[go: up one dir, main page]

JPH0975938A - Membrane separation device - Google Patents

Membrane separation device

Info

Publication number
JPH0975938A
JPH0975938A JP23134595A JP23134595A JPH0975938A JP H0975938 A JPH0975938 A JP H0975938A JP 23134595 A JP23134595 A JP 23134595A JP 23134595 A JP23134595 A JP 23134595A JP H0975938 A JPH0975938 A JP H0975938A
Authority
JP
Japan
Prior art keywords
tank
sludge
viscosity
membrane
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23134595A
Other languages
Japanese (ja)
Inventor
Shigeki Sawada
繁樹 沢田
Kazuo Suzuki
和夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP23134595A priority Critical patent/JPH0975938A/en
Publication of JPH0975938A publication Critical patent/JPH0975938A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain constant filtering performance regardless of properties of a liquid in a membrane separation device equipped with a draining means to drain sludge from a treating tank having a membrane module and an aerating means, by measuring the viscosity coefft. of the liquid in the tank and controlling the draining means for sludge based on the measured value. SOLUTION: This membrane separation device has a membrane module 2 immersed in an aeration tank 1 which is aerated by an aerating pipe 4 connected to a blower 3 so that the feed water introduced into the tank 1 through a pipe 5 is treated with aerobic microorganisms. In this method, a measuring means 11, 12 for the viscosity coefft. (or a physical index which has correlation with the viscosity coefft.) is disposed in the inside and outside of the tank l. According to the measured value, the aeration amt. by the blower 3 and opening and closing of a valve 9A attached to a sludge draining tube 9 are controlled by a controlling unit 13. For example, if the viscosity coefft. increases over a specified value, the draining amt. of sludge through the pipe 9 is increased to decrease the viscosity coefft., while the aeration amt. is increased to increase an air-lifted circulating flow.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は膜分離装置に係り、
特に、処理水槽内に膜モジュールが浸漬設置され、この
膜モジュールの下部からの曝気で生じたエアーリフト循
環流で効率的なクロスフロー濾過を行う膜分離装置に関
する。
TECHNICAL FIELD The present invention relates to a membrane separation device,
In particular, the present invention relates to a membrane separation device in which a membrane module is immersed and installed in a treated water tank, and efficient cross-flow filtration is performed by an air lift circulation flow generated by aeration from the lower portion of the membrane module.

【0002】[0002]

【従来の技術】従来、曝気槽内に膜モジュールを浸漬設
置し、膜モジュール下方から曝気することにより生じる
エアーリフト循環流で効率的に膜濾過を行う膜分離装置
が提案されている。
2. Description of the Related Art Conventionally, there has been proposed a membrane separation device in which a membrane module is immersed in an aeration tank and efficiently filtered by an air lift circulating flow generated by aeration from below the membrane module.

【0003】図2は、このような膜分離装置を示し、曝
気槽1内に膜モジュール2が浸漬設置され、この膜モジ
ュール2の下方からはブロワ3及び散気管4で曝気がな
される。原水は配管5より曝気槽1内に導入され、槽内
で好気性生物処理される。生物処理液は、吸引ポンプ6
による間欠的吸引と曝気によるエアーリフト循環流の上
昇液とで高い透過流束で膜濾過され、透過水は配管7よ
り系外へ排出される。8は良好なエアーリフト循環流を
生成させるための整流板である。9は汚泥引抜配管であ
り、曝気槽1内の汚泥は間欠的又は連続的に配管9より
引き抜かれる。
FIG. 2 shows such a membrane separation device, in which a membrane module 2 is immersed in an aeration tank 1 and aerated from below the membrane module 2 with a blower 3 and an air diffusing pipe 4. Raw water is introduced into the aeration tank 1 through the pipe 5, and aerobically treated in the tank. The biological treatment liquid is a suction pump 6
Membrane filtration is performed with a high permeation flux by the intermittent suction by and the rising liquid of the air lift circulation flow due to aeration, and the permeated water is discharged from the system through the pipe 7. Reference numeral 8 is a straightening plate for generating a good air lift circulation flow. Reference numeral 9 is a sludge drawing pipe, and the sludge in the aeration tank 1 is withdrawn from the pipe 9 intermittently or continuously.

