JPH0990099A - X-ray reflection optical system and X-ray projection exposure apparatus including the optical system - Google Patents
X-ray reflection optical system and X-ray projection exposure apparatus including the optical systemInfo
- Publication number
- JPH0990099A JPH0990099A JP7245795A JP24579595A JPH0990099A JP H0990099 A JPH0990099 A JP H0990099A JP 7245795 A JP7245795 A JP 7245795A JP 24579595 A JP24579595 A JP 24579595A JP H0990099 A JPH0990099 A JP H0990099A
- Authority
- JP
- Japan
- Prior art keywords
- ray
- reflecting mirror
- multilayer film
- optical system
- shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
(57)【要約】
【課題】 多層膜の形成が比較的用意で作製効率が良
く、しかも光学系の収差を低減することが容易な多層膜
X線反射鏡を用いたX線反射光学系と、該X線反射光学
系を備えたX線投影露光装置を提供することを目的とす
る。
【解決手段】 少なくとも、基板上にX線反射多層膜を
形成してなる多層膜X線反射鏡1と該多層膜X線反射鏡
1を保持する反射鏡保持部材とを備えたX線反射光学系
において、前記反射鏡保持部材は、静電力により前記多
層膜X線反射鏡1と接合され、静電力の解除により該接
合が解かれる着脱自在の保持部2と、該保持部2と前記
多層膜X線反射鏡1との間に電圧を印加して静電力を発
生させる電源部3とを有することを特徴とするX線反射
光学系。
(57) Abstract: An X-ray reflection optical system using a multilayer X-ray reflecting mirror, in which formation of a multilayer film is relatively easy, production efficiency is high, and aberration of the optical system can be easily reduced. An object of the present invention is to provide an X-ray projection exposure apparatus equipped with the X-ray reflection optical system. An X-ray reflection optics including at least a multilayer film X-ray reflecting mirror having an X-ray reflecting multilayer film formed on a substrate and a reflecting mirror holding member for holding the multilayer film X-ray reflecting mirror. In the system, the reflecting mirror holding member is joined to the multilayer film X-ray reflecting mirror 1 by an electrostatic force, and the joining is released by releasing the electrostatic force. An X-ray reflection optical system comprising: a film X-ray reflecting mirror 1; and a power supply unit 3 for generating an electrostatic force by applying a voltage.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、多層膜X線反射鏡
を用いたX線反射光学系及び該X線反射光学系を備えた
X線投影露光装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray reflection optical system using a multilayer X-ray reflection mirror and an X-ray projection exposure apparatus equipped with the X-ray reflection optical system.
【0002】[0002]
【従来の技術】半導体製造用の露光装置は、物体面とし
てのフォトマスク(以下、マスクと称する)面上に形成
された回路パターンを結像光学系を介してウエハ等の基
板上に投影転写する。基板上にはレジストが塗布されて
おり、露光することによりレジストが感光してレジスト
パターンが得られる。2. Description of the Related Art An exposure apparatus for manufacturing a semiconductor device projects and transfers a circuit pattern formed on a photomask (hereinafter, referred to as a mask) surface as an object surface onto a substrate such as a wafer via an imaging optical system. I do. A resist is coated on the substrate, and the exposure exposes the resist to light to obtain a resist pattern.
【0003】露光装置の解像力wは、主に露光波長λと
結像光学系の開口数NAで決まり、次式で表される。 w=kλ/NA k:定数 従って、解像力を向上させるためには、波長を短くする
か、或いは開口数を大きくすることが必要となる。現
在、半導体の製造に用いられている露光装置は、主に波
長365nm のi線を使用しており、開口数約0.5 の場合で
0.5 μmの解像力が得られている。The resolving power w of an exposure apparatus is determined mainly by the exposure wavelength λ and the numerical aperture NA of the imaging optical system, and is expressed by the following equation. w = kλ / NA k: constant Therefore, in order to improve the resolving power, it is necessary to shorten the wavelength or increase the numerical aperture. At present, the exposure equipment used in the manufacture of semiconductors mainly uses i-line with a wavelength of 365 nm.
A resolution of 0.5 μm is obtained.
【0004】開口数を大きくすることは、光学設計上困
難であることから、解像力を向上させるためには、今後
は露光光の短波長化が必要となる。i線より短波長の露
光光としては、例えばエキシマレーザーが挙げられ、そ
の波長はKrF で248nm 、ArFで193nm である。従って、K
rF では0.25μm、ArF では0.18μmの解像力が得られ
る。Since it is difficult to increase the numerical aperture in terms of optical design, it is necessary to shorten the wavelength of the exposure light in the future in order to improve the resolution. An example of the exposure light having a wavelength shorter than the i-line is an excimer laser, and the wavelength thereof is 248 nm for KrF and 193 nm for ArF. Therefore, K
Resolutions of 0.25 μm for rF and 0.18 μm for ArF can be obtained.
【0005】そして、露光光としてさらに波長の短いX
線を用いると、例えば波長13nmで0.1 μm以下の解像力
が得られる。従来の露光装置(一例)の構成(一部)を
概念的に図7に示す。露光装置は、主に光源及び照明光
学系(不図示)とマスク11、結像光学系15、ウエハ
12のステージ(不図示)により構成される。Then, as the exposure light, X having a shorter wavelength is used.
When a line is used, a resolution of 0.1 μm or less can be obtained at a wavelength of 13 nm, for example. FIG. 7 conceptually shows a configuration (part) of a conventional exposure apparatus (one example). The exposure apparatus is mainly composed of a light source and an illumination optical system (not shown), a mask 11, an imaging optical system 15, and a stage (not shown) of the wafer 12.
【0006】マスク11には、描画するパターンの等倍
または拡大パターンが形成されている。結像光学系15
は、複数のレンズまたは反射鏡等により構成され、マス
ク11上のパターンをウエハ12上に結像するようにな
っている。露光装置が所望の解像力を有するためには、
少なくとも結像光学系15が無収差または無収差に近い
光学系である必要がある。仮に、結像光学系15に収差
があると、レジストパターンの断面形状が劣化して、露
光後のプロセスに悪影響を及ぼす他、像が歪んでしまう
という問題点が発生する。The mask 11 is formed with an equal size or enlarged pattern of the pattern to be drawn. Imaging optical system 15
Is composed of a plurality of lenses, reflecting mirrors, or the like, and is adapted to form an image of the pattern on the mask 11 on the wafer 12. In order for the exposure apparatus to have the desired resolution,
At least the imaging optical system 15 needs to be an aberration-free or near-aberration-free optical system. If the imaging optical system 15 has an aberration, the cross-sectional shape of the resist pattern is deteriorated, which adversely affects the process after exposure and causes a problem that the image is distorted.
【0007】無収差と同等の性能を得るための、収差の
値(rms 値)としては、波長の14分の1程度の値が必要
である。従って、波長が短くなる程、収差の値も小さく
しなければならない。露光光がi線の場合に必要な収差
は約26nmrms である。無収差の光学系を作製するために
は、まず各光学素子の形状を設計値どうりに加工しなけ
ればならない。必要な形状精度は、必要とされる収差と
比較して少なくとも小さく、また、光学素子の数が多く
なる程、必要な形状精度の値は小さくなる。The aberration value (rms value) for obtaining the same performance as that of no aberration needs to be about 1/14 of the wavelength. Therefore, as the wavelength becomes shorter, the value of the aberration must be made smaller. The aberration required when the exposure light is the i-line is about 26 nmrms. In order to produce an aberration-free optical system, the shape of each optical element must first be processed according to the design value. The required shape precision is at least smaller than the required aberration, and the larger the number of optical elements, the smaller the required shape precision value.
【0008】そして、光学素子が全てレンズの場合は、
屈折面の数をNとすると、形状誤差は収差の1/N1/2
程度の値が必要になる。例えば、露光光がi線の場合
で、屈折面の数を30とすると、必要な形状誤差は約5nmr
msとなる。次に、この様にして作製した光学素子は、高
精度に位置合わせして組立なければならない。組立精度
は、光学計算から求めることができるが、露光光がi線
の場合には、少なくともμmオーダーでの位置合わせが
必要になる。If all the optical elements are lenses,
If the number of refracting surfaces is N, the shape error is 1 / N 1/2 of the aberration.
