JPH097813A - Method of manufacturing mn-zn-based oxide magnetic material - Google Patents
Method of manufacturing mn-zn-based oxide magnetic materialInfo
- Publication number
- JPH097813A JPH097813A JP7159574A JP15957495A JPH097813A JP H097813 A JPH097813 A JP H097813A JP 7159574 A JP7159574 A JP 7159574A JP 15957495 A JP15957495 A JP 15957495A JP H097813 A JPH097813 A JP H097813A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic material
- based oxide
- oxide magnetic
- temperature
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000696 magnetic material Substances 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000001301 oxygen Substances 0.000 claims abstract description 15
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 15
- 239000012298 atmosphere Substances 0.000 claims description 12
- 238000010304 firing Methods 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 5
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 4
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 3
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 2
- 229910005793 GeO 2 Inorganic materials 0.000 claims description 2
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(II) oxide Inorganic materials [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 2
- 230000035699 permeability Effects 0.000 description 5
- 239000000654 additive Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910002059 quaternary alloy Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/34—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
- H01F1/342—Oxides
- H01F1/344—Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Compounds Of Iron (AREA)
- Magnetic Ceramics (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、スイッチング電源用の
トランスやフライバックトランス、チョークコイル等に
代表される民生機器や通信機器等の高周波軟磁性部品に
用いられる低損失Mn−Zn系酸化物磁性材料に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-loss Mn-Zn-based oxide used for high-frequency soft magnetic parts for consumer equipment such as switching power supply transformers, flyback transformers, choke coils, and communication equipment. It relates to a magnetic material.
【0002】[0002]
【従来の技術】エレクトロニクス製品には常に小型化、
軽量化、高性能化が望まれている。それに伴い、エレク
トロニクス製品に使用される酸化物磁性材料もこれらの
要求を満足させるため高透磁率化、高磁束密度化、低損
失化が要求されている。スイッチング電源の分野におい
ても例外ではなく、その目的にあうトランス材料として
の性能が求められている。2. Description of the Related Art Miniaturization of electronic products
Lighter weight and higher performance are desired. Along with this, oxide magnetic materials used in electronic products are also required to have high magnetic permeability, high magnetic flux density, and low loss in order to satisfy these requirements. There is no exception in the field of switching power supplies, and performance as a transformer material that meets the purpose is required.
【0003】Mn−Zn系酸化物磁性材料はそれらの用
途に合致するものとして多用されているが、小型化、軽
量化、高性能化が望まれる中で、より高い電磁気変換効
率を要求されている。[0003] Mn-Zn oxide magnetic materials are widely used to meet these applications, but with the demand for smaller size, lighter weight, and higher performance, higher electromagnetic conversion efficiency is required. There is.
【0004】[0004]
【発明が解決しようとする課題】Mn−Zn系酸化物磁
性材料が優れた特性を得るためには、焼成時の雰囲気中
の酸素含有量を温度と関連づけて精密に制御することが
必要であることが知られている。これは焼結挙動や結晶
組織及び磁性材料中に含まれるFe2+/Fe量等を精密
に制御するためであって、例えば昇温後安定焼成温度に
至った後の降温時においての窒素雰囲気中の酸素量は、
安定温度部より徐々に酸素含有率を低下させ、1000
℃より1×10ー4%とするような制御をしている場合が
多い。In order to obtain excellent characteristics of the Mn-Zn oxide magnetic material, it is necessary to precisely control the oxygen content in the atmosphere during firing in association with the temperature. It is known. This is for precisely controlling the sintering behavior, the crystal structure, the Fe 2+ / Fe amount contained in the magnetic material, and the like. For example, the nitrogen atmosphere during the temperature reduction after reaching the stable firing temperature after the temperature rise The amount of oxygen in
The oxygen content is gradually decreased from the stable temperature part to 1000
In many cases, the control is performed so that the temperature is 1 × 10 −4 % from the temperature of ℃.