【0004】また、図2に示すような膜分離装置におい
て、被処理液の有機物濃度に基いて、吸引圧力や曝気量
を調整することにより、膜の閉塞を防止する方法も提案
されている。
Further, in the membrane separation apparatus as shown in FIG. 2, there has been proposed a method of preventing clogging of the membrane by adjusting suction pressure and aeration amount based on the organic matter concentration of the liquid to be treated.

【0005】更に、曝気による良好なエアーリフト循環
流を形成するために、処理水槽を、図3に示す如く、原
水が導入される原水槽1Aと、膜モジュール2を設置す
る分離膜槽1Bとに分割し、両槽1A,1Bを連通管1
0A,10Bで連通したものも提案されている。なお、
図3において、図2に示す部材と同一機能を奏する部材
には同一符号を付してある。
Further, in order to form a good air lift circulation flow by aeration, as shown in FIG. 3, a treated water tank is a raw water tank 1A into which raw water is introduced, and a separation membrane tank 1B in which a membrane module 2 is installed. Divide into two and connect both tanks 1A and 1B to the communication pipe 1
Those that communicate with 0A and 10B are also proposed. In addition,
In FIG. 3, members having the same functions as those shown in FIG. 2 are designated by the same reference numerals.

【0006】このような膜分離装置は、有機性排水を生
物処理して活性汚泥を固液分離するための膜分離装置と
して、或いは、有機又は無機系排水を凝集処理してコロ
イド状成分を凝集処理した凝集汚泥を固液分離するため
の膜分離装置として用いられる。
Such a membrane separator is used as a membrane separator for biologically treating organic wastewater to perform solid-liquid separation of activated sludge, or as a coagulation treatment of organic or inorganic wastewater to agglomerate colloidal components. It is used as a membrane separator for solid-liquid separation of treated coagulated sludge.

【0007】この曝気によるエアーリフト循環流を利用
する浸漬型膜分離装置では、 濾過圧力を水頭差や吸引圧力により得ることによ
り、加圧循環型膜分離装置のような高圧操作を要するこ
となく、従って、膜面に堆積する膜排除物を圧密化させ
ることなく、低圧力で効率的な膜濾過を行える。 エアーリフト循環流でクロスフロー濾過を行うた
め、小さいエネルギーで大量の水を循環させることがで
きる。このため、膜モジュールを多段に配列して処理す
る場合においても、末端部の膜モジュールの濾過効率低
下を引き起こすことなく、効率的な処理を行える。 といった優れた効果が奏される。
In the submerged membrane separation apparatus utilizing the air lift circulation flow due to the aeration, the filtration pressure is obtained by the head difference or suction pressure, so that high pressure operation unlike the pressure circulation type membrane separation apparatus is not required. Therefore, efficient membrane filtration can be performed at a low pressure without consolidating the membrane exclusion material deposited on the membrane surface. Since cross-flow filtration is performed with an air lift circulation flow, a large amount of water can be circulated with a small amount of energy. Therefore, even when the membrane modules are arranged in multiple stages and treated, efficient treatment can be performed without causing a reduction in filtration efficiency of the membrane modules at the end portion. Such an excellent effect is achieved.

【0008】[0008]