You need some value. For example, if the exposure light is i-line and the number of refraction surfaces is 30, the required shape error is about 5 nmr.
It becomes ms. Next, the optical element thus manufactured must be aligned and assembled with high precision. The assembling accuracy can be obtained by optical calculation, but if the exposure light is the i-line, it is necessary to perform alignment on the order of at least μm.
【0009】以上のように、無収差の光学系を作製する
ためには、高い加工精度及び組み立て精度が必要である
が、これまでは高精度な加工及び組立を行うことによ
り、無収差光学系を作製することができた。しかしなが
ら、露光装置の解像度を向上するために露光光の波長を
短くすると、それに従って収差の許容値も小さくなる。
露光光をX線とし、例えば波長を13nmとすると、収差の
許容値は約1nmrmsとなる。この値は、i線における収差
の値約26nmrms と比較して非常に小さい。従って、光学
素子には更に形状精度の高いものが要求される。As described above, in order to manufacture an aberration-free optical system, high processing accuracy and assembling accuracy are required. Until now, however, high-accuracy processing and assembling have been performed to obtain an aberration-free optical system. Could be made. However, when the wavelength of the exposure light is shortened in order to improve the resolution of the exposure apparatus, the allowable value of the aberration becomes smaller accordingly.
When the exposure light is X-rays and the wavelength is 13 nm, the allowable value of aberration is about 1 nmrms. This value is very small compared to the aberration value at the i-line of about 26 nmrms. Therefore, the optical element is required to have higher shape accuracy.
【0010】X線露光装置の場合、光学系は全て反射鏡
であることが好ましい。反射面の形状誤差は、屈折の場
合の半分の値が必要であるため、反射面の数をNとする
と、必要な形状誤差は収差の1/(2N1/2 )となる。
例えば、反射面の数を4とすると、波長13nmにおける形
状誤差は0.23nmrms となる。このように、X線投影露光
装置は、結像光学系の収差として極めて小さな値が要求
され、そのため、光学素子の形状精度もnm以下の精度が
要求される。X線投影露光装置の場合、光学素子として
多層膜反射鏡を用いるため、多層膜反射鏡を高精度に作
製しなければならない。In the case of an X-ray exposure apparatus, it is preferable that all optical systems are reflecting mirrors. Since the shape error of the reflecting surface needs to be half the value of the case of refraction, assuming that the number of reflecting surfaces is N, the necessary shape error is 1 / (2N 1/2 ) of the aberration.
For example, if the number of reflecting surfaces is 4, the shape error at a wavelength of 13 nm is 0.23 nmrms. As described above, in the X-ray projection exposure apparatus, an extremely small value is required as the aberration of the imaging optical system, and therefore the shape accuracy of the optical element is also required to be less than nm. In the case of the X-ray projection exposure apparatus, since the multilayer film reflecting mirror is used as the optical element, the multilayer film reflecting mirror must be manufactured with high accuracy.
【0011】多層膜反射鏡の作製においては、まず基板
を作製し、該基板上に多層膜をコーティングすることに
より所望形状の反射面を形成するが、この際、基板形状
が変化して形成される反射面が所望形状と相違すること
がないように多層膜を形成する必要がある。基板作製の
段階では、従来の研磨等の加工を高精度に施すことによ
り、所望の基板形状を得ることが可能である。また、加
工誤差が原因で所望の基板形状が得られない場合でも、
再度加工を施すことにより形状誤差を低減することが可
能である。さらに、加工と形状測定を繰り返すことによ
り、基板形状を徐々に所望の形状に近づけていくことも
可能である。In the production of the multilayer-film reflective mirror, a substrate is first produced, and a multilayer film is coated on the substrate to form a reflecting surface having a desired shape. At this time, the shape of the substrate is changed and formed. It is necessary to form a multilayer film so that the reflective surface does not differ from the desired shape. At the stage of manufacturing a substrate, it is possible to obtain a desired substrate shape by performing processing such as conventional polishing with high accuracy. Also, even if the desired substrate shape cannot be obtained due to processing error,
By performing the processing again, it is possible to reduce the shape error. Further, it is possible to gradually bring the substrate shape closer to a desired shape by repeating processing and shape measurement.
【0012】即ち、基板作製の段階では、加工誤差が生
じてしまう加工方法の場合でも、複数回加工することで
所望の基板形状を得ることができる。That is, at the stage of manufacturing a substrate, a desired substrate shape can be obtained by processing a plurality of times even if the processing method causes a processing error.
【0013】[0013]
【発明が解決しようとする課題】しかしながら、多層膜
を形成する段階では、基板加工時と異なり多層膜形成後
に再加工することが極めて困難である。従って、多層膜
の形成は、基板形状を変化させないように、高精度に再
現性良く行う必要があり、多層膜の形成が非常に困難で
あるという問題点があった。However, at the stage of forming a multi-layer film, it is extremely difficult to perform re-processing after forming the multi-layer film, unlike when processing the substrate. Therefore, the formation of the multilayer film needs to be performed with high accuracy and good reproducibility so as not to change the shape of the substrate, and there is a problem that the formation of the multilayer film is very difficult.
【0014】また、多層膜の形成に誤差が生じた場合に
は、多層膜反射鏡(基板及び多層膜)を最初から作製し
直さなければならず、多層膜反射鏡の作製効率が非常に
悪いという問題点があった。次に、多層膜反射鏡を所望
形状にて作製した後、かかる多層膜反射鏡を用いた光学
系を組み立てるが、この際に多層膜反射鏡を保持する必
要がある。Further, when an error occurs in the formation of the multilayer film, the multilayer film reflecting mirror (the substrate and the multilayer film) must be manufactured again from the beginning, and the manufacturing efficiency of the multilayer film reflecting mirror is very poor. There was a problem. Next, after producing the multilayer-film reflective mirror in a desired shape, an optical system using such a multilayer-film reflective mirror is assembled. At this time, it is necessary to hold the multilayer-film reflective mirror.
【0015】そこで従来は、多層膜反射鏡を保持部材に
機械的に固定しており、例えば、図6に示すように、ネ
ジ等の光学素子固定部品14を用いて、これを多層膜反射
鏡1に押しつけることにより多層膜反射鏡1の固定を行
っていた。しかし、この様な方法により多層膜反射鏡を
保持すると、多層膜反射鏡に加わる応力により多層膜反
射鏡の反射面が変形し、その結果、多層膜反射鏡を用い
た光学系の収差を低減することが非常に困難であるとい
う問題点があった。Therefore, conventionally, the multilayer reflecting mirror is mechanically fixed to the holding member. For example, as shown in FIG. 6, an optical element fixing component 14 such as a screw is used to fix the multilayer reflecting mirror. The multilayer-film reflective mirror 1 was fixed by pressing it against 1. However, if the multilayer mirror is held by such a method, the stress applied to the multilayer mirror deforms the reflective surface of the multilayer mirror, and as a result, the aberration of the optical system using the multilayer mirror is reduced. There was a problem that it was very difficult to do.
【0016】以上のように、従来の多層膜反射鏡は、多
層膜の形成が非常に困難である、多層膜反射鏡の作製効
率が非常に悪い、多層膜反射鏡を用いた光学系の収差を
低減することが非常に困難であるという問題点を有して
いた。本発明は、かかる問題点に鑑みてなされたもので
あり、多層膜の形成が比較的容易で作製効率が良く、し
かも光学系の収差を低減することが容易な多層膜X線反
射鏡を用いたX線反射光学系と、該X線反射光学系を備
えたX線投影露光装置を提供することを目的とする。As described above, in the conventional multilayer film reflecting mirror, it is very difficult to form a multilayer film, the manufacturing efficiency of the multilayer film reflecting mirror is very low, and the aberration of the optical system using the multilayer film reflecting mirror is very low. It was very difficult to reduce The present invention has been made in view of the above problems, and uses a multi-layer film X-ray reflecting mirror in which formation of a multi-layer film is relatively easy and production efficiency is good, and aberration of an optical system is easily reduced. It is an object of the present invention to provide an X-ray reflection optical system and an X-ray projection exposure apparatus including the X-ray reflection optical system.
