JPH0995791A - Solid polyelectrolyte water electrolyzer and its electrode structure - Google Patents
Solid polyelectrolyte water electrolyzer and its electrode structureInfo
- Publication number
- JPH0995791A JPH0995791A JP7257908A JP25790895A JPH0995791A JP H0995791 A JPH0995791 A JP H0995791A JP 7257908 A JP7257908 A JP 7257908A JP 25790895 A JP25790895 A JP 25790895A JP H0995791 A JPH0995791 A JP H0995791A
- Authority
- JP
- Japan
- Prior art keywords
- plate
- polymer electrolyte
- power supply
- solid polymer
- electrolyte membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 43
- 239000007787 solid Substances 0.000 title claims abstract description 28
- 229920000867 polyelectrolyte Polymers 0.000 title abstract description 7
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 6
- 239000012528 membrane Substances 0.000 claims description 37
- 239000005518 polymer electrolyte Substances 0.000 claims description 33
- 238000005868 electrolysis reaction Methods 0.000 claims description 31
- 239000000835 fiber Substances 0.000 claims description 20
- 239000003792 electrolyte Substances 0.000 claims description 16
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 14
- 239000010936 titanium Substances 0.000 claims description 13
- 229910052719 titanium Inorganic materials 0.000 claims description 13
- 238000000926 separation method Methods 0.000 claims description 7
- 230000006835 compression Effects 0.000 claims description 4
- 238000007906 compression Methods 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 abstract description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 5
- 239000001301 oxygen Substances 0.000 abstract description 5
- 229910052760 oxygen Inorganic materials 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 12
- 239000001257 hydrogen Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- YADSGOSSYOOKMP-UHFFFAOYSA-N dioxolead Chemical compound O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- 238000012856 packing Methods 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- -1 hydrogen ions Chemical class 0.000 description 2
- 239000003014 ion exchange membrane Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 244000145845 chattering Species 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水電解装置及びそ
の方法に係り、特に固体高分子電解質膜を用いてオゾン
又は酸素と水素とを発生させることのできる固体高分子
水電解装置及びその電極構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water electrolysis apparatus and a method thereof, and more particularly to a solid polymer water electrolysis apparatus capable of generating ozone or oxygen and hydrogen by using a solid polymer electrolyte membrane and an electrode thereof. Regarding the structure.
【0002】[0002]
【従来の技術】従来、この種の水電解は、通常、固体高
分子電解質水電解と称され、電解質溶液の代わりにフッ
素樹脂系のイオン交換膜(スルホン酸型)をプロトン伝
導性の固体電解質として用いるものである。2. Description of the Related Art Conventionally, this type of water electrolysis is generally called solid polymer electrolyte water electrolysis, in which a fluororesin ion exchange membrane (sulfonic acid type) is used instead of an electrolyte solution as a proton conductive solid electrolyte. Is used as.
【0003】水素、酸素発生用の水電解槽のごく一般的
なものは、溝加工施した分離板の上にエキスパンドメタ
ル、或いはその他の方法で製作された多孔質給電板を重
ね、これをイオン交換膜に触媒電極を接合した接合体に
圧接して構成される(例えば、ゼネラル エレクトリッ
ク社.Electrochemical Hydorogen Technologies.Haru
mut, Wendt 編,1998,p.200 Elsevier)。A very common type of water electrolysis cell for hydrogen and oxygen generation is to stack a grooved separator plate with an expanded metal or other porous power supply plate made by another method, and ionize this. It is configured by pressing a bonded body in which a catalyst electrode is bonded to an exchange membrane (for example, General Electric Company. Electrochemical Hydorogen Technologies. Haru
mut, Wendt, 1998, p. 200 Elsevier).
【0004】或いは、また、特開昭55−119186
号には、高分子電解質膜に白金メッキした多孔性導電性
材料、例えば、陰,陽極給電板にチタン焼結体、ニッケ
ル焼結体、多孔性黒鉛を直接、圧接した複極式の電極構
造及び電解装置が開示されている。Alternatively, Japanese Patent Laid-Open No. 55-119186
In the issue, a polyelectrolyte structure in which a porous conductive material obtained by plating a polymer electrolyte membrane with platinum, for example, a titanium sintered body, a nickel sintered body, or porous graphite is directly pressure-welded to a negative or anode power feeding plate. And an electrolysis device is disclosed.
【0005】また、オゾン製造用の電解槽としては、特
開平2−259090号には、ニッケルまたはニッケル
合金からなるポーラス板の片面に白金を被覆した電極を
イオン交換膜の陰極側におき、陽極側に二酸化鉛被覆ポ
ーラスチタン電極を配置し、両側から圧接してゼロギャ
ップ電解を行うオゾンの電解製造方法が開示されてい
る。As an electrolytic cell for ozone production, Japanese Patent Laid-Open No. 2-259090 discloses a porous plate made of nickel or a nickel alloy, one side of which is coated with platinum, on the cathode side of an ion exchange membrane to form an anode. There is disclosed a method for electrolytic production of ozone in which a lead dioxide-coated porous titanium electrode is arranged on the side and pressure is applied from both sides to perform zero gap electrolysis.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、従来技
術においては、溝加工を施した分離板を数mmの厚さ
(例えば1〜3mm)にしようとすると、加工変形が大
きく、膜との均一な接触が得られるような平面度が得ら
れず、必然的に分離板自体厚くせねばならず、複極式電
解槽の重量及び容積が著しく大きくなるという問題があ
る。However, in the prior art, when the grooved separation plate is made to have a thickness of several mm (for example, 1 to 3 mm), the processing deformation is large and the separation film is uniform with the film. There is a problem in that the flatness required for contact cannot be obtained, and the separator itself must be made thicker, which significantly increases the weight and volume of the bipolar electrolytic cell.