【発明が解決しようとする課題】循環ポンプにより強制
的に被処理液を圧送する加圧循環型膜分離装置では、適
当なポンプを選択することにより、被処理液の粘性係数
等の液性状の影響を殆ど受けることなく、濾過性能を維
持することができるが、エアーリフト循環型膜分離装置
では、膜モジュール内外の液の見掛けの密度差を液循環
の駆動力としているため、槽内の液性状、特に粘性係数
の影響を受け易く、粘性係数が増加すると、液の流動性
が低下するため、エアーリフト循環流が減少する。ま
た、エアーリフト循環流の下降流部における気泡の巻き
込み量も粘性係数の増加と共に増大することにより、膜
モジュール内外の密度差が減少し、エアーリフト循環流
はより一層減少する。
In the pressure circulation type membrane separation device in which the liquid to be treated is forcibly fed under pressure by the circulation pump, the liquid properties such as the viscosity coefficient of the liquid to be treated are selected by selecting an appropriate pump. The filtration performance can be maintained with almost no effect, but in the air-lift circulation type membrane separation device, the apparent density difference between the liquid inside and outside the membrane module is used as the driving force for liquid circulation, so It is easily affected by the properties, particularly the viscosity coefficient, and when the viscosity coefficient increases, the fluidity of the liquid decreases, so the airlift circulation flow decreases. Further, the entrainment amount of bubbles in the downflow portion of the airlift circulation flow also increases with an increase in the viscosity coefficient, so that the density difference inside and outside the membrane module decreases, and the airlift circulation flow further decreases.

【0009】このように、粘性係数の増加によってエア
ーリフト循環流が減少することにより、クロスフロー濾
過における膜面堆積物を掃流する力も低下し、これによ
り、膜面堆積物の増加で膜の濾過抵抗が増大し、濾過性
能が低下するという問題が生じる。
As described above, since the air lift circulation flow decreases due to the increase of the viscosity coefficient, the force for sweeping the film surface deposit in the cross flow filtration also decreases, and the film surface deposit increases due to the increase of the film surface deposit. There is a problem that filtration resistance increases and filtration performance decreases.

【0010】この被処理液の粘性係数の増加によるエア
ーリフト循環流の減少、及び、それによる濾過性能の低
下が、従来のエアーリフト循環型膜分離装置における、
解決すべき重要な課題であった。
In the conventional air lift circulation type membrane separation device, the decrease in the air lift circulation flow due to the increase in the viscosity coefficient of the liquid to be treated and the deterioration in the filtration performance due to the decrease
It was an important issue to be solved.

【0011】なお、被処理液の有機物濃度に基いて吸引
圧力や曝気を調整する方法を採用することにより、ある
程度の効果は得られるものの、粘性係数の増加に十分に
対応した処置を施して、濾過性能を長期にわたり確実に
維持することは困難である。
By adopting a method of adjusting the suction pressure and aeration based on the organic matter concentration of the liquid to be treated, although some effects can be obtained, a treatment sufficiently corresponding to the increase of the viscosity coefficient is applied, It is difficult to reliably maintain the filtration performance for a long period of time.

【0012】本発明は上記従来の問題点を解決し、被処
理液の性状が変動した場合であっても、一定の濾過性能
を維持し、安定かつ効率的な処理を行えるエアーリフト
循環型膜分離装置を提供することを目的とする。
The present invention solves the above-mentioned problems of the prior art, and maintains a constant filtration performance even when the properties of the liquid to be treated fluctuate, and an air lift circulation type membrane capable of stable and efficient treatment. An object is to provide a separation device.

【0013】[0013]

【課題を解決するための手段】本発明の膜分離装置は、
被処理液が導入される処理水槽と、該処理水槽内に浸漬
設置された膜モジュールと、該膜モジュール下部に設け
られた曝気手段と、該膜モジュールの透過水を処理水と
して取り出す処理水取出手段と、該処理水槽内部から汚
泥を引き抜く汚泥引抜手段とを備える膜分離装置におい
て、槽内部の液の粘性係数又は粘性係数に相関する物理
指標を測定し、この測定値に基いて、前記汚泥引抜手段
の汚泥引き抜き量を制御する制御手段を設けてなること
を特徴とする。
The membrane separation device of the present invention comprises:
A treated water tank into which a liquid to be treated is introduced, a membrane module immersed in the treated water tank, an aeration means provided at a lower portion of the membrane module, and a treated water take-out for extracting permeated water of the membrane module as treated water. Means, in a membrane separation device comprising a sludge drawing means for drawing sludge from the inside of the treated water tank, the viscosity coefficient of the liquid in the tank or a physical index that correlates with the viscosity coefficient is measured, and based on this measured value, the sludge The present invention is characterized in that a control means for controlling the sludge withdrawal amount of the withdrawal means is provided.

