JPH0992507A - Positive temperature characteristic thermistor - Google Patents
Positive temperature characteristic thermistorInfo
- Publication number
- JPH0992507A JPH0992507A JP24930895A JP24930895A JPH0992507A JP H0992507 A JPH0992507 A JP H0992507A JP 24930895 A JP24930895 A JP 24930895A JP 24930895 A JP24930895 A JP 24930895A JP H0992507 A JPH0992507 A JP H0992507A
- Authority
- JP
- Japan
- Prior art keywords
- ptc
- electrodes
- positive
- positive temperature
- thermistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 230000007613 environmental effect Effects 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 6
- 230000003503 early effect Effects 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
Landscapes
- Thermistors And Varistors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、主に過電流・過
熱の保護素子として利用される正特性サーミスタ(PT
C(Positive Temperature Coefficient)サーミスタ)
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive temperature coefficient thermistor (PT) mainly used as an overcurrent / overheat protection element.
C (Positive Temperature Coefficient) thermistor)
It is about.
【0002】[0002]
【従来の技術】現在のPTCサーミスタはセラミック系
とポリマ系とに大別される。何れのPTCサーミスタ
も、基本的には、温度上昇に伴ってその抵抗値が増大す
る正特性素子(PTC素子)を電極間に1つだけ配置し
た一体構成とされている。図4にPTCサーミスタを用
いた回路例を示す。同図において、1はバッテリ、2は
モータ、3はPTCサーミスタである。この例では、過
電流保護のためにPTCサーミスタ3をモータ2に対し
て直列に挿入しており、モータ2に過電流が流れると、
PTCサーミスタ3が発熱し、その抵抗値が大となっ
て、モータ2への電流が減少する。図5にPTCサーミ
スタ3の内部構成の概略を示す。PTCサーミスタ3は
電極3a,3b間にPTC素子3−1を1つだけ配置し
た一体構成とされている。2. Description of the Related Art Current PTC thermistors are roughly classified into ceramic type and polymer type. Basically, any PTC thermistor has an integral structure in which only one PTC element (PTC element) whose resistance value increases with temperature rise is arranged between electrodes. FIG. 4 shows a circuit example using a PTC thermistor. In the figure, 1 is a battery, 2 is a motor, and 3 is a PTC thermistor. In this example, a PTC thermistor 3 is inserted in series with the motor 2 for overcurrent protection, and when an overcurrent flows through the motor 2,
The PTC thermistor 3 generates heat, its resistance value becomes large, and the current to the motor 2 decreases. FIG. 5 shows an outline of the internal configuration of the PTC thermistor 3. The PTC thermistor 3 has an integral structure in which only one PTC element 3-1 is arranged between the electrodes 3a and 3b.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、従来の
PTCサーミスタによると、特に価格的に安い樹脂ポリ
マ系は、PTC素子内部の体積固有抵抗値にばらつきが
多く、温度特性変化が大きいため、過電流や過熱の保護
に至るまでの時間(トリップ時間)が環境温度によって
大きくばらついていた。すなわち、図5に示したPTC
サーミスタ3で説明すると、PTC素子3−1が電極3
a,3b間に一体構成として配置されているため、一旦
発熱状態に入ると、PTC素子3−1中の体積固有抵抗
値が高い一部ブロック(局部的なブロック)から急激に
発熱し、他のブロックへ伝熱影響し、一挙に発熱・抵抗
値上昇し、トリップ状態(高抵抗での平衡状態)とな
る。これを主要因として、温度特性変化が大きくなり、
トリップ時間が環境温度によって大きくばらつく。However, according to the conventional PTC thermistor, the resin polymer system, which is particularly inexpensive in price, has a large variation in the volume specific resistance value inside the PTC element and a large change in the temperature characteristic. The time (trip time) required for protection against overheating and overheating varied greatly depending on the ambient temperature. That is, the PTC shown in FIG.