【0007】一方、分離板に接する陰,陽極給電板につ
いては、従来エキスパンドメタルを重ねたもの、粉末焼
結法で成形したもの、あるいはビビリ加工法による繊維
状金属の焼結体、多孔質炭素板等が使用されているが、
これらを用いて、多層に複極式電解セルを組み立てた場
合、高分子電解質膜とのすべての箇所に亘って均一な接
触状態を完全に得ることは極めて困難で、膜の損焼や、
短寿命を招き、大型化、多層化において実用的な装置を
為すことができない。On the other hand, as for the negative and positive power feeding plates in contact with the separating plate, those which are conventionally stacked with expanded metal, those which are formed by powder sintering method, or sintered bodies of fibrous metal by chattering method, porous carbon Although boards are used,
Using these, when assembling a bipolar electrolytic cell in a multi-layer, it is extremely difficult to completely obtain a uniform contact state over all locations with the polymer electrolyte membrane, and burnout of the membrane,
It leads to a short life, and it is impossible to make a practical device in the increase in size and the number of layers.
【0008】即ち、多層複極式電解セルの圧接力が不足
すると、膜との接触が局部的にしか得られず、ここに電
流が集中して膜の損焼が起こる。又、この圧接力を増す
と、膜との接触は局部的に過大となって膜は損傷し、
又、上記の材料の中には、例えば粉末焼結体や多孔質炭
素板等のように柔軟性に欠け、脆性が高いために割れを
生じるものもある。That is, when the pressure contact force of the multi-layer bipolar electrode electrolysis cell is insufficient, the contact with the membrane can be locally obtained, and the current is concentrated there to cause burning of the membrane. Further, when the pressure contact force is increased, the contact with the film locally becomes excessive and the film is damaged,
Further, among the above-mentioned materials, there are some materials such as a powder sintered body and a porous carbon plate which are lacking in flexibility and have high brittleness, and thus crack.
【0009】また、陽極給電板に二酸化鉛を用いて、オ
ゾンの電解合成を行う場合には、圧接力の不足は、同様
に膜の損焼を招き、又、この圧接力を増すと膜や給電板
の機械的損傷に至らなくともオゾンの電解効率を著しく
低下させるという問題もある。In addition, when lead dioxide is used for the anode power feeding plate to carry out electrolytic synthesis of ozone, the lack of pressure contact force similarly causes the film to burn out, and if this pressure contact force is increased, the film and There is also a problem that the electrolysis efficiency of ozone is significantly reduced even if the power supply plate is not mechanically damaged.
【0010】本発明は、上記問題を解決すべく、複極式
の固体高分子電解質水電解装置において、製造コストを
低減し、しかも電極を大型化しても軽量で且つ体積当た
りのオゾン、酸素等の発生効率を向上させることのでき
る固体高分子電解質水電解装置及びその陰極給電板を提
供することを目的とする。In order to solve the above problems, the present invention is a bipolar electrode solid polymer electrolyte water electrolysis apparatus, which reduces the manufacturing cost, is lightweight even when the electrode is enlarged, and is ozone and oxygen per volume. An object of the present invention is to provide a solid polymer electrolyte water electrolysis device and a cathode power supply plate thereof, which can improve the generation efficiency of water.
【0011】[0011]
【課題を解決するための手段】本願発明の上記課題は、
高分子電解質膜を固体電解質として用いる複極式の固体
高分子電解質水電解装置において、前記高分子電解質膜
の陰極側に圧接される陰極給電板が圧縮弾性率が170
00kgf/cm2 以下の導電性の多孔質構造体で形成
されていることを特徴とする固体高分子電解質水電解装
置により達成される。The above-mentioned problems of the present invention are as follows.
In a bipolar solid polymer electrolyte water electrolysis apparatus using a polymer electrolyte membrane as a solid electrolyte, the cathode power supply plate pressed against the cathode side of the polymer electrolyte membrane has a compression elastic modulus of 170.
It is achieved by a solid polymer electrolyte water electrolysis apparatus characterized by being formed of a conductive porous structure having a weight of 00 kgf / cm 2 or less.
【0012】また、高分子電解質膜を固体電解質として
用いる複極式の固体高分子電解質水電解装置のための電
極構造であって、陰極給電板が、ステンレス繊維の焼結
体からなり、及び/又は片面に溝加工を施した構造であ
ることを特徴とする陰極給電板によって達成される。Further, the electrode structure for a bipolar solid polymer electrolyte water electrolysis apparatus using a polymer electrolyte membrane as a solid electrolyte, wherein the cathode power supply plate is made of a sintered body of stainless fiber, and / Alternatively, it is achieved by a cathode power supply plate having a structure in which a groove is formed on one surface.