【0005】このような精密な雰囲気制御を行っている
のは昇温後安定焼成温度に至った後の降温時のみであっ
て、それより以前の昇温時においての雰囲気制御は成形
体の成形密度を高め、成形体の強度を高める目的で少量
添加されている有機物系のバインダーを焼成時の初期段
階に成形体から離脱、除去する目的の脱バインダー工程
においてのみ行われていた。Such precise atmosphere control is performed only when the temperature is lowered after the temperature reaches a stable firing temperature after the temperature is raised, and the atmosphere is controlled when the temperature is raised before the temperature is controlled. It has been carried out only in the debinding process for the purpose of removing and removing the organic binder which is added in a small amount for the purpose of increasing the density and the strength of the molded product from the molded product in the initial stage of firing.
【0006】しかし、エレクトロニクス製品の小型化、
軽量化、高性能化が望まれている中で、より高い性能を
追求した場合にその要求を満足することが困難である。However, miniaturization of electronic products,
While lighter weight and higher performance are desired, it is difficult to satisfy the demand when pursuing higher performance.
【0007】そこで、優れた磁気変換効率が得られ、低
損失のMn−Zn系酸化物磁性材料、及びその製造方法
を提供することを目的とする。It is therefore an object of the present invention to provide a low loss Mn-Zn oxide magnetic material having excellent magnetic conversion efficiency and a method for producing the same.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
に本発明は、MnーZn系酸化物磁性材料の焼成にあた
り、室温から安定焼成温度までの昇温時に導入する雰囲
気の酸素含有量を1×10ー5%乃至1.0容量%に調整
したことを特徴とする製造方法を提供する。Means for Solving the Problems In order to achieve the above object, the present invention is to control the oxygen content of an atmosphere to be introduced at the time of heating from a room temperature to a stable firing temperature in firing an Mn-Zn oxide magnetic material. There is provided a manufacturing method characterized by being adjusted to 1 × 10 −5 % to 1.0% by volume.
【0009】昇温時に導入する雰囲気の酸素含有量を1
×10ー4%乃至1×10ー2とすれば、さらに安定して優
れた特性のMn−Zn系酸化物磁性材料を供給すること
を可能とすることができる。The oxygen content of the atmosphere introduced when the temperature is raised is 1
If × 10 -4% to 1 × 10 -2, it is possible to be able to supply a more stable and excellent properties of Mn-Zn-based oxide magnetic material.
【0010】また、軟磁性体の電力損失はヒステリシス
損失、渦電流損失及び残留損失の3つに大きく分けるこ
とができるが、10〜数MHz帯で動作するスイッチン
グ電源等で用いられるMn−Zn系酸化物磁性材料の電
力損失はその大部分がヒステリシス損失と渦電流損失で
占められる。そのため、電力損失の低減にはこれらを下
げることが必要である。The power loss of the soft magnetic material can be broadly divided into three types: hysteresis loss, eddy current loss and residual loss. The Mn-Zn system used in switching power supplies operating in the 10 to several MHz band. Most of the power loss of the oxide magnetic material is occupied by hysteresis loss and eddy current loss. Therefore, it is necessary to reduce these in order to reduce the power loss.
【0011】Mn−Zn結晶中のFe2+はB格子に存在
するが、同じくB格子に存在するFe3+との間で電荷の
交換を行うため比抵抗値が下がり渦電流損を増加させて
しまうことが知られている。しかしながら、Fe2+の存
在により結晶磁気異方性定数を小さくすることができる
ためヒステリシス損失の低減には適量のFe2+が存在す
ることが必要となる。Fe 2+ in the Mn-Zn crystal exists in the B lattice, but since electric charge is exchanged with Fe 3+ also existing in the B lattice, the specific resistance value decreases and the eddy current loss increases. It is known to end up. However, since the presence of Fe 2+ can reduce the magnetocrystalline anisotropy constant, it is necessary that an appropriate amount of Fe 2+ be present in order to reduce the hysteresis loss.
【0012】従って、Fe2O3,MnO,ZnOからな
るMnーZn系酸化物磁性材料にSnO2,TiO2等で
置換を行い4元系とすることによって、Fe2+の制御を
行いヒステリシス損失をおさえながら渦電流損の低減を
行うことができる。Therefore, by substituting the Mn-Zn-based oxide magnetic material composed of Fe 2 O 3 , MnO, and ZnO with SnO 2 , TiO 2 or the like to form a quaternary system, Fe 2+ is controlled and the hysteresis is obtained. The eddy current loss can be reduced while suppressing the loss.
