[go: up one dir, main page]

JPH097813A - Method of manufacturing mn-zn-based oxide magnetic material - Google Patents

Method of manufacturing mn-zn-based oxide magnetic material

Info

Publication number
JPH097813A
JPH097813A JP7159574A JP15957495A JPH097813A JP H097813 A JPH097813 A JP H097813A JP 7159574 A JP7159574 A JP 7159574A JP 15957495 A JP15957495 A JP 15957495A JP H097813 A JPH097813 A JP H097813A
Authority
JP
Japan
Prior art keywords
magnetic material
based oxide
oxide magnetic
temperature
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7159574A
Other languages
Japanese (ja)
Inventor
Naoyoshi Sato
佐藤直義
Takashi Kojima
小島  隆
Tamotsu Minagawa
保 皆川
Tadakatsu Sano
佐野忠勝
Takeshi Nomura
野村武史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP7159574A priority Critical patent/JPH097813A/en
Publication of JPH097813A publication Critical patent/JPH097813A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: To provide a low loss Mn-Zn-based oxide magnetic material in excel lent magnetic conversion efficiency and its manufacturing method. CONSTITUTION: In case of baking Mn-Zn-based oxide magnetic material, the tile low loss Mn-Zn base oxide material in excellent magnetic conversion efficiency can be manufacturing by adjusting the content of oxygen introduced in raising temperature to 1×10<-5> -1.0vol%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スイッチング電源用の
トランスやフライバックトランス、チョークコイル等に
代表される民生機器や通信機器等の高周波軟磁性部品に
用いられる低損失Mn−Zn系酸化物磁性材料に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-loss Mn-Zn-based oxide used for high-frequency soft magnetic parts for consumer equipment such as switching power supply transformers, flyback transformers, choke coils, and communication equipment. It relates to a magnetic material.

【0002】[0002]

【従来の技術】エレクトロニクス製品には常に小型化、
軽量化、高性能化が望まれている。それに伴い、エレク
トロニクス製品に使用される酸化物磁性材料もこれらの
要求を満足させるため高透磁率化、高磁束密度化、低損
失化が要求されている。スイッチング電源の分野におい
ても例外ではなく、その目的にあうトランス材料として
の性能が求められている。
2. Description of the Related Art Miniaturization of electronic products
Lighter weight and higher performance are desired. Along with this, oxide magnetic materials used in electronic products are also required to have high magnetic permeability, high magnetic flux density, and low loss in order to satisfy these requirements. There is no exception in the field of switching power supplies, and performance as a transformer material that meets the purpose is required.

【0003】Mn−Zn系酸化物磁性材料はそれらの用
途に合致するものとして多用されているが、小型化、軽
量化、高性能化が望まれる中で、より高い電磁気変換効
率を要求されている。
[0003] Mn-Zn oxide magnetic materials are widely used to meet these applications, but with the demand for smaller size, lighter weight, and higher performance, higher electromagnetic conversion efficiency is required. There is.

【0004】[0004]

【発明が解決しようとする課題】Mn−Zn系酸化物磁
性材料が優れた特性を得るためには、焼成時の雰囲気中
の酸素含有量を温度と関連づけて精密に制御することが
必要であることが知られている。これは焼結挙動や結晶
組織及び磁性材料中に含まれるFe2+/Fe量等を精密
に制御するためであって、例えば昇温後安定焼成温度に
至った後の降温時においての窒素雰囲気中の酸素量は、
安定温度部より徐々に酸素含有率を低下させ、1000
℃より1×10ー4%とするような制御をしている場合が
多い。
In order to obtain excellent characteristics of the Mn-Zn oxide magnetic material, it is necessary to precisely control the oxygen content in the atmosphere during firing in association with the temperature. It is known. This is for precisely controlling the sintering behavior, the crystal structure, the Fe 2+ / Fe amount contained in the magnetic material, and the like. For example, the nitrogen atmosphere during the temperature reduction after reaching the stable firing temperature after the temperature rise The amount of oxygen in
The oxygen content is gradually decreased from the stable temperature part to 1000
In many cases, the control is performed so that the temperature is 1 × 10 −4 % from the temperature of ℃.