【0017】[0017]
【課題を解決するための手段】そのため、本発明は第一
に「少なくとも、基板上にX線反射多層膜を形成してな
る多層膜X線反射鏡と該多層膜X線反射鏡を保持する反
射鏡保持部材とを備えたX線反射光学系において、前記
反射鏡保持部材は、静電力により前記多層膜X線反射鏡
と接合され、静電力の解除により該接合が解かれる着脱
自在の保持部と、該保持部と前記多層膜X線反射鏡との
間に電圧を印加して静電力を発生させる電源部とを有す
ることを特徴とするX線反射光学系(請求項1)」を提
供する。Therefore, the present invention is firstly directed to "at least a multilayer film X-ray reflecting mirror having an X-ray reflecting multilayer film formed on a substrate and the multilayer film X-ray reflecting mirror. In an X-ray reflection optical system including a reflecting mirror holding member, the reflecting mirror holding member is joined to the multilayer film X-ray reflecting mirror by electrostatic force, and the detachable holding is released by releasing the electrostatic force. X-ray reflection optical system (claim 1), characterized in that the X-ray reflection optical system (claim 1) has a section and a power supply section for applying a voltage between the holding section and the multilayer film X-ray reflection mirror to generate an electrostatic force. provide.
【0018】また、本発明は第二に「前記多層膜X線反
射鏡と前記保持部のうち、一方を誘電体により、他方を
金属または半導体によりそれぞれ構成したことを特徴と
する請求項1記載のX線反射光学系(請求項2)」を提
供する。また、本発明は第三に、「前記保持部のうち、
前記多層膜X線反射鏡と接合される部分の非接合時にお
ける形状と、前記多層膜X線反射鏡のうち、前記保持部
と接合される部分の非接合時における形状を、同一また
は略同一の形状としたことを特徴とする請求項1または
2記載のX線反射光学系(請求項3)」を提供する。A second aspect of the present invention is that "one of the multilayer X-ray reflecting mirror and the holder is made of a dielectric material and the other is made of a metal or a semiconductor. X-ray reflection optical system (claim 2) ". In the third aspect of the present invention, "of the holding portions,
The shape of the portion of the multilayer film X-ray reflecting mirror that is not joined and the shape of the portion of the multilayer film X-ray reflecting mirror that is joined to the holding portion are the same or substantially the same. The X-ray reflection optical system (claim 3) according to claim 1 or 2 is provided.
【0019】また、本発明は第四に「前記保持部のう
ち、前記多層膜X線反射鏡と接合される部分の非接合時
における形状と、前記多層膜X線反射鏡のうち、前記保
持部と接合される部分の非接合時における形状を、互い
に嵌合する形状としたことを特徴とする請求項1または
2記載のX線反射光学系(請求項4)」を提供する。ま
た、本発明は第五に「前記保持部のうち、前記多層膜X
線反射鏡と接合される部分の非接合時における形状、及
び/または、前記多層膜X線反射鏡のうち、前記保持部
と接合される部分の非接合時における形状を、接合時に
おいて前記多層膜X線反射鏡の反射面形状が所定形状と
なるように設定してなることを特徴とする請求項1また
は2記載のX線反射光学系(請求項5)」を提供する。In a fourth aspect of the present invention, "a shape of a portion of the holding portion that is joined to the multilayer film X-ray reflecting mirror in a non-joined state, and the holding portion of the multilayer film X-ray reflecting mirror. The X-ray reflection optical system (claim 4) according to claim 1 or 2, wherein the shape of the part to be joined to the part is such that it is fitted to each other. A fifth aspect of the present invention is that, in the holding portion, the multilayer film X is
The shape of the portion of the multilayer film X-ray reflecting mirror that is joined to the holding portion, and the shape of the portion that is joined to the holding portion of the multilayer film X-ray reflecting mirror when not joined are The X-ray reflection optical system (claim 5) according to claim 1 or 2, wherein the reflection surface shape of the film X-ray reflecting mirror is set to be a predetermined shape.
【0020】また、本発明は第六に「請求項1〜5記載
のX線反射光学系を備えたX線投影露光装置(請求項
6)」を提供する。A sixth aspect of the present invention provides an "X-ray projection exposure apparatus having the X-ray reflection optical system according to claims 1 to 5 (claim 6)".
【0021】[0021]
【発明の実施の形態】図1は、本発明にかかる多層膜X
線反射鏡1及び反射鏡保持部材の一例を示す構成図であ
る。反射鏡保持部材は、静電力により前記多層膜X線反
射鏡1と接合され、静電力の解除により該接合が解かれ
る着脱自在の保持部2と、該保持部2と前記多層膜X線
反射鏡1との間に電圧を印加して静電力を発生させる電
源部3とを有する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a multilayer film X according to the present invention.
It is a block diagram which shows an example of the line reflection mirror 1 and a reflection mirror holding member. The reflecting mirror holding member is joined to the multilayer film X-ray reflecting mirror 1 by an electrostatic force, and the detachable holding unit 2 is released by releasing the electrostatic force, and the holding unit 2 and the multilayer film X-ray reflecting member. It has a power supply unit 3 that applies a voltage between the mirror 1 and the mirror 1 to generate an electrostatic force.
【0022】即ち、保持部2と多層膜X線反射鏡1との
間に電圧を印加すると、両者の間に静電力(引力)が発
生し、多層膜X線反射鏡1が保持部2に固定される。本
発明にかかる多層膜X線反射鏡1と保持部2のうち、一
方を誘電体とし、他方を金属または半導体とすれば、両
者間に電圧を印加したときに強い静電力が得られ、その
結果、多層膜X線反射鏡1が保持部2に強く固定される
ので好ましい(請求項2)。That is, when a voltage is applied between the holding part 2 and the multilayer film X-ray reflecting mirror 1, an electrostatic force (attracting force) is generated between the two, and the multilayer film X-ray reflecting mirror 1 is held on the holding part 2. Fixed. If one of the multilayer X-ray reflecting mirror 1 and the holding unit 2 according to the present invention is made of a dielectric and the other is made of a metal or a semiconductor, a strong electrostatic force is obtained when a voltage is applied between the two, and As a result, the multi-layer film X-ray reflecting mirror 1 is strongly fixed to the holding portion 2 (claim 2).
【0023】多層膜X線反射鏡1を誘電体(例えば、ガ
ラス基板上に多層膜を形成したもの)とし、保持部2を
金属とするのが一般的であるが、この組合せに限定され
るものではない。保持部2のうち、多層膜X線反射鏡1
と接合される部分(以下、保持部2の接合部と称す)の
非接合時における形状と、多層膜X線反射鏡1のうち、
保持部2と接合される部分(以下、多層膜X線反射鏡の
接合部と称す)の非接合時における形状を、同一または
略同一の形状とすると、両接合部が密着しやすくなり、
多層膜X線反射鏡1を変形させないで、或いは殆ど変形
させることなく保持部2に固定することができるので好
ましい(請求項3)。It is general that the multilayer film X-ray reflecting mirror 1 is made of a dielectric material (for example, a multilayer film is formed on a glass substrate) and the holding portion 2 is made of metal, but the combination is limited. Not a thing. Of the holding part 2, the multilayer film X-ray reflecting mirror 1
Of the shape of the multilayer film X-ray reflecting mirror 1 in the non-bonding shape of the portion bonded to (hereinafter, referred to as the bonding portion of the holding portion 2),
If the shape of the portion joined to the holding portion 2 (hereinafter, referred to as the joined portion of the multilayer film X-ray reflecting mirror) when not joined is the same or substantially the same, both joined portions are likely to adhere to each other,
It is preferable because the multilayer X-ray reflecting mirror 1 can be fixed to the holding portion 2 with little or no deformation (claim 3).
