[go: up one dir, main page]

JPH0997991A - How to join magnetic shield materials - Google Patents

How to join magnetic shield materials

Info

Publication number
JPH0997991A
JPH0997991A JP25295095A JP25295095A JPH0997991A JP H0997991 A JPH0997991 A JP H0997991A JP 25295095 A JP25295095 A JP 25295095A JP 25295095 A JP25295095 A JP 25295095A JP H0997991 A JPH0997991 A JP H0997991A
Authority
JP
Japan
Prior art keywords
gap
flame spraying
magnetic
sprayed
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25295095A
Other languages
Japanese (ja)
Inventor
Akihiko Saito
章彦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP25295095A priority Critical patent/JPH0997991A/en
Publication of JPH0997991A publication Critical patent/JPH0997991A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain excellent magnetic shielding effect by flame spraying a flame spraying material made of metal having the maximum relative magnetic permeability of a specific value or more to the gap between the connecting parts of the magnetic shielding material, and connecting the shielding materials. SOLUTION: As the metal source of a flame spraying material, metal having the maximum relative magnetic permeability of 1000 or more is used. As a flame spraying method, a gas flame spraying, or a plasma flame spraying can be used. The droplet of the flame spraying material of melted or semimelted state is injected from a flame spraying nozzle, the material is sprayed to the gap generated between connecting members to solidify the droplet. The solidified layer is sequentially deposited and filled in the gap between the connecting members. When the material is sprayed to the gap between the members, if the sprayed material is not solidified in the gap but sprayed through the gap, the spraying side is sealed up to prevent the spraying through of the material. Thus, particularly in the alternating magnetic field of 5MHz or less, excellent magnetic shielding effect can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気シールドルー
ムの構築、その他磁気シールド部材の接合の際に、磁気
シールド材の接合部に発生する磁束の漏洩を防止する方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of preventing leakage of magnetic flux generated at a joint portion of a magnetic shield material when constructing a magnetic shield room and joining other magnetic shield members.

【0002】[0002]

【従来の技術】脳波計、CTスキャナ、核磁気共鳴装置
等の精密計測機、その他の精密電気機器は家電製品、O
A機器等から生じる漏洩磁束に曝されると、計測精度が
低下したり誤動作を起こすことが多い。そこで、精密な
測定制御を要する場合には、これらの精密機器を磁気シ
ールド材で囲んで、外部の磁場を遮蔽したシールドルー
ム内で測定制御を行うことが試みられている。また、送
電線等から放射される交番磁場が生体に及ぼす有害性に
対する懸念から、家屋に磁気遮蔽を施すことも考えられ
ている。
2. Description of the Related Art Electroencephalographs, CT scanners, precision measuring instruments such as nuclear magnetic resonance devices, and other precision electrical equipment are home electric appliances, O
When exposed to the leakage magnetic flux generated from the A equipment or the like, the measurement accuracy often deteriorates or malfunction occurs. Therefore, when precise measurement control is required, it has been attempted to enclose these precision devices with a magnetic shield material and perform the measurement control in a shielded room that shields an external magnetic field. Further, it is considered that the house is magnetically shielded from the fear that the alternating magnetic field radiated from the power transmission line or the like is harmful to the living body.

【0003】[0003]

【発明が解決しようとする課題】被遮蔽物が大きいとき
には磁気シールド材を接合する必要が生じる。上記の様
な磁気の遮蔽には、磁気シールド材として、通常珪素鋼
やパーマロイ等の薄板が用いられる。そして、これらの
薄板部材の接合には、リベット、ボルト・ナット等によ
る締結、スポット溶接等が行われる。しかし、これらの
接合法によると、接合部に重ね部分を要するので、高価
な磁気シールド材を多く使用しなければならず、不経済
であるばかりでなく、重ね部分の隙間からの磁束の漏洩
を防ぐことが困難である。
When the object to be shielded is large, it is necessary to join the magnetic shield material. For the above-mentioned magnetic shielding, a thin plate such as silicon steel or permalloy is usually used as a magnetic shield material. Then, for joining these thin plate members, fastening with rivets, bolts and nuts, spot welding and the like are performed. However, according to these joining methods, since an overlapping portion is required at the joining portion, it is necessary to use a large amount of expensive magnetic shield material, which is not only uneconomical, but also causes leakage of magnetic flux from the gap between the overlapping portions. It is difficult to prevent.