【0005】このような精密な雰囲気制御を行っている
のは昇温後安定焼成温度に至った後の降温時のみであっ
て、それより以前の昇温時においての雰囲気制御は成形
体の成形密度を高め、成形体の強度を高める目的で少量
添加されている有機物系のバインダーを焼成時の初期段
階に成形体から離脱、除去する目的の脱バインダー工程
においてのみ行われていた。
Such precise atmosphere control is performed only when the temperature is lowered after the temperature reaches a stable firing temperature after the temperature is raised, and the atmosphere is controlled when the temperature is raised before the temperature is controlled. It has been carried out only in the debinding process for the purpose of removing and removing the organic binder which is added in a small amount for the purpose of increasing the density and the strength of the molded product from the molded product in the initial stage of firing.

【0006】しかし、エレクトロニクス製品の小型化、
軽量化、高性能化が望まれている中で、より高い性能を
追求した場合にその要求を満足することが困難である。
However, miniaturization of electronic products,
While lighter weight and higher performance are desired, it is difficult to satisfy the demand when pursuing higher performance.

【0007】そこで、優れた磁気変換効率が得られ、低
損失のMn−Zn系酸化物磁性材料、及びその製造方法
を提供することを目的とする。
It is therefore an object of the present invention to provide a low loss Mn-Zn oxide magnetic material having excellent magnetic conversion efficiency and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明は、MnーZn系酸化物磁性材料の焼成にあた
り、室温から安定焼成温度までの昇温時に導入する雰囲
気の酸素含有量を1×10ー5%乃至1.0容量%に調整
したことを特徴とする製造方法を提供する。
Means for Solving the Problems In order to achieve the above object, the present invention is to control the oxygen content of an atmosphere to be introduced at the time of heating from a room temperature to a stable firing temperature in firing an Mn-Zn oxide magnetic material. There is provided a manufacturing method characterized by being adjusted to 1 × 10 −5 % to 1.0% by volume.

【0009】昇温時に導入する雰囲気の酸素含有量を1
×10ー4%乃至1×10ー2とすれば、さらに安定して優
れた特性のMn−Zn系酸化物磁性材料を供給すること
を可能とすることができる。
The oxygen content of the atmosphere introduced when the temperature is raised is 1
If × 10 -4% to 1 × 10 -2, it is possible to be able to supply a more stable and excellent properties of Mn-Zn-based oxide magnetic material.

【0010】また、軟磁性体の電力損失はヒステリシス
損失、渦電流損失及び残留損失の3つに大きく分けるこ
とができるが、10〜数MHz帯で動作するスイッチン
グ電源等で用いられるMn−Zn系酸化物磁性材料の電
力損失はその大部分がヒステリシス損失と渦電流損失で
占められる。そのため、電力損失の低減にはこれらを下
げることが必要である。
The power loss of the soft magnetic material can be broadly divided into three types: hysteresis loss, eddy current loss and residual loss. The Mn-Zn system used in switching power supplies operating in the 10 to several MHz band. Most of the power loss of the oxide magnetic material is occupied by hysteresis loss and eddy current loss. Therefore, it is necessary to reduce these in order to reduce the power loss.

【0011】Mn−Zn結晶中のFe2+はB格子に存在
するが、同じくB格子に存在するFe3+との間で電荷の
交換を行うため比抵抗値が下がり渦電流損を増加させて
しまうことが知られている。しかしながら、Fe2+の存
在により結晶磁気異方性定数を小さくすることができる
ためヒステリシス損失の低減には適量のFe2+が存在す
ることが必要となる。
Fe 2+ in the Mn-Zn crystal exists in the B lattice, but since electric charge is exchanged with Fe 3+ also existing in the B lattice, the specific resistance value decreases and the eddy current loss increases. It is known to end up. However, since the presence of Fe 2+ can reduce the magnetocrystalline anisotropy constant, it is necessary that an appropriate amount of Fe 2+ be present in order to reduce the hysteresis loss.

【0012】従って、Fe23,MnO,ZnOからな
るMnーZn系酸化物磁性材料にSnO2,TiO2等で
置換を行い4元系とすることによって、Fe2+の制御を
行いヒステリシス損失をおさえながら渦電流損の低減を
行うことができる。
Therefore, by substituting the Mn-Zn-based oxide magnetic material composed of Fe 2 O 3 , MnO, and ZnO with SnO 2 , TiO 2 or the like to form a quaternary system, Fe 2+ is controlled and the hysteresis is obtained. The eddy current loss can be reduced while suppressing the loss.