【0024】また、保持部2の接合部の非接合時におけ
る形状と、多層膜X線反射鏡1の接合部の非接合時にお
ける形状を、互いに嵌合する形状とすると、両接合部が
密着しやすくなり、多層膜X線反射鏡1を変形させない
で、或いは殆ど変形させることなく保持部2に固定する
ことができるので好ましい(請求項4)。図2(a)は
接合部が平面形状の多層膜X線反射鏡1を保持部2に固
定する様子を示している。図2(a)に示すように、多
層膜X線反射鏡1の接合部6と保持部2の接合部7が同
一形状(この例では、平面形状)であれば、多層膜X線
反射鏡1は変形することなく保持部2に固定される(図
2では、平面ミラー5が保持部2に固定されても平面ミ
ラーであることを示している)。If the shape of the joint of the holding portion 2 when not joined and the shape of the joint of the multilayer film X-ray reflecting mirror 1 when not joined are such that they fit together, both joints will adhere to each other. This is preferable because the multi-layer film X-ray reflecting mirror 1 can be fixed to the holding portion 2 without being deformed or hardly deformed (claim 4). FIG. 2A shows a state in which the multilayer film X-ray reflecting mirror 1 having a planar joint shape is fixed to the holding portion 2. As shown in FIG. 2A, if the joint portion 6 of the multilayer film X-ray reflecting mirror 1 and the joint portion 7 of the holding portion 2 have the same shape (planar shape in this example), the multilayer film X-ray reflecting mirror. 1 is fixed to the holder 2 without being deformed (FIG. 2 shows that the plane mirror 5 is a plane mirror even if it is fixed to the holder 2).
【0025】多層膜X線反射鏡1の反射面5が所望の形
状に形成されている場合は、多層膜X線反射鏡1が変形
しないように反射鏡1を保持部2に固定する必要がある
のでこのように、多層膜X線反射鏡1の接合部6と保持
部2の接合部7は、同一形状や嵌合する形状とすること
が好ましい。また、多層膜X線反射鏡1の接合部6及び
保持部2の接合部7は、高精度に加工しやすい形状(例
えば、平面あるいは球面)にすると、同一形状や嵌合形
状に加工することが容易となるので好ましい。When the reflecting surface 5 of the multilayer X-ray reflecting mirror 1 is formed in a desired shape, it is necessary to fix the reflecting mirror 1 to the holding portion 2 so that the multilayer X-ray reflecting mirror 1 is not deformed. Therefore, as described above, it is preferable that the joint portion 6 of the multilayer X-ray reflecting mirror 1 and the joint portion 7 of the holding portion 2 have the same shape or a fitting shape. Further, when the joint portion 6 of the multilayer film X-ray reflecting mirror 1 and the joint portion 7 of the holding portion 2 are formed into a shape (for example, a flat surface or a spherical surface) that can be easily processed with high precision, they should be processed into the same shape or a fitting shape. Is preferred, which is preferable.
【0026】一方、多層膜X線反射鏡1の接合部6及び
保持部2の接合部7の形状が異なる場合や嵌合しない場
合には、図2(b)に示すように、多層膜X線反射鏡1
を保持部2に固定する際に、多層膜X線反射鏡1が変形
する。しかし、この変形を積極的に利用すると、多層膜
X線反射鏡1を保持部2に固定する際、反射面形状を調
整(補正)することが可能になる。On the other hand, when the joint portion 6 of the multilayer X-ray reflecting mirror 1 and the joint portion 7 of the holding portion 2 have different shapes or do not fit, as shown in FIG. Line reflector 1
The multi-layer film X-ray reflecting mirror 1 is deformed when it is fixed to the holding portion 2. However, if this deformation is positively utilized, it becomes possible to adjust (correct) the reflection surface shape when fixing the multilayer X-ray reflecting mirror 1 to the holding portion 2.
【0027】即ち、保持部のうち、多層膜X線反射鏡と
接合される部分の非接合時における形状、及び/また
は、多層膜X線反射鏡のうち、保持部と接合される部分
の非接合時における形状を、接合時において多層膜X線
反射鏡の反射面形状が所定形状となるように設定する
と、反射面の形状を調整(補正)することができるので
好ましい(請求項5)。That is, the shape of the portion of the holding portion that is joined to the multilayer film X-ray reflecting mirror when not joined and / or the shape of the portion of the multilayer film X-ray reflecting mirror that is joined to the holding portion is not. It is preferable to set the shape at the time of joining so that the shape of the reflecting surface of the multilayer film X-ray reflecting mirror becomes a predetermined shape at the time of joining, because the shape of the reflecting surface can be adjusted (corrected) (claim 5).
【0028】つまり、多層膜X線反射鏡1の基板の加工
誤差、多層膜形成時の膜厚分布誤差、または多層膜の内
部応力による形状変化等により、作製された多層膜X線
反射鏡1の反射面5形状が所望形状とならない場合に
は、多層膜X線反射鏡1を保持部2に固定した状態にて
反射面5が所望形状になるように調整(補正)すればよ
い。That is, the multilayer film X-ray reflecting mirror 1 produced by the substrate processing error of the multilayer film X-ray reflecting mirror 1, the film thickness distribution error at the time of forming the multilayer film, or the shape change due to the internal stress of the multilayer film. If the shape of the reflection surface 5 is not the desired shape, the reflection surface 5 may be adjusted (corrected) so that the reflection surface 5 has the desired shape with the multilayer film X-ray reflecting mirror 1 fixed to the holding portion 2.
【0029】例えば、多層膜X線反射鏡1の非固定時に
曲面である反射面を、固定時に平面となるように調整す
るためには、図3に示すように、多層膜X線反射鏡1の
接合部6を曲面にする(図3a)か、或いは、保持部2
の接合部7を曲面に加工してやればよい(図3b)。こ
の例では、いずれの場合も、多層膜X線反射鏡1の接合
部6が保持部2の接合部7に密着する際に、多層膜X線
反射鏡1が変形して反射面5が曲面から平面に変化す
る。For example, in order to adjust the reflecting surface, which is a curved surface when the multi-layer film X-ray reflecting mirror 1 is not fixed, to be a flat surface when the multi-layer film X-ray reflecting mirror 1 is fixed, as shown in FIG. The joint part 6 of FIG. 3 is curved (FIG. 3a), or the holding part 2
It is sufficient to process the joint portion 7 of (1) into a curved surface (FIG. 3b). In this example, in any case, when the joint portion 6 of the multilayer X-ray reflecting mirror 1 comes into close contact with the joint portion 7 of the holding portion 2, the multilayer X-ray reflecting mirror 1 is deformed and the reflecting surface 5 is curved. Changes from to a plane.
【0030】多層膜X線反射鏡1を保持部2に固定する
際に、多層膜X線反射鏡1の反射面5の形状を所望形状
に変形させるために、多層膜X線反射鏡1の接合部6及
び/または保持部2の接合部7をどのような形状に設定
すればよいかは、有限要素法等の計算から判断すること
が可能である。本発明にかかる多層膜X線反射鏡1の保
持によれば、多層膜X線反射鏡1を大面積で保持するこ
とが可能なため、多層膜X線反射鏡1の変形(調整)の
自由度が高いという特徴を有する。例えば、多層膜X線
反射鏡1の接合部6を図4に示すような、部分研磨装置
10を用いて加工すれば、空間的に複雑な形状に加工する
ことが可能であり、保持部の接合部も同様に加工でき
る。When the multi-layer film X-ray reflecting mirror 1 is fixed to the holding portion 2, in order to change the shape of the reflecting surface 5 of the multi-layer film X-ray reflecting mirror 1 into a desired shape, The shape of the joint portion 6 and / or the joint portion 7 of the holding portion 2 to be set can be determined by calculation such as the finite element method. According to the holding of the multi-layer film X-ray reflecting mirror 1 according to the present invention, since the multi-layer film X-ray reflecting mirror 1 can be held in a large area, it is possible to freely deform (adjust) the multi-layer film X-ray reflecting mirror 1. It has the characteristic of high degree. For example, the joining portion 6 of the multilayer film X-ray reflecting mirror 1 as shown in FIG.
If processing is performed using 10, it is possible to form a spatially complicated shape, and the joint portion of the holding portion can be similarly processed.