【0013】[0013]
【発明の実施の形態】本発明の実施の形態について、以
下に図面を参照しつつ説明する。図1は、本発明に係る
固体高分子電解質水電解装置の一実施形態の斜視図であ
る。この固体高分子電解質水電解装置1は、円形の固体
高分子電解質膜2を円盤状の陽極給電板3及び陰極給電
板4(図2,3参照)で挟んでなるセル5を分離板6を
介して複数個重合したものを備えている。その重合体両
端側には、内側から順に端子7を具備する給電板8a,
8b、絶縁板9a,9bを介して円盤状のフランジ10
a,10bが配置され、ボルト11…11及びナット1
2…12によってこれらを締め付け、セル5…5を固定
した複極式の構造を取っている。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of an embodiment of a solid polymer electrolyte water electrolysis apparatus according to the present invention. In this solid polymer electrolyte water electrolysis apparatus 1, a circular solid polymer electrolyte membrane 2 is sandwiched between a disk-shaped anode power feed plate 3 and a disk-shaped cathode power feed plate 4 (see FIGS. 2 and 3) to form a separation plate 6. It is provided with a plurality of polymerized compounds. On both ends of the polymer, a power supply plate 8a having terminals 7 in order from the inside,
8b, disk-shaped flange 10 via insulating plates 9a, 9b
a, 10b are arranged, bolts 11 ... 11 and nut 1
A bipolar structure is used in which the cells 5 ... 5 are fixed by fastening them by 2 ... 12.
【0014】フランジ10bには、電解用純水を供給す
るための第1ポート13、電解によって発生する酸素ガ
ス又はオゾンガスを純水と共にを排出するための第2ポ
ート14、及び電解によって発生する水素ガスを排出す
るための第3ポート15が設けられている。図示の装置
においては、給電板8aを陽極側とする。The flange 10b has a first port 13 for supplying pure water for electrolysis, a second port 14 for discharging oxygen gas or ozone gas generated by electrolysis together with pure water, and hydrogen generated by electrolysis. A third port 15 is provided for discharging gas. In the illustrated apparatus, the power supply plate 8a is on the anode side.
【0015】前記セル5は、図3及び図4に縦断面で示
すように、固体高分子電解質膜2を挟む陽極給電板3、
陰極給電板4に、ケーシングを構成するケーシングリン
グ16,17が外嵌されている。固体高分子電解質膜2
(以下、単に電解質膜という。)には、例えば、パーフ
ロロスルホン酸型カチオン交換膜(デュポン社商品名ナ
フィオン等)が使用され、これは、電圧を加えることに
より、陽イオンを選択的に透過させるカチオン透過膜で
ある。The cell 5 has an anode power feed plate 3 sandwiching a solid polymer electrolyte membrane 2 as shown in vertical cross sections in FIGS. 3 and 4.
Casing rings 16 and 17 forming a casing are externally fitted to the cathode power feeding plate 4. Solid polymer electrolyte membrane 2
For example, a perfluorosulfonic acid-type cation exchange membrane (Dafon's trade name Nafion, etc.) is used as (hereinafter, simply referred to as an electrolyte membrane), which selectively permeates cations by applying a voltage. It is a cation permeable membrane.
【0016】この電解質膜2には、ポート13,14,
15と重なる位置に3つの孔2a,2b,2cが形成さ
れている(図2参照)。The electrolyte membrane 2 has ports 13, 14,
Three holes 2a, 2b, 2c are formed at positions overlapping with 15 (see FIG. 2).
【0017】陽極給電板3は、電解質膜2が強酸性であ
ることから、耐食性のあるチタン板、チタン粉末焼結
体、チタンエキスパンド、或いは又は、ニオブ、タンタ
ル、白金等のポーラス焼結体によって形成され得るが、
電気伝導性、空隙率等の観点からチタン繊維焼結体によ
って形成することが好ましい。Since the electrolyte membrane 2 is strongly acidic, the anode power feeding plate 3 is made of a corrosion-resistant titanium plate, a titanium powder sintered body, a titanium expanded body, or a porous sintered body such as niobium, tantalum or platinum. Can be formed,
From the viewpoint of electrical conductivity, porosity, etc., it is preferable to form the titanium fiber sintered body.
【0018】陽極給電板3の電解質膜2と接触しない側
の面には、純水の流路を成すとともに、発生する酸素ガ
スを流れやすくするために、平行な溝18の列が複数本
形成されている(図2,5参照)。On the surface of the anode power supply plate 3 which is not in contact with the electrolyte membrane 2, a pure water flow path is formed and a plurality of parallel grooves 18 are formed in order to facilitate the flow of generated oxygen gas. (See FIGS. 2 and 5).
【0019】陽極給電板3は、この装置1をオゾン発生
用装置として使用する場合には、電解質膜2との接触面
に二酸化鉛を析出させるが、酸素・水素発生の目的に使
用される場合には、白金をメッキする。When the apparatus 1 is used as an ozone generating apparatus, the anode power feeding plate 3 deposits lead dioxide on the contact surface with the electrolyte membrane 2, but when it is used for the purpose of generating oxygen / hydrogen. Plating with platinum.
【0020】陰極給電板4は、ステンレス繊維焼結体の
他、ニッケル及びこれらの合金、カーボン等を繊維状と
し、且つ多孔性に成形、焼結したもので形成することが
できるが、コスト、取り扱い容易性からステンレス繊維
焼結体がより好ましい。電解質膜2との接触面に電気伝
導を良好にするため、厚さ50〜200μmのカーボン
膜を介在させても良い。The cathode power supply plate 4 can be formed by using a stainless fiber sintered body, nickel, an alloy thereof, carbon or the like in a fibrous shape and porous and sintered. A stainless fiber sintered body is more preferable because it is easy to handle. A carbon film having a thickness of 50 to 200 μm may be interposed on the contact surface with the electrolyte membrane 2 in order to improve electric conduction.