【0014】本発明者らは、エアーリフト循環型膜分離
装置の被処理液の粘性係数の変化について鋭意研究した
ところ、次の2項目が支配的であることを知見した。
The inventors of the present invention have earnestly studied the change of the viscosity coefficient of the liquid to be treated in the air lift circulation type membrane separator, and have found that the following two items are dominant.

【0015】 懸濁成分の濃度変化 溶存有機成分の濃度変化 このうち、の懸濁成分の濃度変化は、原水濃度と汚泥
引き抜き量との不均衡によって生じる。一方、の溶存
有機成分の濃度変化は、原水の性状変化によってもたら
せる場合と、の懸濁成分の濃度変化により粘性係数が
増大し、膜の濾過抵抗が増大したために、膜面の排除性
が良くなることで、溶存有機成分の透過が高度に阻止さ
れて、溶存有機成分が濃縮されることによる場合とがあ
る。
Change in Concentration of Suspended Component Change in Concentration of Dissolved Organic Component Among these, the change in concentration of the suspended component is caused by an imbalance between the raw water concentration and the sludge withdrawal amount. On the other hand, the change in the concentration of the dissolved organic component caused by the change in the properties of the raw water and the change in the concentration of the suspended component increased the viscosity coefficient and the filtration resistance of the membrane. This may be due to the fact that the improvement of the water content prevents the permeation of the dissolved organic component to a high degree and the dissolved organic component is concentrated.

【0016】このようなことから、粘性係数が増大した
場合は、汚泥引き抜き量を増加させて、槽内の懸濁成分
の濃度を低減することによって回復(減小)させること
ができることがわかる。
From the above, it can be seen that when the viscosity coefficient increases, it can be recovered (reduced) by increasing the sludge withdrawal amount to reduce the concentration of suspended components in the tank.

【0017】即ち、被処理液の粘性係数と汚泥引き抜き
量とは、当該被処理液において、一定の関係が成り立
ち、汚泥引き抜き量を増加させることで、粘性係数を低
減することができる。
That is, the viscosity coefficient of the liquid to be treated and the amount of sludge drawn out have a certain relationship in the liquid to be treated, and the viscosity coefficient can be reduced by increasing the amount of drawn sludge.

【0018】ところで、このように、汚泥引き抜き量を
増加させることにより、粘性係数を低減し、膜濾過性能
の低下を防止することができるが、即効的な対応策とは
言えず、汚泥の引き抜き量の制御により粘性係数が変化
するまでにはある程度の時間を要する。
By increasing the sludge removal amount in this way, the viscosity coefficient can be reduced and the deterioration of the membrane filtration performance can be prevented, but this is not an immediate countermeasure and the sludge removal is not effective. It takes some time for the viscosity coefficient to change by controlling the amount.

【0019】このため、本発明においては、曝気手段に
よる曝気量の制御を、汚泥引き抜き量の制御と同時に、
或いは、前後の時間差を設けて行うのが好ましい。
Therefore, in the present invention, the control of the aeration amount by the aeration means is performed simultaneously with the control of the sludge withdrawal amount.
Alternatively, it is preferable that the time difference between before and after is provided.

【0020】即ち、曝気量を増加することにより、粘性
係数の増加で減少したエアーリフト循環流の減少分を補
い、クロスフロー流速の低下、濾過効率の低下を即効的
に防止する。
That is, by increasing the aeration amount, the decrease of the air lift circulation flow, which is decreased by the increase of the viscosity coefficient, is compensated for, and the decrease of the cross flow velocity and the decrease of the filtration efficiency are immediately prevented.