【0031】即ち、多層膜X線反射鏡1は空間的に複雑
な変形(調整)も可能になり、その結果、多層膜X線反
射鏡1の形状誤差を補正することが容易になる。さら
に、多層膜X線反射鏡1を薄くするなどして剛性を低下
させると、変形(調整)量を大きくすることができる。
また、多層膜X線反射鏡1の反射面5の形状が固定(保
持)前に所望形状であったにもかかわらず、固定(保
持)後に反射面5の形状が所望の形状から変化してしま
った場合、或いは固定の際に反射面5の形状が所望形状
に変形せず、その形状が所望形状からずれてしまった場
合には、その誤差を補正することも容易である。That is, the multilayer X-ray reflecting mirror 1 can be spatially complicatedly deformed (adjusted), and as a result, it becomes easy to correct the shape error of the multilayer X-ray reflecting mirror 1. Further, if the multilayer film X-ray reflecting mirror 1 is made thin to reduce its rigidity, the amount of deformation (adjustment) can be increased.
Further, even though the shape of the reflecting surface 5 of the multilayer film X-ray reflecting mirror 1 was the desired shape before being fixed (holding), the shape of the reflecting surface 5 changed from the desired shape after being fixed (holding). If it has, or if the shape of the reflecting surface 5 is not deformed to a desired shape when it is fixed and the shape deviates from the desired shape, it is easy to correct the error.
【0032】つまり、保持部2に一度固定した多層膜X
線反射鏡1を取り外して、多層膜X線反射鏡1の反射面
5が所望形状に変形するように、多層膜X線反射鏡1の
接合部6及び/または保持部2の接合部7を再加工して
やればよい。多層膜X線反射鏡1の取り外しは、電源部
3により多層膜X線反射鏡1と保持部2の間に印可され
た電圧を0にすることにより容易に行うことができる。That is, the multilayer film X once fixed to the holding unit 2.
The linear reflecting mirror 1 is removed, and the joint portion 6 of the multilayer X-ray reflecting mirror 1 and / or the joint portion 7 of the holding portion 2 is attached so that the reflecting surface 5 of the multilayer X-ray reflecting mirror 1 is deformed into a desired shape. It should be reprocessed. The removal of the multilayer film X-ray reflecting mirror 1 can be easily performed by setting the voltage applied between the multilayer film X-ray reflecting mirror 1 and the holding unit 2 by the power supply unit 3 to zero.
【0033】また、保持部2への多層膜X線反射鏡1の
固定、多層膜X線反射鏡1の反射面形状測定、多層膜X
線反射鏡1の取り外し、各接合部の加工を交互に繰り返
すことにより、保持後の多層膜反射鏡の形状(つまり、
反射面の形状)を所望形状に近づけていくことが可能で
ある。従って、従来の様に多層膜X線反射鏡1の表面
(反射面)を再加工することなく、即ち多層膜を形成し
なおすことなく、短時間で光学系を作製することができ
る。Further, the multilayer film X-ray reflecting mirror 1 is fixed to the holding portion 2, the reflection surface shape of the multilayer film X-ray reflecting mirror 1 is measured, and the multilayer film X.
The shape of the multilayer reflecting mirror after holding (that is,
It is possible to bring the shape of the reflecting surface) closer to the desired shape. Therefore, the optical system can be manufactured in a short time without reworking the surface (reflection surface) of the multilayer X-ray reflecting mirror 1 as in the prior art, that is, without reforming the multilayer.
【0034】本発明にかかるX線反射光学系をX線投影
露光装置に用いると、光学系の収差を低減して該装置の
性能を向上させることができるので好ましい(請求項
6)。以上説明したように、本発明(請求項1〜4)の
X線反射光学系によれば、多層膜X線反射鏡をその形状
を変形することなく保持することができるので、所望性
能を安定して発揮することができる。It is preferable to use the X-ray reflection optical system according to the present invention in an X-ray projection exposure apparatus, because the aberration of the optical system can be reduced and the performance of the apparatus can be improved (claim 6). As described above, according to the X-ray reflection optical system of the present invention (Claims 1 to 4), the multilayer film X-ray reflection mirror can be held without deforming its shape, so that desired performance is stabilized. Can be demonstrated.
【0035】また、本発明のX線反射光学系(請求項
1、2、5)によれば、多層膜X線反射鏡の固定時にそ
の形状を変化させることも可能であり、多層膜X線反射
鏡の形状が所望形状に形成されていない場合でも、固定
の際に所望形状に変形させることができる。即ち、作製
誤差のある多層膜X線反射鏡でも作製し直すことなく使
用できる。従って、所望性能を安定して発揮することが
できるX線反射光学系を高スループットにて作製するこ
とが可能になる。Further, according to the X-ray reflection optical system of the present invention (claims 1, 2, and 5), it is possible to change the shape of the multilayer film X-ray reflecting mirror when it is fixed. Even when the shape of the reflecting mirror is not formed into a desired shape, it can be deformed into a desired shape when fixed. That is, even a multilayer film X-ray reflecting mirror having a manufacturing error can be used without remanufacturing. Therefore, it becomes possible to manufacture an X-ray reflection optical system capable of stably exhibiting desired performance with high throughput.
【0036】また、本発明のX線反射光学系(請求項1
〜5)によれば、多層膜X線反射鏡の固定及び取り外し
を容易に行うことが可能である。そのため、固定後に多
層膜X線反射鏡の形状が所望形状でないことが判ったと
しても、多層膜X線反射鏡を取り外して、各接続部を再
加工することにより、所望形状に近づけていくことが可
能である。従って、所望の性能を有するX線反射光学系
を歩留まりよく作製できる。The X-ray reflection optical system of the present invention (claim 1)
According to 5), it is possible to easily fix and remove the multilayer X-ray reflecting mirror. Therefore, even if it is found that the shape of the multilayer X-ray reflecting mirror is not the desired shape after fixing, the multilayer X-ray reflecting mirror should be removed and each connecting portion should be reprocessed to bring it closer to the desired shape. Is possible. Therefore, an X-ray reflection optical system having desired performance can be manufactured with high yield.
【0037】さらに、本発明のX線反射光学系(請求項
1〜5)を備えたX線投影露光装置は、高い解像力を有
し、微細なレジストパターンを作製することができる。
以下、本発明を実施例により更に詳細に説明するが、本
発明はこの例に限定されるものではない。Further, the X-ray projection exposure apparatus equipped with the X-ray reflection optical system of the present invention (claims 1 to 5) has a high resolution and can form a fine resist pattern.
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
【0038】[0038]
<第一実施例>図5は本実施例のX線反射光学系及び該
光学系を備えたX線投影露光装置を示す構成図である。
X線投影露光装置は、X線光源及び照明系(不図示)、
マスク11、結像光学系15、ウエハ12のステージ(不図
示)を備えている。<First Embodiment> FIG. 5 is a block diagram showing an X-ray reflection optical system of this embodiment and an X-ray projection exposure apparatus equipped with the optical system.
The X-ray projection exposure apparatus includes an X-ray light source and an illumination system (not shown),
A mask 11, an imaging optical system 15, and a stage (not shown) for the wafer 12 are provided.
【0039】結像光学系15は、複数の多層膜X線反射鏡
1a及び反射鏡保持部材(保持部2aと電源部3を有す
る)を有している。電源部3は、多層膜X線反射鏡1a
と保持部2aの間に電圧を印加することにより、両者間
に静電力を発生させている。多層膜X線反射鏡1aは、
この静電力により保持部2aに固定されている。露光波
長は13nmとし、マスク11は反射型のものを用いた。マス
ク11で反射したX線13は、結像光学系15の多層膜X線反
射鏡で反射してウエハ12上に到達し、マスクパターンが
ウエハ12上に縮小転写される。The image forming optical system 15 has a plurality of multilayer film X-ray reflecting mirrors 1a and a reflecting mirror holding member (having a holding portion 2a and a power source portion 3). The power supply unit 3 is a multilayer film X-ray reflecting mirror 1a.
By applying a voltage between the holding part 2a and the holding part 2a, an electrostatic force is generated between them. The multilayer X-ray reflecting mirror 1a is
It is fixed to the holding portion 2a by this electrostatic force. The exposure wavelength was 13 nm, and the mask 11 used was a reflective type. The X-rays 13 reflected by the mask 11 are reflected by the multilayer film X-ray reflecting mirror of the imaging optical system 15 and reach the wafer 12, and the mask pattern is reduced and transferred onto the wafer 12.
