[go: up one dir, main page]

JPH01107973A - How to make wings - Google Patents

How to make wings

Info

Publication number
JPH01107973A
JPH01107973A JP26385587A JP26385587A JPH01107973A JP H01107973 A JPH01107973 A JP H01107973A JP 26385587 A JP26385587 A JP 26385587A JP 26385587 A JP26385587 A JP 26385587A JP H01107973 A JPH01107973 A JP H01107973A
Authority
JP
Japan
Prior art keywords
welding
blade
wing
tip
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26385587A
Other languages
Japanese (ja)
Inventor
Hiroshi Wachi
和知 弘
Takao Funamoto
舟本 孝雄
Kazuya Takahashi
和弥 高橋
Mitsuo Kato
光雄 加藤
Ryoichi Kajiwara
良一 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26385587A priority Critical patent/JPH01107973A/en
Publication of JPH01107973A publication Critical patent/JPH01107973A/en
Pending legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To prevent a defect generated at welding time and to improve the performance of a product by monocrystalizing a blade, subjecting to a heat treatment after welding by dividing it and welding it by setting such welding conditions as causing no welding defect after welding in manufacturing the welding structural blade consisting of a Ni base alloy. CONSTITUTION:The core supporting hole 2 provided at the tip part of a blade is joined by sealing it in order to facilitate support and melt-through of the core of the blade of complicated cooling structure consisting of a Ni base alloy. Or after welding said blade tip part by dividing it in the state of like horizontally splitting it the cap of the blade tip is integrated by welding it to the blade. The material is of a monocrystal or similar to that and a filler rod of Fe or Ni is used and welded under inert atmosphere or vacuum to prevent the welding crack caused by a grain boundary. The split welding is thus enabled in case of welding the blade having a complicated cooling hole, the defect generated at welding time is prevented and the product performance can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はNi基超超合金耐熱材料用いたプレードの製作
方法に係り、特に、中子支持孔の封止接合及びブレード
を分割溶製後、溶接により構造化を図るのに好適な翼の
製作方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a blade using a Ni-based superalloy heat-resistant material, and particularly relates to a method for manufacturing a blade using a heat-resistant Ni-based superalloy material, and in particular, a method for manufacturing a blade using a heat-resistant Ni-based superalloy material. , relates to a method of manufacturing a wing suitable for achieving a structure by welding.

〔従来の技術〕[Conventional technology]

従来、超合金材料の溶融溶接は炭化物の析出と関連し、
溶接熱影響部に割れが多発することから全く行なわれて
いなかった。そのため、タービン翼等ではすべて一体鋳
造法により製作されている。
Traditionally, fusion welding of superalloy materials is associated with carbide precipitation;
This was not done at all because cracks frequently occurred in the weld heat-affected zone. Therefore, all turbine blades and the like are manufactured using the integral casting method.

しかし、製品の性能向上を図るためには翼の内部に多数
の冷却孔を設け、冷却用流体を流しつつ、翼の冷却を図
り、冷却性能を向上する必要があるが、一体鋳造品で多
数の冷却孔(複雑冷却孔)を作成するのには限度がある
。そのため、翼の先端部に大きな鋳孔を設は溶製する必
要がある。製品化はそれを塞いで製品とするか、翼の先
端部付近を分割溶ml(キャップ)し、それを本体と接
続して製品とせざるを得なくなってきた。その鋳孔の封
止方法及び接続方法は生産性等の点でアーク溶接法の適
用が最も有効であるが、従来の方法で、溶製した材料で
は溶接熱影響部に発生する割れを防止できないため、ろ
う付法、又は、拡散接合法が一般的に適用されている。
However, in order to improve the performance of the product, it is necessary to provide a large number of cooling holes inside the blade and cool the blade while flowing cooling fluid, thereby improving the cooling performance. There is a limit to how many cooling holes (complex cooling holes) can be created. Therefore, it is necessary to create a large casting hole at the tip of the blade. In order to commercialize the product, it has been necessary to either close it up or make a cap by dividing the area around the tip of the wing and connect it to the main body. Arc welding is the most effective method for sealing and connecting the casting hole in terms of productivity, etc., but conventional methods cannot prevent cracks that occur in the weld heat-affected zone with melted materials. Therefore, brazing method or diffusion bonding method is generally applied.