【0021】本発明の膜分離装置では、粘性係数を指標
として汚泥引き抜き量、更には曝気量を制御することに
より、膜面に容易に除去し得ない汚染物の堆積層が形成
される前に、エアーリフト循環流を増大させて良好な処
置を講じることができ、膜性能の低下を防止して、長期
にわたり安定かつ効率的な処理を行える。
In the membrane separation apparatus of the present invention, by controlling the amount of sludge drawn out and further the amount of aeration using the viscosity coefficient as an index, before a deposited layer of contaminants that cannot be easily removed is formed on the membrane surface. It is possible to increase the air lift circulation flow and take good measures, prevent deterioration of the membrane performance, and perform stable and efficient treatment for a long period of time.

【0022】[0022]

【発明の実施の形態】以下に図面を参照して本発明を詳
細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings.

【0023】図1は本発明の膜分離装置の一実施例を示
す系統図である。図1に示す膜分離装置は、図2に示す
膜分離装置に、槽内設置型の粘性係数(又は粘性係数に
相関する物理指標)測定手段11と、槽外設置型の粘性
係数(又は粘性係数に相関する物理指標)測定手段12
とを設け、これらの測定手段11,12の測定値が入力
され、入力された測定値に基いて、ブロワ3の曝気量及
び汚泥引抜配管9に設けたバルブ9Aの開閉を制御する
制御ユニット13を設けたものである。なお、粘性係数
測定手段12は、曝気槽1の底部から、ポンプ14を備
える配管15で汚泥を抜き出して粘性係数を測定した
後、配管16より再び曝気槽1に返送するように設けら
れている。
FIG. 1 is a system diagram showing an embodiment of the membrane separation apparatus of the present invention. The membrane separation apparatus shown in FIG. 1 is different from the membrane separation apparatus shown in FIG. 2 in that a viscous coefficient (or a physical index that correlates with the viscosity coefficient) measuring means 11 installed inside the tank and a viscous coefficient (or a viscosity outside the tank installed) are used. Physical index that correlates to the coefficient) measuring means 12
Is provided, and the measured values of these measuring means 11 and 12 are input, and based on the input measured values, the control unit 13 that controls the aeration amount of the blower 3 and the opening / closing of the valve 9A provided in the sludge drawing pipe 9 Is provided. The viscosity coefficient measuring means 12 is provided so as to extract sludge from the bottom of the aeration tank 1 through a pipe 15 equipped with a pump 14 to measure the viscosity coefficient, and then return the sludge to the aeration tank 1 through a pipe 16. .

【0024】図1に示す膜分離装置のその他の構成は、
図2に示す膜分離装置と同様であり、同一機能を奏する
部材には同一記号を付してある。
Other configurations of the membrane separation device shown in FIG.
Similar to the membrane separation device shown in FIG. 2, members having the same functions are designated by the same symbols.

【0025】本実施例の膜分離装置にあっては、配管5
から曝気槽1に導入された原水は、槽内で好気性生物処
理され、生物処理液は、膜モジュール2で膜濾過され、
透過水は配管7より系外へ排出される。そして、曝気槽
1内の汚泥は間欠的又は連続的に配管9より引き抜かれ
る。
In the membrane separation apparatus of this embodiment, the pipe 5
Raw water introduced into the aeration tank 1 from the above is subjected to aerobic biological treatment in the tank, and the biological treatment liquid is subjected to membrane filtration in the membrane module 2,
The permeated water is discharged from the system through the pipe 7. Then, the sludge in the aeration tank 1 is withdrawn from the pipe 9 intermittently or continuously.

【0026】このような膜濾過処理において、粘性係数
測定手段11により、曝気槽内の液の粘性係数が測定さ
れると共に、粘性係数測定手段12により、配管15か
ら抜き出された汚泥の粘性係数が測定され、制御ユニッ
ト13では、これらの測定値に基いて、ブロワ3による
曝気量又は配管9からの汚泥引き抜き量を制御する。
In such a membrane filtration process, the viscosity coefficient measuring means 11 measures the viscosity coefficient of the liquid in the aeration tank, and the viscosity coefficient measuring means 12 measures the viscosity coefficient of the sludge extracted from the pipe 15. Is measured, and the control unit 13 controls the amount of aeration by the blower 3 or the amount of sludge drawn out from the pipe 9 based on these measured values.