【0013】特開平5ー205929で明らかにされて
いるように、Mn−Zn系酸化物にTi,Li,Mg,
Co,Ge,Sn,Alの酸化物中の1種以上の添加物
を含ませ、Fe2+の量や酸化物磁性材料の余剰酸素量を
制御することによって調整する方法等が知られている。As disclosed in JP-A-5-205929, Mn--Zn-based oxides containing Ti, Li, Mg,
A method is known in which one or more kinds of additives in oxides of Co, Ge, Sn, and Al are included and the amount of Fe 2+ and the amount of excess oxygen in the oxide magnetic material are adjusted to adjust. .
【0014】しかし、より優れた電磁気変換効率が得ら
れ、さらに低損失のMn−Zn系酸化物磁性材料が望ま
れている。However, there is a demand for an Mn-Zn-based oxide magnetic material which is superior in electromagnetic conversion efficiency and has low loss.
【0015】そこで本発明は主成分としてMn−Zn系
酸化物磁性材料の組成が Fe2O3を45乃至55mol%、 MnOを30乃至40mol% ZnOを5乃至15mol% 副成分として重量比で SiO2を50乃至250ppm CaOを200乃至2500ppm Nb2O5を50乃至1000ppm ZrO2を0乃至1000ppm であり、
さらにSnO2,TiO2,Al2O3,CoO,Ga
2O3,GeO2,In2O3から1種以上を0.3乃至5.
0mol%であるMnーZn系酸化物磁性材料の製造方
法の製造方法を提供する。Therefore, in the present invention, the composition of the Mn-Zn-based oxide magnetic material is 45 to 55 mol% of Fe 2 O 3 , 30 to 40 mol% of MnO is 5 to 15 mol% of ZnO as a main component, and SiO 2 is a weight ratio. 2 is 50 to 250 ppm CaO is 200 to 2500 ppm Nb 2 O 5 is 50 to 1000 ppm ZrO 2 is 0 to 1000 ppm,
In addition, SnO 2 , TiO 2 , Al 2 O 3 , CoO, Ga
0.3 to 5. One or more kinds of 2 O 3 , GeO 2 , and In 2 O 3 .
Provided is a method of manufacturing a 0 mol% Mn-Zn-based oxide magnetic material.
【0016】[0016]
【実施例】Fe2O3を53.5mol%、MnOを36.
5mol%、ZnOを10.0mol%からなる原料混
合物を950℃で仮焼した後、添加物としてSiO2を
120ppm,CaOを450ppm,Nb2O5を30
0ppm,ZrO2を200ppm,SnO2を0.8m
ol%添加後、湿式ボールミルで粉砕し平均粒径1.1
μmの粉末とした。つぎに、この粉砕粉にバインダーと
してPVAを添加し、造粒した後外形24mm,内径1
2mm,高さ6mmのリング状に成形した。これを以下
に示す焼成条件で焼成した。EXAMPLES Fe 2 O 3 53.5 mol% and MnO 36.
After a raw material mixture consisting of 5 mol% and 10.0 mol% ZnO was calcined at 950 ° C., 120 ppm of SiO 2 , 450 ppm of CaO and 30 ppm of Nb 2 O 5 were added as additives.
0ppm, ZrO 2 200ppm, SnO 2 0.8m
After adding ol%, pulverize with a wet ball mill and average particle size 1.1
μm powder. Next, PVA was added as a binder to this pulverized powder, and after granulation, the outer diameter was 24 mm and the inner diameter was 1 mm.
It was formed into a ring shape having a height of 2 mm and a height of 6 mm. This was fired under the firing conditions shown below.
【0017】(1)室温から安定温度である1300℃
までの雰囲気の酸素含有量を1×10ー7容量%に調整し
て焼成。(1) Room temperature to stable temperature of 1300 ° C.
The oxygen content of the atmosphere was adjusted to 1 x 10-7 % by volume and baked.
【0018】(2)室温から安定温度である1300℃
までの雰囲気の酸素含有量を1×10ー4容量%に調整し
て焼成。(2) Room temperature to stable temperature of 1300 ° C.
The oxygen content of the atmosphere was adjusted to 1 x 10-4 % by volume and baked.
【0019】(3)室温から安定温度である1300℃
までの雰囲気の酸素含有量を1×10ー2容量%に調整し
て焼成。(3) Room temperature to stable temperature of 1300 ° C.