しかし、生産性の点では非能率的である。However, it is inefficient in terms of productivity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来技術により製作された翼は複雑構造化しなくても性
能上問題となることがなかったので一体鋳造法による製
作が可能で、接続の必要性はなかった。しかし、破損翼
の一部を溶接により補修すべく検討したが溶接熱影響部
に割れが多発し問題となり、アーク溶接法の適用は不可
能であると思われていた。
The blades manufactured using the conventional technology did not have any performance problems even if they did not have a complicated structure, so they could be manufactured by integral casting, and there was no need for connections. However, attempts were made to repair part of the damaged wing by welding, but the weld heat-affected zone suffered from frequent cracks, and it was considered impossible to apply the arc welding method.

また、最近では翼内部に複雑冷却孔を多数設け、翼の冷
却性能を向上し、製品性能を向上しようとの動きがある
。その場合、鋳孔を大きくし、溶製後、その部分に閉板
を設置し、溶接によって塞ぐ方法と翼の先端部付近を二
分割溶製し、後で接続する方法とがある。この接続方法
にはろう付法。
Recently, there has also been a movement to improve the cooling performance of the blade by installing a large number of complex cooling holes inside the blade, thereby improving product performance. In that case, there are two methods: enlarging the casting hole, installing a closing plate in that part after melting, and sealing it by welding, or melting the vicinity of the tip of the blade into two parts and connecting them later. This connection method uses brazing.

拡散接合方法、溶融溶接法の適用が考えられるが、ろう
付法では工程的に長時間を要することとろう材による依
存度が大きく、セツテングの良し悪しで接合性が大巾に
異なり、複雑構造部品を均一に接続するのは難しい等の
問題がある。一方、拡散接合方法では接続時に高圧力を
負荷しなければならず、接合後に変形が生じることと接
合に長時間を要し、生産性が悪い等の問題がある。また
、溶融溶接では材料そのものが炭化物や金属間化合物を
析出させることで高強度を得るようにしているため、ア
ーク溶接した後に、溶接熱影響部に多くの高温割れが発
生する等の問題があり適用できなかった。
Diffusion bonding methods and fusion welding methods can be considered, but brazing requires a long process time and is highly dependent on the brazing filler metal, and bonding performance varies widely depending on the quality of the setting, resulting in complex structures. There are problems such as difficulty in uniformly connecting parts. On the other hand, the diffusion bonding method requires high pressure to be applied during connection, which causes deformation after bonding, takes a long time to bond, and has problems such as poor productivity. In addition, in fusion welding, the material itself is made to precipitate carbides and intermetallic compounds to obtain high strength, so there are problems such as many hot cracks occurring in the weld heat affected zone after arc welding. Could not be applied.

本発明の目的は改良されたNi基超超合金用いることに
よって、溶接割れが多発し、アーク溶接法の適用が不可
能で、溶接構造化が図れなかったものを可能とすると同
時に、生産性の点でも最も有効な手段であるアーク溶接
法が適用できる方法を提供することにある。
The purpose of the present invention is to use an improved Ni-base superalloy to make welded structures possible due to frequent weld cracking, which made it impossible to apply arc welding, and at the same time to improve productivity. The object of the present invention is to provide a method to which the arc welding method, which is the most effective method, can be applied.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の要点はNi基超超合金耐熱材料溶融溶接した際
に発生する溶接割れは粒界割れであり、それを防止して
溶接構造翼を製作することにある。
The main point of the present invention is that the weld cracks that occur when melt welding Ni-based superalloy heat-resistant materials are intergranular cracks, and that it is possible to prevent these to produce a welded structure blade.

従って、上記目的は翼を単結晶化するかそれに近似の結
晶粒とし、分割溶接後に熱処理し、溶接後に溶接欠陥が
生じないような溶接条件を設定して溶接し、溶接構造体
とすることにより達成される。
Therefore, the above purpose is to make the wing into a single crystal or a crystal grain similar to it, heat treat it after welding the parts, and weld the blade under welding conditions such that no welding defects will occur after welding to form a welded structure. achieved.

〔作用〕[Effect]

Ni基超超合金耐熱材料溶融溶接では前述のように溶接
熱影響部に結晶粒界より溶接割れが発生するため溶融溶
接が不可能とされていた。そのため1分割溶製した部品
を溶接により構造化し、翼とすることはできなかった。
In fusion welding of Ni-based superalloy heat-resistant materials, it has been considered impossible to fusion weld them because, as mentioned above, weld cracks occur from grain boundaries in the weld heat-affected zone. Therefore, it was not possible to structure the parts by welding and make them into wings.