【0021】ステンレス繊維焼結体は、短冊状ステンレ
ス繊維や毛髪状ステンレス繊維をを焼結させたものが用
いられ、水素脆化する畏れがないので、水素の発生する
陰極給電板に適している。該ステンレス繊維焼結体は、
太さ20〜100μm、長さ1〜20mmのステンレス
短繊維、又は、太さ4〜20μm、毛髪状のステンレス
長繊維を用いて焼結し、空隙率50〜90%、望ましく
は、70〜80%とされる。このような、ステンレス繊
維焼結体は、繊維状金属を成形型に充填し、成形圧力1
00〜1000kg/cm2 をかけて成形した後、還元
性雰囲気において1200℃前後に加温し焼結させるこ
とにより焼結体が得られる。As the stainless fiber sintered body, one obtained by sintering strip-shaped stainless fibers or hair-shaped stainless fibers is used, and since there is no fear of hydrogen embrittlement, it is suitable for a cathode power supply plate that generates hydrogen. . The stainless fiber sintered body is
Sintering is performed using a stainless short fiber having a thickness of 20 to 100 μm and a length of 1 to 20 mm, or a stainless steel long fiber having a thickness of 4 to 20 μm and a porosity of 50 to 90%, preferably 70 to 80. %. In such a stainless fiber sintered body, a fibrous metal is filled in a molding die, and a molding pressure 1
After molding by applying from 100 to 1000 kg / cm 2 , a sintered body is obtained by heating at about 1200 ° C. and sintering in a reducing atmosphere.
【0022】こうして得られたステンレス焼結体は、圧
縮弾性率17000kgf/cm2以下とされる。この
ようなステンレス焼結体は、圧縮変形し易いため、大径
化が可能であり、大径化しても締め付け圧力100kg
/cm2 程度で変形により電解質膜2に対して均一な接
触を得ることができるとともに、柔軟性があるために前
記締め付け圧力による割れのおそれがない。The stainless sintered body thus obtained has a compressive elastic modulus of 17,000 kgf / cm 2 or less. Since such a stainless sintered body is easily deformed by compression, it is possible to increase the diameter. Even if the diameter is increased, the tightening pressure is 100 kg.
The / cm 2, a variant it is possible to obtain uniform contact with the electrolyte membrane 2, said clamping is no risk of cracking due to pressure because of the flexibility.
【0023】陰極給電板4が大型化して水素ガスが大量
に発生する場合には、そのガス及び浸透水の流れを容易
にしセル内の温度均一化を図るために、陽極給電板3に
形成したと同様の溝(図示せず)を陰極給電板4の電解
質膜と反対側の面に形成するのがより好ましい。When the cathode power supply plate 4 becomes large and a large amount of hydrogen gas is generated, the cathode power supply plate 4 is formed on the anode power supply plate 3 in order to facilitate the flow of the gas and the permeated water and to make the temperature in the cell uniform. It is more preferable to form a groove (not shown) similar to that on the surface of the cathode power supply plate 4 opposite to the electrolyte membrane.
【0024】陽極給電板3及び陰極給電板4の厚さは、
特に限定されるものではないが、使用上2〜3mmが好
ましく、この場合、溝18は、深さ1〜1.5mm、幅
2〜3mm、溝間隔2〜3mmとするのが好ましい。The thickness of the anode power feeding plate 3 and the cathode power feeding plate 4 is
Although not particularly limited, it is preferably 2 to 3 mm in use, and in this case, the groove 18 preferably has a depth of 1 to 1.5 mm, a width of 2 to 3 mm, and a groove interval of 2 to 3 mm.
【0025】陽極給電板3の外周面に嵌装されるケーシ
ングリング16は、図2、図3及び図5に示すように、
内周面に溝18に連通するように該溝18と同程度の深
さの周溝19が形成されるとともに、ポート13,1
4,15に対応する位置に3つの貫通孔16a,16
b,16cが穿設されている。これら貫通孔16a〜1
6cのうち、貫通孔16a,16bと、周溝19との間
には両者を連通する通孔20,21がそれぞれ穿設され
ている。また、ケーシングリング16における電解質膜
2と接触しない側の面には、パッキン22を受け入れる
ための座部23が形成されている。The casing ring 16 fitted on the outer peripheral surface of the anode power feed plate 3 is, as shown in FIGS. 2, 3 and 5,
A peripheral groove 19 having a depth similar to that of the groove 18 is formed on the inner peripheral surface so as to communicate with the groove 18, and the ports 13, 1
Three through-holes 16a, 16 at positions corresponding to 4, 15
b and 16c are drilled. These through holes 16a-1
Of the 6c, through holes 16a and 16b and through holes 20 and 21 are provided between the peripheral groove 19 and the through holes 16a and 16b, respectively. A seat portion 23 for receiving the packing 22 is formed on the surface of the casing ring 16 that is not in contact with the electrolyte membrane 2.