【0013】特開平5ー205929で明らかにされて
いるように、Mn−Zn系酸化物にTi,Li,Mg,
Co,Ge,Sn,Alの酸化物中の1種以上の添加物
を含ませ、Fe2+の量や酸化物磁性材料の余剰酸素量を
制御することによって調整する方法等が知られている。
As disclosed in JP-A-5-205929, Mn--Zn-based oxides containing Ti, Li, Mg,
A method is known in which one or more kinds of additives in oxides of Co, Ge, Sn, and Al are included and the amount of Fe 2+ and the amount of excess oxygen in the oxide magnetic material are adjusted to adjust. .

【0014】しかし、より優れた電磁気変換効率が得ら
れ、さらに低損失のMn−Zn系酸化物磁性材料が望ま
れている。
However, there is a demand for an Mn-Zn-based oxide magnetic material which is superior in electromagnetic conversion efficiency and has low loss.

【0015】そこで本発明は主成分としてMn−Zn系
酸化物磁性材料の組成が Fe23を45乃至55mol%、 MnOを30乃至40mol% ZnOを5乃至15mol% 副成分として重量比で SiO2を50乃至250ppm CaOを200乃至2500ppm Nb25を50乃至1000ppm ZrO2を0乃至1000ppm であり、
さらにSnO2,TiO2,Al23,CoO,Ga
23,GeO2,In23から1種以上を0.3乃至5.
0mol%であるMnーZn系酸化物磁性材料の製造方
法の製造方法を提供する。
Therefore, in the present invention, the composition of the Mn-Zn-based oxide magnetic material is 45 to 55 mol% of Fe 2 O 3 , 30 to 40 mol% of MnO is 5 to 15 mol% of ZnO as a main component, and SiO 2 is a weight ratio. 2 is 50 to 250 ppm CaO is 200 to 2500 ppm Nb 2 O 5 is 50 to 1000 ppm ZrO 2 is 0 to 1000 ppm,
In addition, SnO 2 , TiO 2 , Al 2 O 3 , CoO, Ga
0.3 to 5. One or more kinds of 2 O 3 , GeO 2 , and In 2 O 3 .
Provided is a method of manufacturing a 0 mol% Mn-Zn-based oxide magnetic material.

【0016】[0016]

【実施例】Fe23を53.5mol%、MnOを36.
5mol%、ZnOを10.0mol%からなる原料混
合物を950℃で仮焼した後、添加物としてSiO2
120ppm,CaOを450ppm,Nb25を30
0ppm,ZrO2を200ppm,SnO2を0.8m
ol%添加後、湿式ボールミルで粉砕し平均粒径1.1
μmの粉末とした。つぎに、この粉砕粉にバインダーと
してPVAを添加し、造粒した後外形24mm,内径1
2mm,高さ6mmのリング状に成形した。これを以下
に示す焼成条件で焼成した。
EXAMPLES Fe 2 O 3 53.5 mol% and MnO 36.
After a raw material mixture consisting of 5 mol% and 10.0 mol% ZnO was calcined at 950 ° C., 120 ppm of SiO 2 , 450 ppm of CaO and 30 ppm of Nb 2 O 5 were added as additives.
0ppm, ZrO 2 200ppm, SnO 2 0.8m
After adding ol%, pulverize with a wet ball mill and average particle size 1.1
μm powder. Next, PVA was added as a binder to this pulverized powder, and after granulation, the outer diameter was 24 mm and the inner diameter was 1 mm.
It was formed into a ring shape having a height of 2 mm and a height of 6 mm. This was fired under the firing conditions shown below.

【0017】(1)室温から安定温度である1300℃
までの雰囲気の酸素含有量を1×10ー7容量%に調整し
て焼成。
(1) Room temperature to stable temperature of 1300 ° C.
The oxygen content of the atmosphere was adjusted to 1 x 10-7 % by volume and baked.

【0018】(2)室温から安定温度である1300℃
までの雰囲気の酸素含有量を1×10ー4容量%に調整し
て焼成。
(2) Room temperature to stable temperature of 1300 ° C.
The oxygen content of the atmosphere was adjusted to 1 x 10-4 % by volume and baked.

【0019】(3)室温から安定温度である1300℃
までの雰囲気の酸素含有量を1×10ー2容量%に調整し
て焼成。
(3) Room temperature to stable temperature of 1300 ° C.
The oxygen content of the atmosphere is adjusted to 1 × 10 −2 % by volume and baked.