その理由は、この種Ni基超合金では合金元素の、添加
量が多いため、その合金元素が単独、又は、化合物の形
で粒界に偏析するためである。すなわち、溶接時には溶
接熱によって結晶粒界が優先的に溶融して脆化したとこ
ろに冷却時の大きな収縮応力が粒界に集中して作用する
ために割れが発生するためである5本発明では、上記の
観点から、翼の構成部品が単結晶か、それに近い材料を
用い、溶接金属に接する結晶粒ができるだけ少なくなる
ように考慮して溶接するもので、この方法によって構造
化したものは溶接割れの無い溶接部が得られる。溶接は
不活性、又は、真空雰囲気中でタングステンイナートガ
スアーク溶接法により行なうが、溶接入熱量、すなわち
、溶接電流×溶接時間を極力低く(約240〜450A
−sac)  おさえる必要があり、溶接電流の適正範
囲は30A〜50Aで、溶接電流を変えた場合には溶接
入熱量が240〜450・A seeの範囲に入るよう
に溶接時間を調整する必要がある。ここで溶接入熱量が
24OA・see以下では溶融不良による溶接欠陥が生
じるのに対して入熱量が450・sec以上となると溶
接熱による歪みが増大し、割れが発生し易くなると同時
に溶接金属へ材料成分であるB、A11゜Tiの混入量
が著しく増加し、溶接熱影響部だけでなく溶接金属も割
れやすくなる。
The reason for this is that in this type of Ni-based superalloy, since the amount of alloying elements added is large, the alloying elements segregate at the grain boundaries either singly or in the form of a compound. That is, during welding, the grain boundaries are preferentially melted and embrittled by the welding heat, and then during cooling the large shrinkage stress concentrates on the grain boundaries, causing cracks.5 In the present invention, , From the above point of view, the blade components are made of single crystal or a material close to it, and welding is done with consideration given to minimizing the number of crystal grains in contact with the weld metal, and structures structured using this method are considered to be welded. A crack-free weld can be obtained. Welding is performed by tungsten inert gas arc welding in an inert or vacuum atmosphere, but the welding heat input, that is, welding current x welding time, is kept as low as possible (approximately 240 to 450 A).
-sac) The appropriate range of welding current is 30A to 50A, and when changing the welding current, it is necessary to adjust the welding time so that the welding heat input falls within the range of 240 to 450 Asee. be. If the welding heat input is less than 24OA・see, welding defects will occur due to poor fusion, whereas if the heat input is more than 450・sec, the distortion due to welding heat will increase, making it easier for cracks to occur, and at the same time the weld metal will be damaged. The amount of the components B and A11°Ti increases significantly, and not only the weld heat affected zone but also the weld metal becomes susceptible to cracking.

次に、タングステンイナートガス溶接(TIG)時の電
極は細径のトリウム入りタングステンを用い、溶接時に
はシールドガスとして12 Q /l1inのアルゴン
ガスを流すと同時に補助ガスとして3Q/min程度の
アルゴンガスを流し、溶接部の酸化、窒化を防止する必
要がある。また、溶加棒としては延性のあるハステロイ
系、又は、インコネル系を用いるのが適当で、翼材と同
組成の溶加棒を用いた場合には溶接金属とした時に成分
偏析が生じ著しい割れを生じる6 溶接施工は溶接しようとする物すべて(第3図〜第5図
)について溶接前に500〜650’Cに加熱しておく
必要がある。この温度が500℃より低い場合には溶接
後、溶接部と溶接していない所とで温度差が生じ熱歪に
よる割れが発生する。
Next, during tungsten inert gas welding (TIG), a thin thorium-filled tungsten electrode is used, and during welding, 12 Q/l1in of argon gas is flowed as a shield gas, and at the same time, argon gas is flowed at about 3Q/min as an auxiliary gas. , it is necessary to prevent oxidation and nitridation of welded parts. In addition, it is appropriate to use a ductile Hastelloy or Inconel filler rod, and if a filler rod with the same composition as the blade material is used, component segregation will occur when the weld metal is used, resulting in severe cracking. 6. During welding work, it is necessary to heat all the objects to be welded (Figures 3 to 5) to 500 to 650'C before welding. If this temperature is lower than 500°C, a temperature difference will occur between the welded part and the unwelded part after welding, and cracks will occur due to thermal strain.

一方、650℃より高い温度に加熱すると材料の延性が
低下し、割れが発生しやすくなる。
On the other hand, when heated to a temperature higher than 650° C., the ductility of the material decreases and cracks are more likely to occur.