【0026】陰極給電板4の外周面に嵌装されるケーシ
ングリング17は、図4及び図6に示すように、上記リ
ング16と同様、周溝24、パッキン22′を受ける座
部25、及び貫通孔17a,17b,17cが形成さ
れ、このうち、貫通孔17cと周溝24との間にのみ両
者を連通する通孔26が形成されている。As shown in FIGS. 4 and 6, the casing ring 17 fitted on the outer peripheral surface of the cathode power supply plate 4 has a peripheral groove 24, a seat portion 25 for receiving the packing 22 ', and a ring portion 25, as shown in FIGS. Through holes 17a, 17b, and 17c are formed, and among these, a through hole 26 that communicates both of them is formed only between the through hole 17c and the circumferential groove 24.
【0027】パッキン22,22′にも、ポート13,
14,15に対応する位置に孔22a,22b,22c
が形成されている。ケーシングリング16,17は、例
えばポリスルホン、P.T.F.E.等のプラスッチク材料で形
成することができる。The packings 22, 22 'also have ports 13,
Holes 22a, 22b, 22c at positions corresponding to 14 and 15
Are formed. The casing rings 16 and 17 can be formed of a plastic material such as polysulfone or PTFE.
【0028】このようにして構成されるセルを重ね合わ
せて組み立てるに際し、セル同士の分離及び陽極給電板
3の収納された陽極室と陰極給電板4の収納された陰極
室とを分離するための分離板6が、隣り合うセル5,5
の間、即ち陽極給電板3における電解質膜2と反対側の
面と陰極給電板4の各々における電解質膜と反対の面と
の間に配置される。When assembling the cells thus constructed by stacking them, the cells are separated from each other and the anode chamber in which the anode power feeding plate 3 is housed and the cathode chamber in which the cathode power feeding plate 4 is housed are separated. Separating plate 6 has adjacent cells 5 and 5
In other words, it is arranged between the surface of the anode power supply plate 3 opposite to the electrolyte membrane 2 and the surface of the cathode power supply plate 4 opposite to the electrolyte membrane.
【0029】この分離板6は、厚さ0.5〜1mm程度
の単板を2枚重ねとした構造とされ、陽極給電板3に接
する側の単板6aをチタン板で形成し、陰極給電板4が
接する側の単板6bをステンレス板で形成している。こ
の重ね合わせた分離板が、従来の複極式多層セルにおけ
る溝加工された相当の厚さを有する複極式板に代わるの
で、全体として数〜数十分の一の厚さのセルを実現する
ことができる。また、この構成によって、陽極側で発生
する強酸に対して耐食性を持たせることができるととも
に、陰極側で発生する水素ガスによる水素脆化を防止す
ることができる(チタンは水素脆化しやすい)。分離板
6には、ポート13,14,15に対応する位置に貫通
孔6c,6d,6eが穿設されている。The separating plate 6 has a structure in which two single plates each having a thickness of about 0.5 to 1 mm are stacked, and the single plate 6a on the side in contact with the anode power feeding plate 3 is formed of a titanium plate, and the cathode power feeding is performed. The single plate 6b on the side contacting the plate 4 is formed of a stainless plate. This superposed separating plate replaces the bipolar plate with a considerable thickness grooved in the conventional bipolar multi-layer cell, so that a cell with a thickness of several tens to several tens is achieved as a whole. can do. Further, with this configuration, it is possible to impart corrosion resistance to a strong acid generated on the anode side and prevent hydrogen embrittlement due to hydrogen gas generated on the cathode side (titanium is easily hydrogen embrittlement). The separating plate 6 has through holes 6c, 6d, 6e at positions corresponding to the ports 13, 14, 15.
【0030】分離板6は、両側からパッキン22,2
2′が当接されることによって陰極側と陽極側とのリー
クをシールしている。分離板6の貫通穴6c,6d,6
eには、スペーサリング27が嵌入されている。The separating plate 6 has packings 22, 2 from both sides.
By abutting 2 ', the leak between the cathode side and the anode side is sealed. Through holes 6c, 6d, 6 of the separating plate 6
A spacer ring 27 is fitted in e.
【0031】このようにして構成されたセル5…5は、
貫通孔2a〜2c、16a〜16c、17a〜17c、
孔22a〜22c、貫通孔6c〜6eが一致するように
重ねられ、第1〜第3ポートに連通する通路28,2
9,30が形成される。第1ポート13へは図外の水タ
ンクから電解のための純水が供給され、該純水は通路2
8を通り、リング16の通穴20を介して陽極給電板3
の溝18に流れ込む。陽極給電板3は、空隙率の高い金
属繊維の焼結体で形成されているため、純水は焼結体中
の空隙を通って電解質膜2に達する。The cells 5 ... 5 thus constructed are
Through holes 2a to 2c, 16a to 16c, 17a to 17c,
Passages 28 and 2 that are stacked so that the holes 22a to 22c and the through holes 6c to 6e are aligned and communicate with the first to third ports.
9, 30 are formed. Pure water for electrolysis is supplied to the first port 13 from a water tank (not shown), and the pure water passes through the passage 2
8 through the through hole 20 of the ring 16 and the anode power feeding plate 3
Flows into the groove 18 of. Since the anode power feed plate 3 is formed of a sintered body of metal fibers having a high porosity, pure water reaches the electrolyte membrane 2 through the voids in the sintered body.
