND PROCESS FOR PRODUCING THE SAME
WO1999066573A1 (en) * 1998-06-18 1999-12-23 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy for alkaline storage battery and method for production thereof, and hydrogen absorbing alloy electrode for alkaline storage battery and method for production thereof

Similar Documents

Publication Publication Date Title
JPH0773878A (en) Manufacture of metal hydride electrode
US6740450B2 (en) Hydrogen-absorbing alloy for battery, method for producing the same, and alkaline storage battery using the same
JPH0963573A (en) Manufacture of hydrogen storage alloy electrode
JPH09171821A (en) Manufacture of hydrogen storage alloy electrode
JPH10106550A (en) Hydrogen storage alloy electrode and method for producing the same
JP2002343349A (en) Hydrogen storage alloy electrode
JPH05174869A (en) Processing method for sealed type nickel-hydrogen battery
JP2001102085A (en) Chemical conversion method of sealed nickel-hydrogen storage battery
JP3744677B2 (en) Method for producing sintered cadmium negative electrode
JPH10255775A (en) Hydrogen storage alloy electrode and its manufacture
JPS58198856A (en) Manufacturing method of cadmium negative electrode plate for alkaline storage batteries
JP3685726B2 (en) Method for producing sintered cadmium negative electrode
JP3454612B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3182225B2 (en) Method for producing cadmium negative electrode for alkaline storage battery
JP2786902B2 (en) Manufacturing method of non-sintered cadmium electrode
JP3187882B2 (en) Method for manufacturing alkaline storage battery and method for manufacturing nickel plate for alkaline storage battery
JPH0410181B2 (en)
JP2755690B2 (en) Method for producing cadmium negative electrode plate for alkaline storage battery
JP3322449B2 (en) Method for producing metal hydride electrode
JP2000285913A (en) Hydrogen storage alloy and hydrogen storage alloy electrode using the same
JP2003068291A (en) Chemical conversion method of sealed nickel-hydrogen storage battery
JPS60211770A (en) Positive electrode plate for alkaline battery
JPH0513077A (en) Manufacturing method of hydrogen storage alloy electrode
JPS6215994B2 (en)
JP3092262B2 (en) Manufacturing method of hydrogen storage alloy electrode