【0020】(4)室温から安定温度である1300℃
までの雰囲気の酸素含有量を1容量%に調整して焼成。
(4) Room temperature to stable temperature of 1300 ° C.
Adjust the oxygen content of the atmosphere up to 1% by volume and fire.

【0021】(5)室温から安定温度である1300℃
までの雰囲気の酸素含有量を3容量%に調整して焼成。
(5) Room temperature to stable temperature of 1300 ° C.
Adjust the oxygen content of the atmosphere up to 3% by volume and fire.

【0022】これらの条件で焼成した試料の電力損失P
cv、初透磁率μiを測定した結果を表1に示す。
Power loss P of the sample fired under these conditions
Table 1 shows the results of measurement of cv and initial magnetic permeability μi.

【0023】[0023]

【表1】 [Table 1]

【0024】この結果から条件2、3、4は条件1、5
と比較して電力損失Pcv、初透磁率μiともに特性が
向上していることがわかる。
From these results, the conditions 2, 3 and 4 are the conditions 1, 5
It can be seen that the characteristics of both the power loss Pcv and the initial magnetic permeability μi are improved as compared with.

【0025】そこで、表2に示す組成の原料混合物を使
い前記試料と同様の方法で外形24mm,内径12m
m,高さ6mmのリング状に成形し、前記条件(2)の
焼成条件にて試料を作成した。
Then, using the raw material mixture having the composition shown in Table 2, the outer diameter was 24 mm and the inner diameter was 12 m in the same manner as the above sample.
The sample was formed under the firing condition of the above-mentioned condition (2) by molding into a ring shape having m and a height of 6 mm.

【0026】[0026]

【表2】 [Table 2]

【0027】その結果を表3に示す。The results are shown in Table 3.

【0028】[0028]

【表3】 [Table 3]

【0029】従来より知られていた、Mn−Zn系酸化
物にTi,Li,Mg,Co,Ge,Sn,Alの酸化
物中の1種以上の添加物を含ませ、Fe2+/Fe量や酸
化物磁性材料の余剰酸素量を制御することによって電力
損失Pcvを低減していたMn−Zn系酸化物磁性材料
をさらに、電力損失Pcvを低減させ、初透磁率μiを
増大させていることがわかる。
Fe 2+ / Fe is contained in a conventionally known Mn-Zn-based oxide containing one or more additives of oxides of Ti, Li, Mg, Co, Ge, Sn, and Al. The power loss Pcv of the Mn—Zn-based oxide magnetic material, which has reduced the power loss Pcv by controlling the amount and the excess oxygen amount of the oxide magnetic material, is further reduced, and the initial permeability μi is increased. I understand.

【0030】[0030]