Explaining with the thermistor 3, the PTC element 3-1 is the electrode 3
Since it is arranged as an integral structure between a and 3b, once it enters a heat generating state, it rapidly generates heat from a partial block (local block) with a high volume specific resistance value in the PTC element 3-1. Heat is affected to the block of, and the heat generation and resistance value increase at once, and it becomes a trip state (equilibrium state with high resistance). The main reason for this is a large change in temperature characteristics,
The trip time varies greatly depending on the environmental temperature.
【0004】PTCサーミスタ3の温度(T)−抵抗値
(R)特性(図示実線の特性I)および温度(T)−ト
リップ時間(Tp)特性(図示破線の特性II)を図6に
示す。この特性からも分かるように、従来のPTCサー
ミスタ3では、環境温度Tによってトリップ時間Tpが
大きくばらつき、環境温度Tの上昇に従いトリップ時間
Tpが急傾斜で短くなる。このことは、高温・高電圧で
は、トリップ早効き現象が生じることを意味している。FIG. 6 shows the temperature (T) -resistance value (R) characteristic (characteristic I of the solid line in the figure) and the temperature (T) -trip time (Tp) characteristic (characteristic II of the broken line in the figure) of the PTC thermistor 3. As can be seen from this characteristic, in the conventional PTC thermistor 3, the trip time Tp greatly varies depending on the environmental temperature T, and the trip time Tp sharply shortens as the environmental temperature T rises. This means that the trip early effect phenomenon occurs at high temperature and high voltage.
【0005】本発明はこのような課題を解決するために
なされたもので、その目的とするところは、環境温度に
対するトリップ時間のばらつきを小さくし、高温・高電
圧でのトリップ早効き現象をなくすことの可能な正特性
サーミスタを提供することにある。The present invention has been made in order to solve such a problem, and its object is to reduce the variation in trip time with respect to the environmental temperature and eliminate the phenomenon of early trip effect at high temperature and high voltage. It is to provide a positive temperature coefficient thermistor capable of doing so.
【0006】[0006]
【課題を解決するための手段】このような目的を達成す
るために、第1発明(請求項1に係る発明)は、正特性
素子として第1〜第nの正特性素子(5−1,5−2)
を設け、これら第1〜第nの正特性素子を互いに非接触
状態で電極(5a,5b)間に配置するようにしたもの
である。この発明によれば、電極間に第1〜第nの正特
性素子が互いに非接触状態で配置されているため、第1
〜第nの正特性素子が互いに熱の伝導による影響を直接
的に受けずに動作する。第2発明(請求項2に係る発
明)は、第1発明において、第1〜第nの正特性素子の
少なくとも2つの体積固有抵抗値を異ならせたものであ
る。第3発明(請求項3に係る発明)は、第1発明にお
いて、電極間の外周部に他の正特性素子(5−2)を囲
むように1つの正特性素子(5−1)を配置したもので
ある。In order to achieve such an object, the first invention (the invention according to claim 1) is a positive characteristic element, wherein the first to nth positive characteristic elements (5-1, 5-2)
Are provided, and the first to n-th positive characteristic elements are arranged between the electrodes (5a, 5b) in a non-contact state with each other. According to the present invention, the first to n-th positive characteristic elements are arranged between the electrodes in a non-contact state with each other.
~ The n-th positive temperature coefficient device operates without being directly affected by the conduction of heat. A second invention (the invention according to claim 2) is the same as the first invention, except that at least two volume specific resistance values of the first to n-th positive characteristic elements are different. A third invention (an invention according to claim 3) is the first invention, wherein one positive characteristic element (5-1) is arranged on the outer peripheral portion between the electrodes so as to surround another positive characteristic element (5-2). It was done.