【0027】即ち、粘性係数が所定値よりも増大した場
合、或いは、増大する傾向を示した場合には、配管9か
らの汚泥引き抜き量を増加させて粘性係数の低減を図る
と共に、曝気量を増加させてエアーリフト循環流を増大
させる。
That is, when the viscosity coefficient exceeds a predetermined value, or when it tends to increase, the amount of sludge drawn out from the pipe 9 is increased to reduce the viscosity coefficient and the aeration amount is increased. To increase the air lift circulation flow.

【0028】これにより、粘性係数の増加で、エアーリ
フト循環流が減少し、更に、膜面に容易に剥離すること
ができないような堆積物が付着、成長するのを防止し
て、膜の濾過性能を高く維持することができる。
As a result, the increase in the viscosity coefficient reduces the air lift circulation flow, and further prevents the deposition and growth of deposits that cannot be easily separated on the film surface, and the filtration of the film. High performance can be maintained.

【0029】本発明において、被処理液の粘性係数又は
粘性係数に相関する物理指標の測定手段としては、槽内
設置型のものであっても槽外設置型のものであっても、
また、これらの併用であっても良いが、具体的には次の
ようなものを用いることができる。
In the present invention, the means for measuring the viscosity coefficient of the liquid to be treated or the physical index correlating with the viscosity coefficient may be either a type installed inside the tank or a type installed outside the tank.
Further, these may be used in combination, but specifically, the following can be used.

【0030】熱線流速計 熱膜流速計 ドップラー流速計 超音波流速計 回転粘度計等のトルクメーター このうち、粘性係数測定手段を槽内に設置した場合に
は、エアーリフト循環流の上昇流部に設けると泡の影響
を受けて誤動作を招くおそれがあることから、エアーリ
フト循環流の下降流部分に設置するのが好適である。ま
た、粘性係数測定手段を槽外に設置する場合には、槽底
部の液を連続的又は間欠的にサンプリングして測定する
ものが好適である。
Hot-wire anemometer Hot-film anemometer Doppler anemometer Ultrasonic anemometer A torque meter such as a rotational viscometer Among these, when the viscous coefficient measuring means is installed in the tank, it is installed in the rising part of the airlift circulation flow. If it is provided, it may be affected by bubbles and cause a malfunction, so it is preferable to install it in the downward flow portion of the air lift circulation flow. Further, when the viscosity coefficient measuring means is installed outside the tank, it is preferable to measure the liquid at the bottom of the tank continuously or intermittently.

【0031】なお、図1に示す膜分離装置では、槽内設
置型の粘性係数測定手段と槽外設置型の粘性係数測定手
段とを併用しているが、いずれか一方の粘性係数測定手
段のみでも良いことは言うまでもない。
In the membrane separation apparatus shown in FIG. 1, the viscosity coefficient measuring means installed inside the tank and the viscosity coefficient measuring means installed outside the tank are used together, but only one of the viscosity coefficient measuring means is used. But needless to say.

【0032】このように2種類の粘性係数測定手段を用
いる場合、例えば、汚泥引き抜き量は一方の粘性係数測
定手段に基いて制御し、曝気量は他方の粘性係数測定手
段に基いて制御するようにしても良い。また、ある特定
の期間においては、一方の粘性係数測定手段を制御基準
とし、別の期間では他の粘性係数測定手段を制御基準と
することもできる。更に、両粘性係数測定手段の測定値
を適当な演算式に代入し、当該処理条件に最も好適な制
御基準を算出するようにしても良い。
When two types of viscosity coefficient measuring means are used in this way, for example, the sludge withdrawal amount is controlled based on one viscosity coefficient measuring means, and the aeration amount is controlled based on the other viscosity coefficient measuring means. You can Further, one viscosity coefficient measuring means may be used as a control reference during a certain specific period, and another viscosity coefficient measuring means may be used as a control reference during another period. Further, the measured values of both viscosity coefficient measuring means may be substituted into an appropriate arithmetic expression to calculate the most suitable control criterion for the processing condition.