【0004】溶接によれば上記の接合部に隙間を生じる
こともなく、磁気遮蔽としては満足し得るものとなる
が、溶接にともなって発生する薄板の変形の処理、溶接
コストなどの問題がある。本発明は、上記の現状に鑑み
てなされたもので、その目的は優れた磁気シールド効果
をもち、経済的な磁気シールド材の接合方法を提供する
ことにある。
According to welding, a gap is not formed at the above-mentioned joint portion, which is satisfactory as a magnetic shield, but there are problems such as processing of deformation of a thin plate caused by welding and welding cost. . The present invention has been made in view of the above circumstances, and an object thereof is to provide an economical method for joining magnetic shield materials having an excellent magnetic shield effect.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の磁気シールド材の接合方法は、最大比透磁
率1000以上を有する金属を金属源としてなる溶射材
を、接合すべき磁気シールド材の接合部間の隙間に溶射
して接合することを特徴とする。
In order to achieve the above object, in the method for joining magnetic shield materials of the present invention, the magnetic material to be joined is a magnetic material having a maximum relative magnetic permeability of 1000 or more. It is characterized in that the shield material is sprayed and bonded in the gap between the bonded portions.

【0006】[0006]

【発明の実施の形態】本発明の磁気シールド材の接合方
法においては、接合すべき磁気シールド材の接合部を接
合の態様に従って配置し、この状態で接合部材間に生じ
る隙間に溶射材を充填して接合部材を接合する。接合の
態様としては、接合部の端面を互に突合せて配置する突
合せ接合、接合部を重ね合せて配置する重ね合わせ接合
等のいずれでもよい。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for joining magnetic shield materials of the present invention, the joint portions of the magnetic shield materials to be joined are arranged according to the joining mode, and in this state, the gaps formed between the joining members are filled with the thermal spray material. Then, the joining member is joined. The mode of joining may be either butt joining in which the end faces of the joined portions are placed in abutment with each other, or lap joining in which the joined portions are placed in an overlapping manner.

【0007】溶射法としては、ガス溶射、プラズマ溶射
等、溶射法として行われている何れの方法をも用いるこ
とができる。溶融ないし半溶融状態の溶射材の溶滴を溶
射ノズルより噴出して前記接合部材間に生じる隙間に溶
射材を吹込んで、ここで溶滴を凝固させる。この凝固層
を逐次堆積することにより接合部材間の隙間を充填す
る。接合部材間の隙間に溶射材を吹込むときに、溶射材
が前記隙間で凝固して止まることなく隙間を吹抜けてし
まうときには、吹抜け側に目張りを施して溶射材の吹抜
けを防止する。
As the thermal spraying method, any of the thermal spraying methods such as gas thermal spraying and plasma thermal spraying can be used. The molten or semi-molten spray droplets of the spray material are ejected from the spray nozzle, and the spray material is blown into the gap formed between the joining members to solidify the droplets. By sequentially depositing this solidified layer, the gap between the joining members is filled. When the thermal spray material is blown into the gap between the joining members and the thermal spray material solidifies in the gap and blows through the gap without stopping, the blow-through side is provided with a seal to prevent the thermal spray material from passing through.