【0007】[0007]
【発明の実施の形態】以下、本発明を実施の形態に基づ
き詳細に説明する。図1(a)はこの発明の一実施の形
態を示すPTCサーミスタの内部構成の概略を示す側断
面図、図1(b)は電極間におけるPTC素子の配置状
況を示す平面図である。本実施の形態では、PTC素子
として第1のPTC素子5−1および第2のPTC素子
5−2を設け、このPTC素子5−1および5−2を互
いに非接触状態で電極5a,5b間に配置するようにし
ている。すなわち、PTC素子5−2を電極5a,5b
間の内方に配置し、PTC素子5−2を囲むように円環
状のPTC素子5−1を電極5a,5b間の外周部に配
置している。図2にこのPTCサーミスタ5を用いた回
路例を示す。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail based on embodiments. FIG. 1 (a) is a side sectional view showing the outline of the internal configuration of a PTC thermistor showing an embodiment of the present invention, and FIG. 1 (b) is a plan view showing the arrangement of PTC elements between electrodes. In the present embodiment, a first PTC element 5-1 and a second PTC element 5-2 are provided as PTC elements, and the PTC elements 5-1 and 5-2 are placed between the electrodes 5a and 5b in a non-contact state with each other. I'm trying to place it. That is, the PTC element 5-2 is connected to the electrodes 5a and 5b.
A ring-shaped PTC element 5-1 is arranged inwardly between the electrodes 5a and 5b so as to surround the PTC element 5-2. FIG. 2 shows an example of a circuit using this PTC thermistor 5.
【0008】本実施の形態では、PTC素子5−1およ
び5−2を互いに非接触状態で電極5a,5b間に配置
しているので、PTC素子5−1および5−2が互いに
熱の伝導による影響を直接的に受けずに動作する。これ
により、温度特性変化が小さくなり、環境温度に対する
トリップ時間のばらつきが小さくなる。このことは、高
温・高電圧では、トリップ早効き現象が生じないことを
意味する。In this embodiment, since the PTC elements 5-1 and 5-2 are arranged between the electrodes 5a and 5b in a non-contact state, the PTC elements 5-1 and 5-2 conduct heat to each other. Operates without being directly affected by. As a result, changes in temperature characteristics are reduced, and variations in trip time with respect to environmental temperature are reduced. This means that the trip pre-action phenomenon does not occur at high temperature and high voltage.
【0009】すなわち、従来のPTCサーミスタ3の抵
抗値Rと本実施の形態のPTCサーミスタ5の抵抗値R
(R=(R1+R2)/(R1・R2))とを同じにし
た場合(R1:PTC素子5−1の抵抗値、R2:PT
C素子5−2の抵抗値)、PTCサーミスタ5ではPT
C素子5−1および5−2が互いに熱の伝導による影響
を直接的に受けずに動作するため、トリップ時間が長く
なる。これは、高温・高電圧時でも言えることであり、
トリップ時間が長くなることにより、トリップ早効き現
象が生じないようになる。That is, the resistance value R of the conventional PTC thermistor 3 and the resistance value R of the PTC thermistor 5 of the present embodiment.
When (R = (R1 + R2) / (R1 · R2)) is the same (R1: resistance value of PTC element 5-1, R2: PT
The resistance value of the C element 5-2), PT in the PTC thermistor 5
Since the C elements 5-1 and 5-2 operate without being directly affected by heat conduction, the trip time becomes long. This is true even at high temperature and high voltage,
As the trip time becomes longer, the trip early effect phenomenon does not occur.
【0010】なお、本実施の形態では、PTC素子5−
2を電極5a,5b間の内方に配置し、PTC素子5−
2を囲むようにPTC素子5−1を電極5a,5b間の
外周部に配置している。これにより、PTC素子5−1
の外周は空気に触れるため、冷却され易くなり、PTC
素子5−2は空気に触れないため、蓄熱し易くなり、こ
れを組み合わせることで従来のPTCサーミスタ3とは
また違った特性を作り出すことができる。すなわち、使
用温度範囲内でのトリップ時間の変更・調整が可能とな
り、必要とするトリップ時間に追い込むことも可能とな
る。使用温度範囲内でのトリップ時間の変更・調整は、
PTC素子5−1とPTC素子5−2の体積固有抵抗値
を異ならせることによっても可能である。In this embodiment, the PTC element 5-
2 is arranged inside the electrodes 5a and 5b, and the PTC element 5-
A PTC element 5-1 is arranged on the outer peripheral portion between the electrodes 5a and 5b so as to surround the electrode 2. Thereby, the PTC element 5-1
Since the outer periphery of the PTC is exposed to air, it becomes easier to cool and the PTC
Since the element 5-2 does not come into contact with air, heat is easily accumulated, and by combining this, characteristics different from those of the conventional PTC thermistor 3 can be created. That is, it becomes possible to change and adjust the trip time within the operating temperature range, and it is possible to keep up with the required trip time. To change or adjust the trip time within the operating temperature range,
It is also possible to make the volume specific resistance values of the PTC element 5-1 and the PTC element 5-2 different.