【0032】ここで給電板8a,8bに電圧を印加する
と、陽極給電板3に接した純水中の水素イオンだけが電
解質膜2を透過して、陰極給電板4から電子を受け取
り、水素ガスとなってステンレス繊維焼結体で形成され
た陰極給電板4内を上昇し、通孔26を通って通路30
を介して、第3ポート15から排出される。排出される
水素ガスは、必要に応じ、公知の回収手段により回収さ
れ、この装置がオゾン発生装置として使用される場合
等、不要な場合は、大気中に放出してもよい。When a voltage is applied to the power feed plates 8a and 8b, only hydrogen ions in pure water in contact with the anode power feed plate 3 pass through the electrolyte membrane 2 to receive electrons from the cathode power feed plate 4 and hydrogen gas. And goes up in the cathode power feeding plate 4 formed of the stainless fiber sintered body, passes through the through hole 26, and passes through the passage 30.
And is discharged from the third port 15 via. The discharged hydrogen gas may be recovered by a known recovery means, if necessary, and may be released into the atmosphere when it is unnecessary, such as when the device is used as an ozone generator.
【0033】一方、陽極側では、水酸基イオンが電子を
放出して酸素ガス及び水を生成し、これら酸素ガス及び
水は供給された純水に混入して、チタン繊維焼結体内の
空隙を通過して通孔21から通路29に入り、第2ポー
ト14から排出される。この第2ポート14は、図外の
水タンクに接続されており、これにより純水は循環でき
るようになっている。On the other hand, on the anode side, hydroxyl ions release electrons to generate oxygen gas and water, and these oxygen gas and water are mixed with the supplied pure water and pass through the voids in the titanium fiber sintered body. Then, it enters the passage 29 through the through hole 21 and is discharged from the second port 14. The second port 14 is connected to a water tank (not shown) so that pure water can be circulated.
【0034】陽極給電板2及び陰極給電板3を形成する
チタン繊維焼結体及びステンレス繊維焼結体は、薄板化
しても割れにくいため、その厚みを2.5 mmとし、分
離板6の厚みを0.5〜1mmとすることで、1セル当
たり、約7mmの厚さに抑えることができ、従来のもと
の比較して約1/4〜1/5とすることができる。Since the titanium fiber sintered body and the stainless fiber sintered body forming the anode power feeding plate 2 and the cathode power feeding plate 3 are hard to be broken even if they are thinned, the thickness thereof is set to 2.5 mm and the thickness of the separating plate 6 is set. Is 0.5 to 1 mm, the thickness per cell can be suppressed to about 7 mm, which is about 1/4 to 1/5 as compared with the conventional one.
【0035】[0035]
【発明の効果】以上説明したように、本発明に係る固体
高分子電解質水電解装置及びその電極構造は、陰極給電
板を圧縮弾性率17000kgf/cm2 以下の導電性
多孔性構造体で形成したので、給電板の大型化、軽量
化、膜の長寿命化、オゾンの高電解効率化等を図る実用
的水電解装置を実現することができる。As described above, in the solid polymer electrolyte water electrolysis apparatus and the electrode structure thereof according to the present invention, the cathode power supply plate is formed of the conductive porous structure having the compression elastic modulus of 17,000 kgf / cm 2 or less. Therefore, it is possible to realize a practical water electrolysis device in which the size and weight of the power supply plate are increased, the life of the membrane is increased, and the efficiency of electrolysis of ozone is increased.
【0036】また、陰極給電板をステンレス繊維焼結体
及び/又は片面に溝加工を施したステンレス焼結体、陽
極給電板をチタン繊維焼結体で形成し、陰極側がステン
レスであって陽極側がチタンからなる分離版を用いるこ
とにより、上記効果を一層奏することができる。Further, the cathode power supply plate is formed of a stainless fiber sintered body and / or a stainless steel sintered body having a groove on one side, and the anode power supply plate is formed of a titanium fiber sintered body, and the cathode side is stainless and the anode side is By using the separation plate made of titanium, the above effect can be further exerted.
【図1】固体高分子電解質水電解装置の一実施例を示す
斜視図である。FIG. 1 is a perspective view showing an embodiment of a solid polymer electrolyte water electrolysis apparatus.
【図2】図1に示す装置の要部分解斜視図である。FIG. 2 is an exploded perspective view of a main part of the apparatus shown in FIG.
【図3】図1に示す装置の面Aに沿う断面図である。3 is a cross-sectional view along the plane A of the device shown in FIG.
【図4】図1に示す装置の面Bに沿う断面図である。4 is a cross-sectional view taken along the plane B of the device shown in FIG.
【図5】陽極給電板及びこれに嵌装されたリングを示す
図であり、図3のC−C線に沿う断面に現れる。5 is a view showing an anode power supply plate and a ring fitted therein, which appears in a cross section taken along line CC of FIG.
【図6】陰極給電板及びこれに嵌装されたリングを示す
図であり、図3のD−D線に沿う断面に現れる。FIG. 6 is a view showing a cathode power supply plate and a ring fitted therein, which appears in a cross section taken along the line D-D in FIG.