【0008】本発明においては、金属源として最大比透
磁率1000以上を有する金属を用いる。前記金属源
を、溶射材として適当な粉末、ワイヤ等の形に加工して
溶射に供する。なお、本発明における最大比透磁率は、
金属の溶製材に対して、必要に応じて適当な磁気焼鈍を
施した状態において求めた値とする。前記金属源の最大
比透磁率を1000以上とするのは、最大比透磁率10
00以上の金属を金属源として用いることによって5M
Hz以下の低周波交番磁場におけるシールド効果を発揮
できるのであって、最大比透磁率1000未満の金属を
用いたのでは5MHz以下の低周波交番磁場におけるシ
ールド効果が低下することによる。
In the present invention, a metal having a maximum relative magnetic permeability of 1000 or more is used as the metal source. The metal source is processed into a powder, wire, or the like suitable as a thermal spray material, and is provided for thermal spraying. The maximum relative permeability in the present invention is
It is the value obtained in the state where the magnetic ingot is appropriately magnetic annealed as necessary. The maximum relative magnetic permeability of the metal source is set to 1000 or more because the maximum relative magnetic permeability is 10 or more.
5M by using a metal of 00 or more as a metal source
This is because the shielding effect in the low frequency alternating magnetic field of Hz or less can be exhibited, and when the metal having the maximum relative magnetic permeability of less than 1000 is used, the shielding effect in the low frequency alternating magnetic field of 5 MHz or less decreases.

【0009】[0009]

【実施例】厚さ0.5mmのPCパーマロイ薄板を曲げ
加工して、厚さ0.5mm×外径50mm×長さ150
mmの円筒形に成形した。このとき、板の接合部は円筒
の軸と平行となるようにした。板の接合状態としては、
主として板の接合部を突合せ状態として実験したが、一
部のものについては、板の接合部を重ね合せ状態として
実験した。
[Example] A PC permalloy thin plate having a thickness of 0.5 mm was bent to form a thickness of 0.5 mm, an outer diameter of 50 mm, and a length of 150.
It was molded into a cylindrical shape of mm. At this time, the joint portion of the plates was made parallel to the axis of the cylinder. As the joining state of the plates,
The experiment was conducted mainly with the joints of the plates abutting each other, but for some of the experiments, the joints of the plates were superposed with each other.

【0010】突合せ接合の場合には、突合せ部に幅1m
mの隙間をとった。そして、この隙間を塞ぐように、厚
さ3mm×幅5mmの木材を、接着剤によって円筒の内
側に貼付けた。これによって円筒の形状維持と溶射時の
吹きぬけ防止のための目張りがなされる。重ね合せ接合
の場合には、重ね合せの幅は5mmとした。溶射材とし
ては、表1に示す各種の金属からガス噴霧法(水アトマ
イズ法)によって製作した金属粉末を用いた。また、直
径1mmのPCパーマロイ線を製造してこれを溶射材と
して実験した。
In the case of butt joining, the butt portion has a width of 1 m.
I took a gap of m. Then, a wood piece having a thickness of 3 mm and a width of 5 mm was attached to the inside of the cylinder with an adhesive so as to close the gap. As a result, the cylindrical shape is maintained and a seal is provided to prevent blowout during thermal spraying. In the case of lap joining, the lap width was 5 mm. As the thermal spray material, metal powders produced from various metals shown in Table 1 by a gas atomization method (water atomizing method) were used. Further, a PC permalloy wire having a diameter of 1 mm was manufactured and an experiment was conducted using this as a thermal spray material.

【0011】[0011]

【表1】 [Table 1]