【0011】また、本実施の形態では、PTC素子5−
1を円環状としたが、図1(c)に示すように、四角帯
状としてもよく、その形状は種々考えられる。また、本
実施の形態では、PTC素子5−2を電極5a,5b間
の内方に配置し、PTC素子5−2を囲むようにPTC
素子5−1を電極5a,5b間の外周部に配置したが、
図3に示すように、PTC素子5−3,5−4,5−5
を互いに非接触状態で電極5a,5b間に並置するよう
にしてもよい。Further, in the present embodiment, the PTC element 5-
Although 1 has an annular shape, as shown in FIG. 1 (c), it may have a square band shape, and various shapes are possible. Further, in the present embodiment, the PTC element 5-2 is arranged inside the electrodes 5a and 5b, and the PTC element 5-2 is surrounded by the PTC element 5-2.
The element 5-1 is arranged on the outer peripheral portion between the electrodes 5a and 5b,
As shown in FIG. 3, PTC elements 5-3, 5-4, 5-5
May be juxtaposed between the electrodes 5a and 5b in a non-contact state.
【0012】[0012]
【発明の効果】以上説明したことから明らかなように本
発明によれば、第1発明では、正特性素子として第1〜
第nの正特性素子を設け、これら第1〜第nの正特性素
子を互いに非接触状態で電極間に配置するようにしたの
で、第1〜第nの正特性素子が互いに熱の伝導による影
響を直接的に受けずに動作し、温度特性変化が小さくな
り、環境温度に対するトリップ時間のばらつきが小さく
なって、高温・高電圧でのトリップ早効き現象をなくす
ことが可能となる。また、第2発明では、第1〜第nの
正特性素子の少なくとも2つの体積固有抵抗値を異なら
せるようにしたので、また第3発明では、電極間の外周
部に他の正特性素子を囲むように1つの正特性素子を配
置したので、使用温度範囲内でのトリップ時間の変更・
調整が可能となり、必要とするトリップ時間に追い込む
ことも可能となる。As is apparent from the above description, according to the present invention, in the first invention, the positive characteristic elements are
Since the n-th positive characteristic element is provided and these first to n-th positive characteristic elements are arranged between the electrodes in a non-contact state, the first to n-th positive characteristic elements are caused by heat conduction to each other. It operates without being directly affected, changes in temperature characteristics are small, variations in trip time with respect to ambient temperature are small, and it is possible to eliminate the premature trip phenomenon at high temperatures and high voltages. Further, in the second invention, at least two volume specific resistance values of the first to n-th positive characteristic elements are made different, and in the third invention, another positive characteristic element is provided in the outer peripheral portion between the electrodes. Since one positive temperature coefficient element is placed so as to surround it, changing the trip time within the operating temperature range
Adjustments are possible, and it is possible to keep up with the required trip time.
【図1】 本発明の一実施の形態を示すPTCサーミス
タ(リング型)の内部構成の概略を示す図である。FIG. 1 is a diagram showing a schematic internal configuration of a PTC thermistor (ring type) showing an embodiment of the present invention.
【図2】 このPTCサーミスタを用いた回路例を示す
図である。FIG. 2 is a diagram showing a circuit example using this PTC thermistor.
【図3】 本発明の他の実施の形態を示すPTCサーミ
スタ(チップ型)の内部構成の概略を示す図である。FIG. 3 is a diagram showing an outline of an internal configuration of a PTC thermistor (chip type) showing another embodiment of the present invention.
【図4】 従来のPTCサーミスタを用いた回路例を示
す図である。FIG. 4 is a diagram showing a circuit example using a conventional PTC thermistor.