【発明の効果】本発明により、昇温時に導入する雰囲気
を酸素含有量を制御することにより、従来から、知られ
ていた組成のMn−Zn系酸化物磁性材料と比して、よ
り低損失、高透磁率のMn−Zn系酸化物磁性材料をえ
ることができる。
According to the present invention, by controlling the oxygen content of the atmosphere introduced at the time of temperature rise, the loss is lower than that of the conventionally known Mn-Zn-based oxide magnetic material. A high magnetic permeability Mn-Zn oxide magnetic material can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐野忠勝 東京都中央区日本橋一丁目13番1号ティー ディーケイ株式会社内 (72)発明者 野村武史 東京都中央区日本橋一丁目13番1号ティー ディーケイ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadakatsu Sano 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDK Corporation (72) Inventor Takeshi Nomura 1-1-13-1 Nihonbashi, Chuo-ku, Tokyo TDK Within the corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】MnーZn系酸化物磁性材料の焼成にあた
り、室温から安定焼成温度までの昇温時に導入する雰囲
気の酸素含有量を1×10ー5%乃至1.0容量%に調整
したことを特徴とするMnーZn系酸化物磁性材料の製
造方法。
1. When firing an Mn—Zn-based oxide magnetic material, the oxygen content of the atmosphere introduced during the temperature rise from room temperature to the stable firing temperature is adjusted to 1 × 10 −5 % to 1.0% by volume. A method for producing an Mn—Zn-based oxide magnetic material, comprising:
【請求項2】前記Mn−Zn系酸化物磁性材料の組成が Fe23を45乃至55mol%、 MnOを30乃至40mol% ZnOを5乃至15mol% 副成分として重量比で SiO2を50乃至250ppm CaOを200乃至2500ppm Nb25を50乃至1000ppm ZrO2を0乃至1000ppm であり、
さらにSnO2,TiO2,Al23,CoO,Ga
23,GeO2,In23から1種以上を0.3乃至5.
0mol%であることを特徴とする請求項1記載のMn
ーZn系酸化物磁性材料の製造方法。
2. The composition of the Mn—Zn-based oxide magnetic material is such that Fe 2 O 3 is 45 to 55 mol%, MnO is 30 to 40 mol%, ZnO is 5 to 15 mol%, and SiO 2 is 50 to 50 by weight. 250 ppm CaO is 200 to 2500 ppm Nb 2 O 5 is 50 to 1000 ppm ZrO 2 is 0 to 1000 ppm,
In addition, SnO 2 , TiO 2 , Al 2 O 3 , CoO, Ga
0.3 to 5. One or more kinds of 2 O 3 , GeO 2 , and In 2 O 3 .
It is 0 mol%, Mn of Claim 1 characterized by the above-mentioned.
-Method for producing Zn-based oxide magnetic material.
JP7159574A 1995-06-26 1995-06-26 Method of manufacturing mn-zn-based oxide magnetic material Pending JPH097813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7159574A JPH097813A (en) 1995-06-26 1995-06-26 Method of manufacturing mn-zn-based oxide magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7159574A JPH097813A (en) 1995-06-26 1995-06-26 Method of manufacturing mn-zn-based oxide magnetic material

Publications (1)

Publication Number Publication Date
JPH097813A true JPH097813A (en) 1997-01-10

Family

ID=15696693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7159574A Pending JPH097813A (en) 1995-06-26 1995-06-26 Method of manufacturing mn-zn-based oxide magnetic material

Country Status (1)

Country Link
JP (1) JPH097813A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257724A (en) * 2002-03-04 2003-09-12 Hitachi Metals Ltd Mn-Zn-BASED FERRITE
JP2022025803A (en) * 2020-07-30 2022-02-10 株式会社トーキン MnZn-BASED FERRITE AND METHOD OF MANUFACTURING THE SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257724A (en) * 2002-03-04 2003-09-12 Hitachi Metals Ltd Mn-Zn-BASED FERRITE
JP2022025803A (en) * 2020-07-30 2022-02-10 株式会社トーキン MnZn-BASED FERRITE AND METHOD OF MANUFACTURING THE SAME

Similar Documents

Publication Publication Date Title
JP4540768B2 (en) Magnetic ferrite sintered body
JP3584438B2 (en) Mn-Zn ferrite and method for producing the same
CN106915956A (en) MnZnLi based ferrites, magnetic core and transformer
JP2007204349A (en) Manufacturing method of low-loss oxide magnetic material
JP4298962B2 (en) Oxide magnetic materials, ferrite cores and electronic components
JP4711897B2 (en) MnCoZn ferrite and transformer core
JP2007269502A (en) Mn-Zn ferrite material
JPH06310321A (en) Oxide magnetic substance material
JP3288113B2 (en) Mn-Zn ferrite magnetic material
JP2005330126A (en) MnZn FERRITE AND METHOD OF MANUFACTURING THE SAME
JP3597673B2 (en) Ferrite material
JP4279923B2 (en) MnMgCuZn ferrite material
JP2022059859A (en) MnZn-based ferrite and its manufacturing method
JP2004247370A (en) MnZn FERRITE
JPH081844B2 (en) High frequency low loss ferrite for power supply
JP2006202796A (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JP2855990B2 (en) Oxide magnetic material
JPH097813A (en) Method of manufacturing mn-zn-based oxide magnetic material
JP2007297232A (en) Method for producing oxide magnetic material
JP5089923B2 (en) MnCoZn ferrite and transformer core
WO2002054419A1 (en) Oxide magnetic material exhibiting low magnetic loss
JP5882811B2 (en) Ferrite sintered body and pulse transformer core comprising the same
JP3039784B2 (en) High frequency low loss ferrite for power supply
JP3584437B2 (en) Method for producing Mn-Zn ferrite
JPH10270231A (en) Mn-Ni ferrite material

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010410