【0012】溶射材とする金属の最大比透磁率は次のよ
うにして求めた。すなわち、溶射材とする金属粉末を再
溶解し、これを凝固して得た鋳塊から外径10mm×内
径6mm×軸方向長2.0mmのリング状試験片を削り
出し、アルゴン雰囲気中において表1に示す条件で磁気
焼鈍した。前記の磁気焼鈍を施したリング状試験片につ
いて、JIS C 2531に定める直流磁気特性試験
に準じて磁気特性を測定し、この結果から最大比透磁率
の値を求めた。各金属について得た最大比透磁率の値を
表1に示す。
The maximum relative magnetic permeability of the metal used as the thermal spray material was determined as follows. That is, a ring-shaped test piece having an outer diameter of 10 mm, an inner diameter of 6 mm, and an axial length of 2.0 mm was carved out from an ingot obtained by remelting a metal powder used as a thermal spraying material and solidifying the metal powder, and exposing it in an argon atmosphere. Magnetic annealing was performed under the conditions shown in 1. The magnetic characteristics of the ring-shaped test piece subjected to the magnetic annealing were measured according to the DC magnetic characteristic test defined in JIS C 2531, and the maximum relative magnetic permeability was determined from the result. The maximum relative magnetic permeability values obtained for each metal are shown in Table 1.

【0013】前記円筒の接合部に表1に示す溶射材を溶
射して磁気シールド特性測定用の試験体とした。溶射は
次のようにして行った。高速の燃焼ガスフレーム中に金
属粉末を投入して金属粉末を溶解するとともに、これを
燃焼ガスフレームの噴射力によって溶射ノズルから噴射
する(ガス溶射法)。溶射ノズルに対向して前記円筒の
隙間部を配置して溶射を行い、円筒の隙間部に溶射層を
形成して隙間を充填した。また、前記の燃焼ガスフレー
ムに代えてプラズマフレームを用いて溶射を行い(プラ
ズマ溶射法)、同様に円筒の隙間部に溶射層を形成して
隙間を充填した。
Thermal spray materials shown in Table 1 were sprayed onto the joints of the cylinders to prepare test pieces for measuring magnetic shield characteristics. Thermal spraying was performed as follows. Metal powder is charged into a high-speed combustion gas flame to melt the metal powder, and this is sprayed from a spray nozzle by the spraying force of the combustion gas flame (gas spraying method). Thermal spraying was performed by arranging the cylindrical gap portion facing the thermal spray nozzle, and forming a thermal spray layer in the cylindrical gap portion to fill the gap. Further, thermal spraying was performed using a plasma flame instead of the above-mentioned combustion gas flame (plasma thermal spraying method), and a thermal spray layer was similarly formed in the gap portion of the cylinder to fill the gap.

【0014】比較例として、PCパーマロイの線をフィ
ラーメタルとしたTIG溶接法によって、前記のPCパ
ーマロイ円筒接合部の隙間をフィラーメタルによって充
填しつつ溶接した試験体も作製した。以上のようにして
製作した試験体を用いて磁気シールド特性を測定した。
磁気シールド特性は図1に示す装置を用いて測定した。
即ち、リング状に捲いた一対のヘルムホルツコイル1、
2を磁場源とし、発振器3、増幅器4、電流計5よりな
る電源装置6よりヘルムホルツコイル1、2に励磁電流
を供給してヘルムホルツコイル1、2の中間に均等な交
番磁場を形成する。この交番磁場に磁気シールド特性測
定用の供試体7を配置する。供試体7の中空部に外径1
5mm×長さ4mmのサーチコイル8を挿入する。電圧
測定器9によって、供試体7を通過する漏洩磁束をサー
チコイル8の出力電圧Eiとして測定する。また供試体
7を置かない場合のサーチコイル8の出力電圧Eoを測
定する。これらの値からシールド効果Sを下記(1)式
によって求めた。
As a comparative example, a test body was also produced by welding the PC permalloy while filling the gap of the PC permalloy cylindrical joint with the filler metal by the TIG welding method using the filler metal as the filler metal. The magnetic shield characteristics were measured using the test piece manufactured as described above.
The magnetic shield characteristics were measured using the device shown in FIG.
That is, a pair of Helmholtz coils 1 wound in a ring shape,
2 is used as a magnetic field source, and an exciting current is supplied to the Helmholtz coils 1 and 2 from a power supply device 6 including an oscillator 3, an amplifier 4 and an ammeter 5 to form an even alternating magnetic field in the middle of the Helmholtz coils 1 and 2. The sample 7 for magnetic shield characteristic measurement is arranged in this alternating magnetic field. Outer diameter 1 in the hollow part of the specimen 7
A search coil 8 having a length of 5 mm and a length of 4 mm is inserted. The leakage flux passing through the sample 7 is measured by the voltage measuring device 9 as the output voltage Ei of the search coil 8. Further, the output voltage Eo of the search coil 8 when the sample 7 is not placed is measured. The shield effect S was obtained from these values by the following equation (1).