The oxygen content of the atmosphere is adjusted to 1 × 10 −2 % by volume and baked.
【0020】(4)室温から安定温度である1300℃
までの雰囲気の酸素含有量を1容量%に調整して焼成。(4) Room temperature to stable temperature of 1300 ° C.
Adjust the oxygen content of the atmosphere up to 1% by volume and fire.
【0021】(5)室温から安定温度である1300℃
までの雰囲気の酸素含有量を3容量%に調整して焼成。(5) Room temperature to stable temperature of 1300 ° C.
Adjust the oxygen content of the atmosphere up to 3% by volume and fire.
【0022】これらの条件で焼成した試料の電力損失P
cv、初透磁率μiを測定した結果を表1に示す。Power loss P of the sample fired under these conditions
Table 1 shows the results of measurement of cv and initial magnetic permeability μi.
【0023】[0023]
【表1】 [Table 1]
【0024】この結果から条件2、3、4は条件1、5
と比較して電力損失Pcv、初透磁率μiともに特性が
向上していることがわかる。From these results, the conditions 2, 3 and 4 are the conditions 1, 5
It can be seen that the characteristics of both the power loss Pcv and the initial magnetic permeability μi are improved as compared with.
【0025】そこで、表2に示す組成の原料混合物を使
い前記試料と同様の方法で外形24mm,内径12m
m,高さ6mmのリング状に成形し、前記条件(2)の
焼成条件にて試料を作成した。Then, using the raw material mixture having the composition shown in Table 2, the outer diameter was 24 mm and the inner diameter was 12 m in the same manner as the above sample.
The sample was formed under the firing condition of the above-mentioned condition (2) by molding into a ring shape having m and a height of 6 mm.
【0026】[0026]
【表2】 [Table 2]
【0027】その結果を表3に示す。The results are shown in Table 3.
【0028】[0028]
【表3】 [Table 3]
【0029】従来より知られていた、Mn−Zn系酸化
物にTi,Li,Mg,Co,Ge,Sn,Alの酸化
物中の1種以上の添加物を含ませ、Fe2+/Fe量や酸
化物磁性材料の余剰酸素量を制御することによって電力
損失Pcvを低減していたMn−Zn系酸化物磁性材料
をさらに、電力損失Pcvを低減させ、初透磁率μiを
増大させていることがわかる。Fe 2+ / Fe is contained in a conventionally known Mn-Zn-based oxide containing one or more additives of oxides of Ti, Li, Mg, Co, Ge, Sn, and Al. The power loss Pcv of the Mn—Zn-based oxide magnetic material, which has reduced the power loss Pcv by controlling the amount and the excess oxygen amount of the oxide magnetic material, is further reduced, and the initial permeability μi is increased. I understand.
【0030】[0030]
【発明の効果】本発明により、昇温時に導入する雰囲気
を酸素含有量を制御することにより、従来から、知られ
ていた組成のMn−Zn系酸化物磁性材料と比して、よ
り低損失、高透磁率のMn−Zn系酸化物磁性材料をえ
ることができる。According to the present invention, by controlling the oxygen content of the atmosphere introduced at the time of temperature rise, the loss is lower than that of the conventionally known Mn-Zn-based oxide magnetic material. A high magnetic permeability Mn-Zn oxide magnetic material can be obtained.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐野忠勝 東京都中央区日本橋一丁目13番1号ティー ディーケイ株式会社内 (72)発明者 野村武史 東京都中央区日本橋一丁目13番1号ティー ディーケイ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadakatsu Sano 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDK Corporation (72) Inventor Takeshi Nomura 1-1-13-1 Nihonbashi, Chuo-ku, Tokyo TDK Within the corporation
Claims (2)
り、室温から安定焼成温度までの昇温時に導入する雰囲
気の酸素含有量を1×10ー5%乃至1.0容量%に調整
したことを特徴とするMnーZn系酸化物磁性材料の製
造方法。1. When firing an Mn—Zn-based oxide magnetic material, the oxygen content of the atmosphere introduced during the temperature rise from room temperature to the stable firing temperature is adjusted to 1 × 10 −5 % to 1.0% by volume. A method for producing an Mn—Zn-based oxide magnetic material, comprising:
さらにSnO2,TiO2,Al2O3,CoO,Ga
2O3,GeO2,In2O3から1種以上を0.3乃至5.