【0040】多層膜X線反射鏡1aは、非球面のガラス
基板上に多層膜を成膜したものであり、その反射面(表
面)形状が所望形状に加工されており、裏面の接合部は
平面に加工されている。また、保持部2aは金属製であ
り、その接合部も平面に加工されている。多層膜X線反
射鏡1aと保持部2aの間には電源部3が接続されてお
り、電圧が印加できるようになっている。The multi-layer film X-ray reflecting mirror 1a is a multi-layer film formed on an aspherical glass substrate, and its reflection surface (front surface) is processed into a desired shape. It is processed into a flat surface. The holding portion 2a is made of metal, and the joint portion thereof is also processed into a flat surface. A power supply unit 3 is connected between the multilayer X-ray reflecting mirror 1a and the holding unit 2a so that a voltage can be applied.
【0041】多層膜X線反射鏡1aの接合部と保持部2
aの接合部は、いずれも高精度な平面に加工されてい
る。そのため、固定時に多層膜X線反射鏡1aが変形す
ることはない。本実施例の露光装置により露光を行う
と、最小サイズ0.1 μmのレジストパターンが作製でき
た。一方、従来の保持方法による露光装置では、多層膜
X線反射鏡が変形してしまい、0.1 μm サイズのパター
ンを得ることができなかった。 <第二実施例>図5は本実施例のX線反射光学系及び該
光学系を備えたX線投影露光装置を示す構成図である。Joining part of multilayer film X-ray reflecting mirror 1a and holding part 2
Each of the joint portions a is processed into a highly accurate flat surface. Therefore, the multilayer film X-ray reflecting mirror 1a is not deformed when fixed. When exposure was performed with the exposure apparatus of this example, a resist pattern with a minimum size of 0.1 μm could be produced. On the other hand, in the exposure apparatus using the conventional holding method, the multilayer film X-ray reflecting mirror was deformed, and a pattern of 0.1 μm size could not be obtained. <Second Embodiment> FIG. 5 is a block diagram showing an X-ray reflection optical system of this embodiment and an X-ray projection exposure apparatus equipped with the optical system.
【0042】X線投影露光装置は、X線光源及び照明系
(不図示)、マスク11、結像光学系15、ウエハ12のステ
ージ(不図示)を備えている。結像光学系15は、複数の
多層膜X線反射鏡1b及び反射鏡保持部材(保持部2a
と電源部3を有する)を有している。電源部3は、多層
膜X線反射鏡1bと保持部2aの間に電圧を印加するこ
とにより、両者間に静電力を発生させている。多層膜X
線反射鏡1bは、この静電力により保持部2aに固定さ
れている。The X-ray projection exposure apparatus comprises an X-ray light source and an illumination system (not shown), a mask 11, an image forming optical system 15, and a stage (not shown) for the wafer 12. The imaging optical system 15 includes a plurality of multilayer X-ray reflecting mirrors 1b and a reflecting mirror holding member (holding portion 2a).
And a power supply unit 3). The power supply section 3 generates an electrostatic force between the multilayer film X-ray reflecting mirror 1b and the holding section 2a by applying a voltage between them. Multi-layer film X
The line reflection mirror 1b is fixed to the holding portion 2a by this electrostatic force.
【0043】露光波長は13nmとし、マスク11は反射型の
ものを用いた。マスク11で反射したX線13は、結像光学
系15の多層膜X線反射鏡で反射してウエハ12上に到達
し、マスクパターンがウエハ12上に縮小転写される。多
層膜X線反射鏡1bは、非球面のガラス基板上に多層膜
を成膜したものである。しかし、その反射面(表面)形
状は、多層膜の成膜誤差のために所望形状に加工されて
いない。多層膜X線反射鏡1bの接合部は平面に加工さ
れている。The exposure wavelength was 13 nm, and the mask 11 used was a reflection type. The X-rays 13 reflected by the mask 11 are reflected by the multilayer film X-ray reflecting mirror of the imaging optical system 15 and reach the wafer 12, and the mask pattern is reduced and transferred onto the wafer 12. The multilayer X-ray reflecting mirror 1b is a multilayer film formed on an aspherical glass substrate. However, the reflection surface (surface) shape is not processed into a desired shape due to a film formation error of the multilayer film. The joint portion of the multilayer X-ray reflecting mirror 1b is processed into a flat surface.
【0044】また、保持部2aは金属製であり、その接
合部も平面に加工されている。多層膜X線反射鏡1bと
保持部2aの間には電源部3が接続されており、電圧が
印加できるようになっている。多層膜X線反射鏡1bの
接合部と保持部2aの接合部は、いずれも高精度な平面
に加工されている。そのため、固定時に多層膜X線反射
鏡1bが変形することはない。The holding portion 2a is made of metal, and its joint portion is also processed into a flat surface. A power supply unit 3 is connected between the multilayer X-ray reflecting mirror 1b and the holding unit 2a so that a voltage can be applied. The joint portion of the multilayer X-ray reflecting mirror 1b and the joint portion of the holding portion 2a are both processed into highly accurate flat surfaces. Therefore, the multilayer X-ray reflecting mirror 1b is not deformed when fixed.
【0045】多層膜X線反射鏡1bを保持部2aに固定
して、その反射面形状を測定したところ、形状誤差が確
認された。そこで、多層膜X線反射鏡1bを取り外し
て、その裏面(接合部)を部分研磨装置10を用いて加
工した(図4参照)。この際の加工量は、多層膜X線反
射鏡の固定時に、その反射面が所望形状に変形するよう
に計算により求めた。加工後の多層膜X線反射鏡1cを
保持部2aに固定して、その反射面形状を測定したとこ
ろ、所望形状となっていることが確認された。When the multi-layer film X-ray reflecting mirror 1b was fixed to the holding portion 2a and the shape of its reflecting surface was measured, a shape error was confirmed. Therefore, the multilayer film X-ray reflecting mirror 1b was removed, and the back surface (bonding portion) thereof was processed using the partial polishing apparatus 10 (see FIG. 4). The amount of processing at this time was calculated by calculation so that the reflecting surface was deformed into a desired shape when the multilayer X-ray reflecting mirror was fixed. When the processed multilayer X-ray reflecting mirror 1c was fixed to the holding portion 2a and the shape of its reflecting surface was measured, it was confirmed that it had a desired shape.
【0046】本実施例の露光装置により露光を行うと、
最小サイズ0.1 μmのレジストパターンが作製できた。
一方、従来の保持方法による露光装置では、多層膜X線
反射鏡が変形してしまい、0.1 μm サイズのパターンを
得ることができなかった。 <第三実施例>図5は本実施例のX線反射光学系及び該
光学系を備えたX線投影露光装置を示す構成図である。When exposure is performed by the exposure apparatus of this embodiment,
A resist pattern with a minimum size of 0.1 μm could be produced.
On the other hand, in the exposure apparatus using the conventional holding method, the multilayer film X-ray reflecting mirror was deformed, and a pattern of 0.1 μm size could not be obtained. <Third Embodiment> FIG. 5 is a block diagram showing an X-ray reflection optical system of this embodiment and an X-ray projection exposure apparatus including the optical system.
【0047】X線投影露光装置は、X線光源及び照明系
(不図示)、マスク11、結像光学系15、ウエハ12のステ
ージ(不図示)を備えている。結像光学系15は、複数の
多層膜X線反射鏡1b及び反射鏡保持部材(保持部2a
と電源部3を有する)を有している。電源部3は、多層
膜X線反射鏡1bと保持部2aの間に電圧を印加するこ
とにより、両者間に静電力を発生させている。多層膜X
線反射鏡1bは、この静電力により保持部2aに固定さ
れている。The X-ray projection exposure apparatus comprises an X-ray light source and an illumination system (not shown), a mask 11, an image forming optical system 15, and a stage (not shown) for the wafer 12. The imaging optical system 15 includes a plurality of multilayer X-ray reflecting mirrors 1b and a reflecting mirror holding member (holding portion 2a).