【0015】 S=20log(Eo/Ei) ・・・(1) 交番磁場の最大磁場強さを1ガウスとして発振器3の周
波数を種々に変えてシールド効果Sを求めた結果を表2
に示す。また、交番磁場の周波数を50ヘルツとして最
大磁場強さを種々に変えてシールド効果Sを求めた結果
を表3に示す。
S = 20 log (Eo / Ei) (1) The maximum magnetic field strength of the alternating magnetic field is set to 1 gauss and the frequency of the oscillator 3 is variously changed to obtain the shield effect S.
Shown in Table 3 shows the results of obtaining the shield effect S by varying the maximum magnetic field strength with the frequency of the alternating magnetic field set to 50 Hertz.

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】表2および表3によれば、本発明の実施例
は溶接に匹敵する優れた磁気シールド効果を示した。本
発明の実施例では周波数が低い交番磁場に対してもシー
ルド効果が低下することが少なく、比較材に対して、特
に5MHz以下の交番磁場におけるシールド効果が優れ
ていることが判る。また、溶接を適用した比較例の場合
には、熱によるひずみによって試験体に変形が生じるた
め、試験体を整形する必要があった。しかし本発明の実
施例においては、接合による変形は殆ど生じることがな
かった。
According to Tables 2 and 3, the examples of the present invention showed excellent magnetic shielding effect comparable to welding. In the examples of the present invention, the shielding effect is less likely to decrease even with an alternating magnetic field having a low frequency, and it can be seen that the shielding effect is superior to the comparative material, particularly in an alternating magnetic field of 5 MHz or less. Further, in the case of the comparative example to which welding is applied, it is necessary to shape the test body because the test body is deformed by the strain due to heat. However, in the example of the present invention, the deformation due to the bonding hardly occurred.

【0019】[0019]

【発明の効果】以上に説明したように、本発明によれ
ば、特に5MHz以下の交番磁場において優れた磁気シ
ールド効果を示し、溶接法による接合に比べて接合時の
変形が少なく、かつ優れた磁気シールド効果をもつ接合
ができる。接合時の変形が少ないことから、本発明の方
法によれば、接合後に変形を除去する手数が省け、また
変形を除去する工程で加えるひずみによって材料の磁気
シールド特性を損う恐れも少ない。さらに、本発明の方
法では溶射法を用いるので、大きな構造物に対しても能
率的に接合作業を行うことができるという経済効果が得
られる。
As described above, according to the present invention, an excellent magnetic shield effect is exhibited especially in an alternating magnetic field of 5 MHz or less, and the deformation at the time of joining is small as compared with the joining by the welding method, and it is excellent. Bonding with magnetic shield effect is possible. According to the method of the present invention, since the deformation at the time of joining is small, the number of steps for removing the deformation after the joining can be saved, and the magnetic shielding property of the material is less likely to be damaged by the strain applied in the step of removing the deformation. Further, since the thermal spraying method is used in the method of the present invention, it is possible to obtain an economic effect that the bonding work can be efficiently performed even for a large structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】ヘルムホルツコイルによる磁気シールド特性測
定装置の模式的説明図である。
FIG. 1 is a schematic explanatory diagram of a magnetic shield characteristic measuring device using a Helmholtz coil.