0mol%であることを特徴とする請求項1記載のMn
ーZn系酸化物磁性材料の製造方法。2. The composition of the Mn—Zn-based oxide magnetic material is such that Fe 2 O 3 is 45 to 55 mol%, MnO is 30 to 40 mol%, ZnO is 5 to 15 mol%, and SiO 2 is 50 to 50 by weight. 250 ppm CaO is 200 to 2500 ppm Nb 2 O 5 is 50 to 1000 ppm ZrO 2 is 0 to 1000 ppm,
In addition, SnO 2 , TiO 2 , Al 2 O 3 , CoO, Ga
0.3 to 5. One or more kinds of 2 O 3 , GeO 2 , and In 2 O 3 .
It is 0 mol%, Mn of Claim 1 characterized by the above-mentioned.
-Method for producing Zn-based oxide magnetic material.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7159574A JPH097813A (en) | 1995-06-26 | 1995-06-26 | Method of manufacturing mn-zn-based oxide magnetic material |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7159574A JPH097813A (en) | 1995-06-26 | 1995-06-26 | Method of manufacturing mn-zn-based oxide magnetic material |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH097813A true JPH097813A (en) | 1997-01-10 |
Family
ID=15696693
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP7159574A Pending JPH097813A (en) | 1995-06-26 | 1995-06-26 | Method of manufacturing mn-zn-based oxide magnetic material |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH097813A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003257724A (en) * | 2002-03-04 | 2003-09-12 | Hitachi Metals Ltd | Mn-Zn-BASED FERRITE |
| JP2022025803A (en) * | 2020-07-30 | 2022-02-10 | 株式会社トーキン | MnZn-BASED FERRITE AND METHOD OF MANUFACTURING THE SAME |
-
1995
- 1995-06-26 JP JP7159574A patent/JPH097813A/en active Pending
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003257724A (en) * | 2002-03-04 | 2003-09-12 | Hitachi Metals Ltd | Mn-Zn-BASED FERRITE |
| JP2022025803A (en) * | 2020-07-30 | 2022-02-10 | 株式会社トーキン | MnZn-BASED FERRITE AND METHOD OF MANUFACTURING THE SAME |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4540768B2 (en) | Magnetic ferrite sintered body | |
| JP3584438B2 (en) | Mn-Zn ferrite and method for producing the same | |
| CN106915956A (en) | MnZnLi based ferrites, magnetic core and transformer | |
| JP2007204349A (en) | Manufacturing method of low-loss oxide magnetic material | |
| JP4298962B2 (en) | Oxide magnetic materials, ferrite cores and electronic components | |
| JP4711897B2 (en) | MnCoZn ferrite and transformer core | |
| JP2007269502A (en) | Mn-Zn ferrite material | |
| JPH06310321A (en) | Oxide magnetic substance material | |
| JP3288113B2 (en) | Mn-Zn ferrite magnetic material | |
| JP2005330126A (en) | MnZn FERRITE AND METHOD OF MANUFACTURING THE SAME | |
| JP3597673B2 (en) | Ferrite material | |
| JP4279923B2 (en) | MnMgCuZn ferrite material | |
| JP2022059859A (en) | MnZn-based ferrite and its manufacturing method | |
| JP2004247370A (en) | MnZn FERRITE | |
| JPH081844B2 (en) | High frequency low loss ferrite for power supply | |
| JP2006202796A (en) | High saturation magnetic flux density Mn-Zn-Ni ferrite | |
| JP2855990B2 (en) | Oxide magnetic material | |
| JPH097813A (en) | Method of manufacturing mn-zn-based oxide magnetic material | |
| JP2007297232A (en) | Method for producing oxide magnetic material | |
| JP5089923B2 (en) | MnCoZn ferrite and transformer core | |
| WO2002054419A1 (en) | Oxide magnetic material exhibiting low magnetic loss | |
| JP5882811B2 (en) | Ferrite sintered body and pulse transformer core comprising the same | |
| JP3039784B2 (en) | High frequency low loss ferrite for power supply | |
| JP3584437B2 (en) | Method for producing Mn-Zn ferrite | |
| JPH10270231A (en) | Mn-Ni ferrite material |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20010410 |