【0033】[0033]

【発明の効果】以上詳述した通り、本発明の膜分離装置
によれば、膜の濾過性能を高く維持し、長期にわたり、
安定かつ効率的な処理を行うことができる。
As described in detail above, according to the membrane separation apparatus of the present invention, the filtration performance of the membrane is kept high,
Stable and efficient processing can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の膜分離装置の一実施例を示す系統図で
ある。
FIG. 1 is a system diagram showing an embodiment of a membrane separation device of the present invention.

【図2】従来の膜分離装置を示す系統図である。FIG. 2 is a system diagram showing a conventional membrane separation device.

【図3】従来の膜分離装置を示す系統図である。FIG. 3 is a system diagram showing a conventional membrane separation device.

【符号の説明】[Explanation of symbols]

1 曝気槽 2 膜モジュール 3 ブロワ 4 散気管 6 吸引ポンプ 11,12 粘性係数測定手段 13 制御ユニット 1 Aeration Tank 2 Membrane Module 3 Blower 4 Diffuser 6 Suction Pump 11, 12 Viscosity Coefficient Measuring Means 13 Control Unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被処理液が導入される処理水槽と、該処
理水槽内に浸漬設置された膜モジュールと、該膜モジュ
ール下部に設けられた曝気手段と、該膜モジュールの透
過水を処理水として取り出す処理水取出手段と、該処理
水槽内部から汚泥を引き抜く汚泥引抜手段とを備える膜
分離装置において、 槽内部の液の粘性係数又は粘性係数に相関する物理指標
を測定し、この測定値に基いて、前記汚泥引抜手段の汚
泥引き抜き量を制御する制御手段を設けたことを特徴と
する膜分離装置。
1. A treated water tank into which a liquid to be treated is introduced, a membrane module immersed in the treated water tank, an aeration means provided below the membrane module, and permeated water of the membrane module is treated water. In a membrane separation device equipped with a treated water take-out means and a sludge draw-out means for drawing sludge from the inside of the treated water tank, the viscosity coefficient of the liquid inside the tank or a physical index correlated with the viscosity coefficient is measured, and the measured value is Based on the above, the membrane separation device is provided with control means for controlling the sludge withdrawal amount of the sludge withdrawal means.
JP23134595A 1995-09-08 1995-09-08 Membrane separation device Pending JPH0975938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23134595A JPH0975938A (en) 1995-09-08 1995-09-08 Membrane separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23134595A JPH0975938A (en) 1995-09-08 1995-09-08 Membrane separation device

Publications (1)

Publication Number Publication Date
JPH0975938A true JPH0975938A (en) 1997-03-25

Family

ID=16922180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23134595A Pending JPH0975938A (en) 1995-09-08 1995-09-08 Membrane separation device

Country Status (1)

Country Link
JP (1) JPH0975938A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09141066A (en) * 1995-11-21 1997-06-03 Kubota Corp Immersion type membrane separation device
JPH105783A (en) * 1996-06-27 1998-01-13 Kubota Corp Filtration method in sewage treatment
JPH10286563A (en) * 1997-04-16 1998-10-27 Nkk Corp Membrane separation method
JPH10290926A (en) * 1997-04-21 1998-11-04 Toto Ltd Membrane immersion type filter
JP2004306026A (en) * 2003-03-27 2004-11-04 Toray Ind Inc Method and apparatus for treating liquid containing soluble organic matter
JP2005040747A (en) * 2003-07-25 2005-02-17 Kubota Corp Wastewater treatment method and apparatus
JP2005246229A (en) * 2004-03-04 2005-09-15 Kubota Corp Concentration separation method and concentration separation equipment of sludge
JP2010125360A (en) * 2008-11-26 2010-06-10 Daiki Ataka Engineering Co Ltd Membrane separation apparatus
US7820050B2 (en) 1998-10-09 2010-10-26 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
EP2314368A3 (en) * 2005-07-12 2011-12-21 Zenon Technology Partnership Process control for an immersed membrane system
WO2018074328A1 (en) * 2016-10-21 2018-04-26 株式会社日立製作所 Water treatment apparatus and water treatment method
KR102516413B1 (en) * 2022-05-20 2023-04-03 주식회사 지온 Thickening system for sludge generated in water treatment process