【符号の説明】[Explanation of symbols]

1、2 ヘルムホルツコイル 3 発振器 4 増幅器 5 電流計 6 電源装置 7 供試体 8 サーチコイル 9 電圧測定器 1, 2 Helmholtz coil 3 Oscillator 4 Amplifier 5 Ammeter 6 Power supply device 7 Specimen 8 Search coil 9 Voltage measuring instrument

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 最大比透磁率1000以上を有する金属
を金属源としてなる溶射材を、接合すべき磁気シールド
材の接合部間の隙間に溶射して接合することを特徴とす
る磁気シールド材の接合方法。
1. A magnetic shield material, characterized in that a thermal spray material using a metal having a maximum relative magnetic permeability of 1000 or more as a metal source is sprayed and bonded in a gap between the bonding portions of the magnetic shield materials to be bonded. Joining method.
JP25295095A 1995-09-29 1995-09-29 How to join magnetic shield materials Pending JPH0997991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25295095A JPH0997991A (en) 1995-09-29 1995-09-29 How to join magnetic shield materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25295095A JPH0997991A (en) 1995-09-29 1995-09-29 How to join magnetic shield materials

Publications (1)

Publication Number Publication Date
JPH0997991A true JPH0997991A (en) 1997-04-08

Family

ID=17244422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25295095A Pending JPH0997991A (en) 1995-09-29 1995-09-29 How to join magnetic shield materials

Country Status (1)

Country Link
JP (1) JPH0997991A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104734706A (en) * 2013-12-20 2015-06-24 精工爱普生株式会社 Quantum Interference Device, Atomic Oscillator, Electronic Apparatus, And Moving Object

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104734706A (en) * 2013-12-20 2015-06-24 精工爱普生株式会社 Quantum Interference Device, Atomic Oscillator, Electronic Apparatus, And Moving Object
JP2015119151A (en) * 2013-12-20 2015-06-25 セイコーエプソン株式会社 Quantum interference devices, atomic oscillators, electronic equipment, and moving objects
CN111431527A (en) * 2013-12-20 2020-07-17 精工爱普生株式会社 Quantum interference devices, atomic oscillators, electronic devices, and moving objects

Similar Documents

Publication Publication Date Title
US8342386B2 (en) Braze materials and processes therefor
Fritzsche et al. Improved degassing in laser beam welding of aluminum die casting by an electromagnetic field
EP1854573B1 (en) Apparatus and method for short-circuit arc welding employing a self-shielded cored electrode
TW201921394A (en) System and method for making structured materials
CA2177806A1 (en) Titanium-containing ferrous hard-facing material and its application
CN111843107A (en) Magnetic field composite ultrasonic vibration electric arc additive manufacturing device and method
NaBadalung et al. Laser welding of a cobalt-chromium removable partial denture alloy
JPH0997991A (en) How to join magnetic shield materials
CN110202248A (en) A kind of welder and method of dissimilar material
US20080141825A1 (en) Process and apparatus for forming wire from powder materials
US20140312008A1 (en) Drawn arc stud welding system
WO2009082238A3 (en) Electric welding of aluminium or aluminium alloy
JPH0437478A (en) Ultrasonic vibration arc welding method
JPS5913577A (en) T-joint welding method
JP2002066784A (en) Arc start assisting material in shielded metal arc welding work
JPH03275274A (en) Arc welding method and equipment utilizing ultrasonic excitation
JPH1080765A (en) Welding method, and its equipment
JPH11179590A (en) Flux-cored wire for gas shielded arc welding
JP3077923B2 (en) Resistance welding method and apparatus
Schmidt et al. The GMAW Process Using a Two-Dimensional Arc Deflection with AC Hot Wires
SU1507548A1 (en) Method of electric arc spot welding with consumable electrode
JP3717644B2 (en) Flux-cored wire for gas shielded arc welding
Denault et al. Low distortion welded joints for NCSX
JPH061247Y2 (en) Spraying equipment
JPH03281770A (en) Thermal spraying method with wire