1 固体高分子電解質水電解装置。 2 高分子電解質膜 3 陽極給電板 4 陰極給電板 6 分離板 18 溝 1 Solid polymer electrolyte water electrolysis device. 2 Polymer Electrolyte Membrane 3 Anode Power Supply Plate 4 Cathode Power Supply Plate 6 Separation Plate 18 Groove
Claims (7)
る複極式の固体高分子電解質水電解装置において、 前記高分子電解質膜の陰極側に圧接される陰極給電板が
圧縮弾性率17000kgf/cm2 以下の導電性多孔
性構造体で形成されていることを特徴とする固体高分子
電解質水電解装置。1. In a bipolar solid polymer electrolyte water electrolysis apparatus using a polymer electrolyte membrane as a solid electrolyte, the cathode power supply plate pressed against the cathode side of the polymer electrolyte membrane has a compression elastic modulus of 17,000 kgf / cm 2. A solid polymer electrolyte water electrolyzer characterized by being formed of the following conductive porous structure.
る陽極給電板を多孔性の導電性材料で形成し、該陽極給
電板における電解質膜とは反対側の面に発生するガスの
通路となる溝を形成したことを特徴とする請求項1に記
載の固体高分子電解質水電解装置。2. A gas passage generated on a surface of the anode power feed plate opposite to the electrolyte membrane, the anode power feed plate being pressed against the anode side of the polymer electrolyte membrane is formed of a porous conductive material. The solid polymer electrolyte water electrolysis apparatus according to claim 1, wherein a groove is formed.
側の面に平行溝が形成されていることを特徴とする請求
項1又は2に記載の固体高分子電解質水電解装置。3. The solid polymer electrolyte water electrolysis apparatus according to claim 1, wherein the cathode power supply plate has parallel grooves formed on the surface opposite to the electrolyte membrane.
ンレス板とチタン板とを重ね合わせた構成とされ、該分
離板の陰極給電板と接する側にステンレス板を配置した
ことを特徴とする請求項1から3のいずれかに記載の固
体高分子電解質水電解装置。4. A separation plate for separating each cell is constructed by stacking a stainless plate and a titanium plate, and the stainless plate is arranged on the side of the separation plate which is in contact with the cathode power supply plate. The solid polymer electrolyte water electrolysis apparatus according to any one of claims 1 to 3.
成されていることを特徴とする請求項1から4のいずれ
かに記載の固体高分子電解質水電解装置。5. The solid polymer electrolyte water electrolysis apparatus according to claim 1, wherein the anode power feeding plate is formed of a titanium fiber sintered body.
る複極式の固体高分子電解質水電解装置のための電極構
造であって、陰極給電板が、ステンレス繊維の焼結体で
形成されていることを特徴とする電極構造。6. An electrode structure for a bipolar solid polymer electrolyte water electrolysis device using a polymer electrolyte membrane as a solid electrolyte, wherein a cathode power supply plate is formed of a sintered body of stainless fiber. An electrode structure characterized by the above.
の面に平行溝が形成されていることを特徴とする請求項
6に記載の固体高分子電解質水電解装置の電極構造。7. The electrode structure of a solid polymer electrolyte water electrolyzer according to claim 6, wherein parallel grooves are formed on a surface of the cathode power supply plate opposite to the electrolyte membrane.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7257908A JPH0995791A (en) | 1995-10-04 | 1995-10-04 | Solid polyelectrolyte water electrolyzer and its electrode structure |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7257908A JPH0995791A (en) | 1995-10-04 | 1995-10-04 | Solid polyelectrolyte water electrolyzer and its electrode structure |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH0995791A true JPH0995791A (en) | 1997-04-08 |
Family
ID=17312868
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP7257908A Pending JPH0995791A (en) | 1995-10-04 | 1995-10-04 | Solid polyelectrolyte water electrolyzer and its electrode structure |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0995791A (en) |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH1121685A (en) * | 1997-07-04 | 1999-01-26 | Japan Storage Battery Co Ltd | Filter-press type, solid polymer water electrolytic cell |
| US6426255B1 (en) * | 1999-04-30 | 2002-07-30 | Hitachi, Ltd. | Process for making a semiconductor integrated circuit device having a dynamic random access memory |
| JP2006124750A (en) * | 2004-10-27 | 2006-05-18 | Central Japan Railway Co | Ozone water producer |
| KR100884763B1 (en) * | 2008-07-25 | 2009-02-20 | 황부성 | Hydrogen-oxygen mixed gas generator |
| CN102086520A (en) * | 2009-12-08 | 2011-06-08 | 本田技研工业株式会社 | Water electrolysis apparatus |
| JP2011122181A (en) * | 2009-12-08 | 2011-06-23 | Honda Motor Co Ltd | Water electrolysis apparatus |
| JP2011127209A (en) * | 2009-12-21 | 2011-06-30 | Honda Motor Co Ltd | Water electrolyzer |
| JP2011127208A (en) * | 2009-12-21 | 2011-06-30 | Honda Motor Co Ltd | Water electrolyzer |
| JP2011127210A (en) * | 2009-12-21 | 2011-06-30 | Honda Motor Co Ltd | Electrochemical apparatus |
| JP4808898B2 (en) * | 2000-05-09 | 2011-11-02 | ペロックシト−ヒェミー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | Bipolar multipurpose electrolytic cell for high current loads |