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09141066A (en) * 1995-11-21 1997-06-03 Kubota Corp Immersion type membrane separation device
JPH105783A (en) * 1996-06-27 1998-01-13 Kubota Corp Filtration method in sewage treatment
JPH10286563A (en) * 1997-04-16 1998-10-27 Nkk Corp Membrane separation method
JPH10290926A (en) * 1997-04-21 1998-11-04 Toto Ltd Membrane immersion type filter
US7820050B2 (en) 1998-10-09 2010-10-26 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US7922910B2 (en) 1998-10-09 2011-04-12 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
JP2004306026A (en) * 2003-03-27 2004-11-04 Toray Ind Inc Method and apparatus for treating liquid containing soluble organic matter
JP2005040747A (en) * 2003-07-25 2005-02-17 Kubota Corp Wastewater treatment method and apparatus
JP2005246229A (en) * 2004-03-04 2005-09-15 Kubota Corp Concentration separation method and concentration separation equipment of sludge
EP2314368A3 (en) * 2005-07-12 2011-12-21 Zenon Technology Partnership Process control for an immersed membrane system
US8357299B2 (en) * 2005-07-12 2013-01-22 Zenon Technology Partnership Process control for an immersed membrane system
EP3189885A1 (en) * 2005-07-12 2017-07-12 Zenon Technology Partnership Process control for an immersed membrane system
US9783434B2 (en) 2005-07-12 2017-10-10 Zenon Technology Partnership Real-time process control for an immersed membrane filtration system using a control hierarchy of discrete-state parameter changes
JP2010125360A (en) * 2008-11-26 2010-06-10 Daiki Ataka Engineering Co Ltd Membrane separation apparatus
WO2018074328A1 (en) * 2016-10-21 2018-04-26 株式会社日立製作所 Water treatment apparatus and water treatment method
JP2018065120A (en) * 2016-10-21 2018-04-26 株式会社日立製作所 Water treatment apparatus and water treatment method
KR102516413B1 (en) * 2022-05-20 2023-04-03 주식회사 지온 Thickening system for sludge generated in water treatment process

Similar Documents

Publication Publication Date Title
CA2061416C (en) Method and apparatus for clarifying liquid using a pulsating sludge bed and part of concentrated sludge
JP3446399B2 (en) Immersion type membrane separation device and membrane separation method using the same
JPH0975938A (en) Membrane separation device
JPH11156360A (en) Operating method of water treatment equipment
JP3491122B2 (en) Water treatment equipment
JP3772028B2 (en) Anaerobic water treatment device
JP4793635B2 (en) Recycling method of organic wastewater
JP2753852B2 (en) Sewage treatment method and apparatus using hollow fiber membrane
JPS649071B2 (en)
JPH0775782A (en) Membrane separation method
JP3124197B2 (en) Sewage treatment equipment
JPH10296251A (en) Method for regulating sludge in sewage treatment tank
JP3972406B2 (en) 厨 芥 Processing device
JP3496115B2 (en) Filtration membrane cleaning method in membrane filtration type water purification equipment
JP2005074345A (en) Wastewater treatment method
JPH09141065A (en) Immersion type membrane separation device
US3951788A (en) Sludge control and decant system
JPH10286563A (en) Membrane separation method
JPH03249995A (en) Sewage treating device
JP2753853B2 (en) Sewage treatment method and apparatus using hollow fiber membrane
JPS6259639B2 (en)
JPH10249345A (en) Method and apparatus for controlling constant amount of filtered water
JP4075393B2 (en) Mountain-shaped airlift pump pipe and septic tank
JP2005074346A (en) Wastewater treatment method
JPH0478426A (en) Membrane separating method and device for liquid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040416

A131 Notification of reasons for refusal

Effective date: 20040427

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040601

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20040706

Free format text: JAPANESE INTERMEDIATE CODE: A02