【図5】 従来のPTCサーミスタの内部構成の概略を
示す図である。FIG. 5 is a diagram showing an outline of an internal configuration of a conventional PTC thermistor.
【図6】 従来のPTCサーミスタの温度−抵抗値特性
および温度−トリップ時間特性を示す図である。FIG. 6 is a diagram showing temperature-resistance value characteristics and temperature-trip time characteristics of a conventional PTC thermistor.
1…バッテリ、2…モータ、5…PTCサーミスタ、5
a,5b…電極、5−1…第1のPTC素子、5−2…
第2のPTC素子。1 ... Battery, 2 ... Motor, 5 ... PTC thermistor, 5
a, 5b ... Electrode, 5-1 ... First PTC element, 5-2 ...
Second PTC element.
Claims (3)
正特性素子を電極間に配置してなる正特性サーミスタに
おいて、 前記正特性素子として第1〜第nの正特性素子を有し、
これら第1〜第nの正特性素子が互いに非接触状態で前
記電極間に配置されていることを特徴とする正特性サー
ミスタ。1. A positive characteristic thermistor in which a positive characteristic element whose resistance value increases with temperature rise is arranged between electrodes, wherein the positive characteristic element includes first to nth positive characteristic elements,
A positive temperature coefficient thermistor, wherein the first to nth positive temperature coefficient elements are arranged between the electrodes in a non-contact state with each other.
素子の少なくとも2つの体積固有抵抗値が異なっている
ことを特徴とする正特性サーミスタ。2. The positive temperature coefficient thermistor according to claim 1, wherein at least two volume specific resistance values of the first to nth positive temperature coefficient elements are different.
の正特性素子を囲むように1つの正特性素子が配置され
ていることを特徴とする正特性サーミスタ。3. The positive temperature coefficient thermistor according to claim 1, wherein one positive temperature coefficient element is arranged on the outer peripheral portion between the electrodes so as to surround another positive temperature coefficient element.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP24930895A JPH0992507A (en) | 1995-09-27 | 1995-09-27 | Positive temperature characteristic thermistor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP24930895A JPH0992507A (en) | 1995-09-27 | 1995-09-27 | Positive temperature characteristic thermistor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH0992507A true JPH0992507A (en) | 1997-04-04 |
Family
ID=17191062
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP24930895A Pending JPH0992507A (en) | 1995-09-27 | 1995-09-27 | Positive temperature characteristic thermistor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0992507A (en) |
-
1995
- 1995-09-27 JP JP24930895A patent/JPH0992507A/en active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4142115A (en) | Semiconductor device with a thermal protective device | |
| JPH11257659A (en) | Ceramic heater and ceramic glow plug | |
| CN101494371B (en) | Load control apparatus | |
| US4371910A (en) | Safety device for electric consumers in motor vehicles | |
| CA2201412A1 (en) | Overtemperature protection circuit having plural thermal components | |
| JP2002369372A (en) | Battery pack | |
| JPH0992507A (en) | Positive temperature characteristic thermistor | |
| JP3483098B2 (en) | Overcurrent protection device | |
| JPH0582303A (en) | Ptc thermistor | |
| JPS5928340Y2 (en) | water temperature gauge | |
| US7609142B2 (en) | Thermistor | |
| JPH0649113Y2 (en) | Vehicle power supply | |
| JPS5926562Y2 (en) | Device for current control | |
| JPS6228696Y2 (en) | ||
| JP2593913B2 (en) | Non-contact relay device | |
| JPH071822B2 (en) | Method of manufacturing resistive circuit board with thermal fuse | |
| JPH01287901A (en) | Composite ptc thermistor | |
| JPH0222723Y2 (en) | ||
| JP2638980B2 (en) | Thermal head control circuit | |
| JPH02148678A (en) | self temperature control heater | |
| JP2000277305A (en) | Overcurrent protecting part and circuit | |
| JPH0458259B2 (en) | ||
| JPH02148680A (en) | self temperature control heater | |
| JPH10275710A (en) | Ptc current limiter provided with ptc element | |
| JPS6188433U (en) |