And a power supply unit 3). The power supply section 3 generates an electrostatic force between the multilayer film X-ray reflecting mirror 1b and the holding section 2a by applying a voltage between them. Multi-layer film X
The line reflection mirror 1b is fixed to the holding portion 2a by this electrostatic force.
【0048】露光波長は13nmとし、マスク11は反射型の
ものを用いた。マスク11で反射したX線13は、結像光学
系15の多層膜X線反射鏡で反射してウエハ12上に到達
し、マスクパターンがウエハ12上に縮小転写される。多
層膜X線反射鏡1bは、非球面のガラス基板上に多層膜
を成膜したものである。しかし、その反射面(表面)形
状は、多層膜の成膜誤差のために所望形状に加工されて
いない。多層膜X線反射鏡1bの接合部は平面に加工さ
れている。The exposure wavelength was 13 nm, and the mask 11 used was a reflective type. The X-rays 13 reflected by the mask 11 are reflected by the multilayer film X-ray reflecting mirror of the imaging optical system 15 and reach the wafer 12, and the mask pattern is reduced and transferred onto the wafer 12. The multilayer X-ray reflecting mirror 1b is a multilayer film formed on an aspherical glass substrate. However, the reflection surface (surface) shape is not processed into a desired shape due to a film formation error of the multilayer film. The joint portion of the multilayer X-ray reflecting mirror 1b is processed into a flat surface.
【0049】また、保持部2aは金属製であり、その接
合部も平面に加工されている。多層膜X線反射鏡1bと
保持部2aの間には電源部3が接続されており、電圧が
印加できるようになっている。多層膜X線反射鏡1bの
接合部と保持部2aの接合部は、いずれも高精度な平面
に加工されている。そのため、固定時に多層膜X線反射
鏡1bが変形することはない。The holding portion 2a is made of metal, and its joint is also processed into a flat surface. A power supply unit 3 is connected between the multilayer X-ray reflecting mirror 1b and the holding unit 2a so that a voltage can be applied. The joint portion of the multilayer X-ray reflecting mirror 1b and the joint portion of the holding portion 2a are both processed into highly accurate flat surfaces. Therefore, the multilayer X-ray reflecting mirror 1b is not deformed when fixed.
【0050】多層膜X線反射鏡1bを保持部2aに固定
して、その反射面形状を測定したところ、形状誤差が確
認された。そこで、多層膜X線反射鏡1bを取り外し
て、保持部2aの接合部を部分研磨装置10を用いて加
工した。この際の加工量は、多層膜X線反射鏡の固定時
に、その反射面が所望形状に変形するように計算により
求めた。多層膜X線反射鏡1bを加工後の保持部2bに
固定して、その反射面形状を測定したところ、所望形状
となっていることが確認された。When the multi-layer film X-ray reflecting mirror 1b was fixed to the holding portion 2a and the shape of its reflecting surface was measured, a shape error was confirmed. Therefore, the multilayer film X-ray reflecting mirror 1b was removed, and the joint portion of the holding portion 2a was processed using the partial polishing apparatus 10. The amount of processing at this time was calculated by calculation so that the reflecting surface was deformed into a desired shape when the multilayer X-ray reflecting mirror was fixed. When the multilayer film X-ray reflecting mirror 1b was fixed to the processed holding portion 2b and the shape of the reflecting surface was measured, it was confirmed that the desired shape was obtained.
【0051】本実施例の露光装置により露光を行うと、
最小サイズ0.1 μmのレジストパターンが作製できた。
一方、従来の保持方法による露光装置では、多層膜X線
反射鏡が変形してしまい、0.1 μm サイズのパターンを
得ることができなかった。When exposure is carried out by the exposure apparatus of this embodiment,
A resist pattern with a minimum size of 0.1 μm could be produced.
On the other hand, in the exposure apparatus using the conventional holding method, the multilayer film X-ray reflecting mirror was deformed, and a pattern of 0.1 μm size could not be obtained.
【0052】[0052]
【発明の効果】以上説明したように、本発明(請求項1
〜4)のX線反射光学系によれば、多層膜X線反射鏡を
その形状を変形することなく保持することができるの
で、所望性能を安定して発揮することができる。また、
本発明(請求項1、2、5)のX線反射光学系によれ
ば、多層膜X線反射鏡の固定時にその形状を変化させる
ことも可能であり、多層膜X線反射鏡の形状が所望形状
に形成されていない場合でも、固定の際に所望形状に変
形させることができる。即ち、作製誤差のある多層膜X
線反射鏡でも作製し直すことなく使用できる。従って、
所望性能を安定して発揮することができるX線反射光学
系を高スループットにて作製することが可能になる。As described above, the present invention (Claim 1)
According to the X-ray reflection optical system of (4) to (4), since the multilayer X-ray reflection mirror can be held without deforming its shape, desired performance can be stably exhibited. Also,
According to the X-ray reflection optical system of the present invention (Claims 1, 2, and 5), the shape of the multilayer X-ray reflecting mirror can be changed when the multilayer X-ray reflecting mirror is fixed. Even if it is not formed into a desired shape, it can be deformed into a desired shape when fixed. That is, the multi-layer film X having a manufacturing error
It can be used even with a line mirror without re-manufacturing. Therefore,
An X-ray reflection optical system capable of stably exhibiting desired performance can be manufactured with high throughput.
【0053】また、本発明のX線反射光学系(請求項1
〜5)によれば、多層膜X線反射鏡の固定及び取り外し
を容易に行うことが可能である。そのため、固定後に多
層膜X線反射鏡の形状が所望形状でないことが判ったと
しても、多層膜X線反射鏡を取り外して、各接続部を再
加工することにより、所望形状に近づけていくことが可
能である。従って、所望の性能を有するX線反射光学系
を歩留まりよく作製できる。The X-ray reflection optical system of the present invention (claim 1)
According to 5), it is possible to easily fix and remove the multilayer X-ray reflecting mirror. Therefore, even if it is found that the shape of the multilayer X-ray reflecting mirror is not the desired shape after fixing, the multilayer X-ray reflecting mirror should be removed and each connecting portion should be reprocessed to bring it closer to the desired shape. Is possible. Therefore, an X-ray reflection optical system having desired performance can be manufactured with high yield.
【0054】さらに、本発明のX線反射光学系(請求項
1〜5)を備えたX線投影露光装置は、高い解像力を有
し、微細なレジストパターンを作製することができる。Furthermore, the X-ray projection exposure apparatus equipped with the X-ray reflection optical system of the present invention (claims 1 to 5) has a high resolution and can form a fine resist pattern.
【図1】は、本発明にかかる多層膜X線反射鏡1及び反
射鏡保持部材の一例を示す構成図である。FIG. 1 is a configuration diagram showing an example of a multilayer film X-ray reflecting mirror 1 and a reflecting mirror holding member according to the present invention.
【図2】は、(a)が接合部が平面形状の多層膜X線反
射鏡1を保持部2に非変形で固定する様子を示す説明
図、(b)が接合部が非平面形状の多層膜X線反射鏡1
を保持部2に変形させて固定する様子を示す説明図であ
る。FIG. 2A is an explanatory view showing a state in which the multilayer film X-ray reflecting mirror 1 having a planar joint portion is fixed to the holding portion 2 without deformation, and FIG. 2B shows a joint portion having a nonplanar shape. Multilayer X-ray mirror 1
It is explanatory drawing which shows a mode that it deform | transforms and is fixed to the holding part 2.
【図3】は、多層膜X線反射鏡1の反射面が固定により
曲面から平面に変化する様子を示す説明図である。FIG. 3 is an explanatory diagram showing how the reflecting surface of the multilayer X-ray reflecting mirror 1 changes from a curved surface to a flat surface due to fixing.
【図4】は、部分研磨装置10を用いて多層膜X線反射
鏡1の接合部を加工する様子を示す説明図である。FIG. 4 is an explanatory view showing a state of processing the bonding portion of the multilayer film X-ray reflecting mirror 1 using the partial polishing apparatus 10.
【図5】は、実施例のX線反射光学系及び該光学系を備
えたX線投影露光装置を示す構成図である。FIG. 5 is a configuration diagram showing an X-ray reflection optical system of an embodiment and an X-ray projection exposure apparatus including the optical system.