| JP2012041568A (en) * | 2010-08-12 | 2012-03-01 | Honda Motor Co Ltd | Water electrolysis apparatus |
| JP2014504680A (en) * | 2011-02-03 | 2014-02-24 | セラム ハイド | In particular, an electrolytic cell for producing H2 and O2 and an assembly comprising the electrolytic cell |
| US8894829B2 (en) | 2009-12-21 | 2014-11-25 | Honda Motor Co., Ltd. | Water electrolysis apparatus |
| US8980079B2 (en) | 2010-12-03 | 2015-03-17 | Electrolytic Ozone, Inc. | Electrolytic cell for ozone production |
| CN115287675A (en) * | 2022-08-04 | 2022-11-04 | 氢电(杭州)科技有限公司 | Electrolytic tank structure for electrolyzing water |
| CN116024593A (en) * | 2023-02-27 | 2023-04-28 | 倍尔净医疗科技(上海)有限公司 | Laminated ozone water generator |
-
1995
- 1995-10-04 JP JP7257908A patent/JPH0995791A/en active Pending
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH1121685A (en) * | 1997-07-04 | 1999-01-26 | Japan Storage Battery Co Ltd | Filter-press type, solid polymer water electrolytic cell |
| US6426255B1 (en) * | 1999-04-30 | 2002-07-30 | Hitachi, Ltd. | Process for making a semiconductor integrated circuit device having a dynamic random access memory |
| JP4808898B2 (en) * | 2000-05-09 | 2011-11-02 | ペロックシト−ヒェミー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | Bipolar multipurpose electrolytic cell for high current loads |
| JP2006124750A (en) * | 2004-10-27 | 2006-05-18 | Central Japan Railway Co | Ozone water producer |
| KR100884763B1 (en) * | 2008-07-25 | 2009-02-20 | 황부성 | Hydrogen-oxygen mixed gas generator |
| US8691060B2 (en) | 2009-12-08 | 2014-04-08 | Honda Motor Co., Ltd. | Water electrolysis apparatus |
| JP2011122181A (en) * | 2009-12-08 | 2011-06-23 | Honda Motor Co Ltd | Water electrolysis apparatus |
| CN102086520A (en) * | 2009-12-08 | 2011-06-08 | 本田技研工业株式会社 | Water electrolysis apparatus |
| JP2011127209A (en) * | 2009-12-21 | 2011-06-30 | Honda Motor Co Ltd | Water electrolyzer |
| JP2011127208A (en) * | 2009-12-21 | 2011-06-30 | Honda Motor Co Ltd | Water electrolyzer |
| JP2011127210A (en) * | 2009-12-21 | 2011-06-30 | Honda Motor Co Ltd | Electrochemical apparatus |
| US8894829B2 (en) | 2009-12-21 | 2014-11-25 | Honda Motor Co., Ltd. | Water electrolysis apparatus |
| JP2012041568A (en) * | 2010-08-12 | 2012-03-01 | Honda Motor Co Ltd | Water electrolysis apparatus |
| US8980079B2 (en) | 2010-12-03 | 2015-03-17 | Electrolytic Ozone, Inc. | Electrolytic cell for ozone production |
| JP2014504680A (en) * | 2011-02-03 | 2014-02-24 | セラム ハイド | In particular, an electrolytic cell for producing H2 and O2 and an assembly comprising the electrolytic cell |
| CN115287675A (en) * | 2022-08-04 | 2022-11-04 | 氢电(杭州)科技有限公司 | Electrolytic tank structure for electrolyzing water |
| CN116024593A (en) * | 2023-02-27 | 2023-04-28 | 倍尔净医疗科技(上海)有限公司 | Laminated ozone water generator |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4796639B2 (en) | Electrochemical equipment | |
| US6852438B2 (en) | Embossed current collector separator for electrochemical fuel cell | |
| US4210511A (en) | Electrolyzer apparatus and electrode structure therefor | |
| JPH0995791A (en) | Solid polyelectrolyte water electrolyzer and its electrode structure | |
| US8691060B2 (en) | Water electrolysis apparatus | |
| JP4856770B2 (en) | Water electrolysis equipment | |
| WO1987005951A1 (en) | Method and apparatus for electrolysing water | |
| US20120217156A1 (en) | High-pressure hydrogen producing apparatus | |
| JP2006070322A (en) | High pressure hydrogen production device | |
| JP5054049B2 (en) | Electrolyzer | |
| US7553399B2 (en) | Hydrogen production apparatus with electrolyte of varying thicknesses | |
| CA2970240C (en) | Intermediate module for electrochemical cell stack | |
| JP5400413B2 (en) | Electrolyzer | |
| JP4852157B2 (en) | Water electrolysis equipment | |
| JP2893238B2 (en) | Water electrolyzer using polymer electrolyte membrane | |
| JP3122734B2 (en) | Water electrolysis tank using solid polymer electrolyte membrane | |
| JP2977738B2 (en) | Hydrogen / oxygen generator | |
| JP2004250736A (en) | Water electrolysis device | |
| JP4838879B2 (en) | Water electrolysis equipment | |
| JP2000090956A (en) | Polymer electrolyte fuel cell | |
| US20070207368A1 (en) | Method and apparatus for electrochemical flow field member | |
| JP4554328B2 (en) | High pressure hydrogen production equipment | |
| JP3062540B2 (en) | Bipolar plate for water electrolysis tank and cell using the same | |
| JP5525195B2 (en) | High-pressure water electrolyzer and method for manufacturing anode-side power feeder for high-pressure water electrolyzer | |
| JP3988002B2 (en) | Filter-press type solid polymer water electrolysis cell |