【図6】は、多層膜X線反射鏡の従来の保持方法を示す
概略図である。FIG. 6 is a schematic view showing a conventional holding method for a multilayer X-ray reflecting mirror.
【図7】は、従来のX線投影露光装置を示す構成図であ
る。FIG. 7 is a configuration diagram showing a conventional X-ray projection exposure apparatus.
1・・・多層膜X線反射鏡 2・・・多層膜X線反射鏡の保持部(保持部材の要素) 3・・・電源部(保持部材の要素) 4・・・配線(保持部材の要素) 5・・・多層膜X線反射鏡の反射面 6・・・多層膜X線反射鏡の接続部 7・・・保持部の接続部 10・・・部分研磨装置 11・・・マスク 12・・・ウエハ 13・・・X線 14・・・光学素子固定部品 15・・・結像光学系 以 上 DESCRIPTION OF SYMBOLS 1 ... Multilayer film X-ray reflecting mirror 2 ... Holding part (element of holding member) of multilayer X-ray reflecting mirror 3 ... Power supply part (element of holding member) 4 ... Wiring (holding member) Element: 5 ... Reflective surface of multilayer X-ray reflector 6 ... Connection of multilayer X-ray reflector 7 ... Connection of holder 10 ... Partial polishing device 11 ... Mask 12・ ・ ・ Wafer 13 ・ ・ ・ X-ray 14 ・ ・ ・ Optical element fixing parts 15 ・ ・ ・ Imaging optical system
Claims (6)
形成してなる多層膜X線反射鏡と該多層膜X線反射鏡を
保持する反射鏡保持部材とを備えたX線反射光学系にお
いて、 前記反射鏡保持部材は、静電力により前記多層膜X線反
射鏡と接合され、静電力の解除により該接合が解かれる
着脱自在の保持部と、該保持部と前記多層膜X線反射鏡
との間に電圧を印加して静電力を発生させる電源部とを
有することを特徴とするX線反射光学系。1. An X-ray reflection optical system including at least a multilayer film X-ray reflecting mirror having an X-ray reflecting multilayer film formed on a substrate and a reflecting mirror holding member for holding the multilayer film X-ray reflecting mirror. In the above-mentioned, the reflecting mirror holding member is joined to the multilayer film X-ray reflecting mirror by electrostatic force, and the detachable holding part whose joining is released by releasing the electrostatic force, and the holding part and the multilayer film X-ray reflecting member. An X-ray reflection optical system comprising: a power supply unit that applies a voltage between the mirror and an electrostatic force.
ち、一方を誘電体により、他方を金属または半導体によ
りそれぞれ構成したことを特徴とする請求項1記載のX
線反射光学系。2. The X according to claim 1, wherein one of the multilayer X-ray reflecting mirror and the holding portion is made of a dielectric and the other is made of a metal or a semiconductor.
Line reflection optics.
鏡と接合される部分の非接合時における形状と、前記多
層膜X線反射鏡のうち、前記保持部と接合される部分の
非接合時における形状を、同一または略同一の形状とし
たことを特徴とする請求項1または2記載のX線反射光
学系。3. A shape of a portion of the holding portion, which is joined to the multilayer film X-ray reflecting mirror, when not joined, and a shape of a portion of the multilayer film X-ray reflecting mirror, which is joined to the holding portion. The X-ray reflection optical system according to claim 1 or 2, wherein the shapes when not bonded are the same or substantially the same.
鏡と接合される部分の非接合時における形状と、前記多
層膜X線反射鏡のうち、前記保持部と接合される部分の
非接合時における形状を、互いに嵌合する形状としたこ
とを特徴とする請求項1または2記載のX線反射光学
系。4. A shape of a portion of the holding portion which is joined to the multilayer film X-ray reflecting mirror when not joined, and a shape of a portion of the multilayer film X-ray reflecting mirror which is joined to the holding portion. The X-ray reflection optical system according to claim 1 or 2, wherein the shape when not bonded is a shape that fits with each other.
鏡と接合される部分の非接合時における形状、及び/ま
たは、前記多層膜X線反射鏡のうち、前記保持部と接合
される部分の非接合時における形状を、接合時において
前記多層膜X線反射鏡の反射面形状が所定形状となるよ
うに設定してなることを特徴とする請求項1または2記
載のX線反射光学系。5. A shape of a portion of the holding portion, which is joined to the multilayer film X-ray reflecting mirror, when not joined, and / or a portion of the multilayer film X-ray reflecting mirror, which is joined to the holding portion. The X-ray reflection according to claim 1 or 2, wherein the shape of the portion to be joined is set so that the reflecting surface of the multilayer film X-ray reflecting mirror has a predetermined shape when joined. Optical system.
えたX線投影露光装置。6. An X-ray projection exposure apparatus comprising the X-ray reflection optical system according to claim 1.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7245795A JPH0990099A (en) | 1995-09-25 | 1995-09-25 | X-ray reflection optical system and X-ray projection exposure apparatus including the optical system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7245795A JPH0990099A (en) | 1995-09-25 | 1995-09-25 | X-ray reflection optical system and X-ray projection exposure apparatus including the optical system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH0990099A true JPH0990099A (en) | 1997-04-04 |
Family
ID=17138952
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP7245795A Pending JPH0990099A (en) | 1995-09-25 | 1995-09-25 | X-ray reflection optical system and X-ray projection exposure apparatus including the optical system |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0990099A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007163610A (en) * | 2005-12-09 | 2007-06-28 | Canon Inc | Multilayer mirror, optical system with multilayer mirror |
-
1995
- 1995-09-25 JP JP7245795A patent/JPH0990099A/en active Pending
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007163610A (en) * | 2005-12-09 | 2007-06-28 | Canon Inc | Multilayer mirror, optical system with multilayer mirror |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5793473A (en) | Projection optical apparatus for projecting a mask pattern onto the surface of a target projection object and projection exposure apparatus using the same | |
| US7253975B2 (en) | Retainer, exposure apparatus, and device fabrication method | |
| WO2002054459A1 (en) | Projection optical system and production method therefor, exposure system and production method therefor, and production method for microdevice | |
| US7643150B2 (en) | Optical apparatus, exposure apparatus, and device manufacturing method | |
| US7232233B2 (en) | Catoptric reduction projection optical system and exposure apparatus using the same | |
| US7543948B2 (en) | Multilayer mirror manufacturing method, optical system manufacturing method, exposure apparatus, and device manufacturing method | |
| TW200923596A (en) | Imaging optical system, projection exposure installation for microlithography comprising an imaging optical system of this type, and method for producing a microstructured component with a projection exposure installation of this type | |
| JP2008112756A (en) | Optical element driving apparatus and control method thereof, exposure apparatus, and device manufacturing method | |
| US6867845B2 (en) | Mask and projection exposure apparatus | |
| JP2005191579A (en) | Method for manufacturing optical unit | |
| US7119880B2 (en) | Projection optical system, exposure apparatus, and device manufacturing method | |
| US6421188B1 (en) | Optical element | |
| JP3301249B2 (en) | Reflection optical element and method of manufacturing the same | |
| TW202441318A (en) | Optical assembly, optical system and projection exposure apparatus | |
| EP1418468A2 (en) | Projection optical system and exposure apparatus | |
| JPH0990099A (en) | X-ray reflection optical system and X-ray projection exposure apparatus including the optical system | |
| JP2022538302A (en) | Method and apparatus for adhesively bonding first and second components | |
| JP3715751B2 (en) | Residual aberration correction plate and projection exposure apparatus using the same | |
| JPH0772318A (en) | Reflection device, illumination device and exposure device using the same, and device manufacturing method | |
| TW202221425A (en) | Method and device for measuring actuators in a projection exposure apparatus for semiconductor lithography | |
| JPH09153444A (en) | X-ray projection exposure apparatus | |
| JPH0963923A (en) | X-ray projection exposure apparatus | |
| JPH09246179A (en) | Projection exposure apparatus and device manufacturing method using the same | |
| JP3870118B2 (en) | Imaging optical system, exposure apparatus having the optical system, and aberration reduction method | |
| EP1965228A1 (en) | Projection optical system, exposure apparatus, and device fabrication method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040414 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040518 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050906 |