また、Ni基超超合金耐熱鋼溶接前の熱処理(調質処理
)の有無によっても溶接割れの発生に大きな差を生じ、
溶製のままのものより熱処理を施こした材料を溶接した
場合には、溶接割れの発生は少ない。従って、本発明の
方法により翼の溶接構造化を図る場合には、溶接の前に
材料の熱処理(1204℃+1093℃)を行なってお
く必要がある。
Additionally, there is a large difference in the occurrence of weld cracking depending on whether or not heat treatment (thermal treatment) is performed before welding the Ni-based superalloy heat-resistant steel.
Welding cracks are less likely to occur when heat-treated materials are welded than as-made materials. Therefore, when welding a blade into a structure using the method of the present invention, it is necessary to heat-treat the material (1204° C. + 1093° C.) before welding.

この方法により、第3図及び第4図の蓋を溶接するとと
もに、閉板を含むキャップの溶接を試み、溶接部をミク
ロ的に調べた結果、第6図及び第7図に示すように、割
れ発生のない溶接部の得られることがわかった。
Using this method, we attempted to weld the lids shown in Figures 3 and 4 as well as the cap including the closing plate, and microscopically examined the welded parts, as shown in Figures 6 and 7. It was found that a welded part without cracking could be obtained.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1表、第2表及び第1図な
いし第7図により説明する。第1表は翼材及び溶加棒の
化学組成を示す。
An embodiment of the present invention will be described below with reference to Table 1, Table 2, and FIGS. 1 to 7. Table 1 shows the chemical composition of the wing material and filler rod.

第  1  表 第  2  表 翼材は炭化物及び金属間化合物の析出で強度の向上を図
っているNi基超超合金耐熱材料ある。
Table 1 Table 2 The blade material is a Ni-based super superalloy heat-resistant material whose strength is improved by precipitation of carbides and intermetallic compounds.

この材料について第2図に示す翼の基部を含む翼部と閉
板を別々に溶製し、溶接によって構造化したものと、翼
部先端付近を横割りしたような状態で溶製した後、翼先
端のキャップを翼に溶接するようにした。すなわち、第
3図では直径5+m程度の鋳孔を設けて溶製した後、翼
と同条件で溶製した蓋を設置して溶接したものである。
Regarding this material, the wing part including the base of the wing and the closing plate shown in Fig. 2 are melted separately and structured by welding, and the vicinity of the wing tip is melted in a horizontally split state. The wing tip caps are now welded to the wings. That is, in FIG. 3, a casting hole with a diameter of about 5+ m was made and melted, and then a lid made under the same conditions as the blade was installed and welded.

第4図は翼部先端部の閉板を除いた状態で溶製し、後で
翼部と同一条件で溶製した閉板を設置して溶接したもの
である。尚、第3図及び第5図で、閉仮に蓋を設置する
場合には、第6図に示すように、閉板に0.5XO,5
■程度の突起部を設は蓋が落ちないように考慮している
。また、第5図は閉板を含むキャップと翼部を別々に溶
製し、溶接によって構造化したものである。
Fig. 4 shows a blade which was melted without the closing plate at the tip of the wing, and later the closing plate, which had been melted under the same conditions as the wing, was installed and welded. In addition, in Figures 3 and 5, if a closing cover is installed, as shown in Figure 6, 0.5XO, 5
■Protrusions of approximately 100 yen are provided to prevent the lid from falling off. In addition, FIG. 5 shows a structure in which the cap including the closing plate and the wing portion are separately melted and welded.

溶接は入熱量(溶接電流×溶接時間)が240〜450
 A−seeの範囲内に入るように、また溶接時の溶込
み量が第6図に示す閉板の厚さの1/2から273にな
るように時間調整を行ないながら第1表の溶加棒を挿入
し、溶接トーチから12g/winのアルゴンガスを流
すとともに翼全体をアルゴン充填した容器の中に設置し
て溶接した。
For welding, the heat input (welding current x welding time) is 240 to 450.
While adjusting the time so that it falls within the range of A-see and so that the amount of penetration during welding is from 1/2 to 273 of the thickness of the closed plate shown in Figure 6, A rod was inserted, 12 g/win of argon gas was flowed from a welding torch, and the entire blade was placed in a container filled with argon and welded.

また、溶接前には翼全体を600℃に均一加熱した。溶
接後は第7図に示すような熱処理を施こし、翼とした。
Furthermore, before welding, the entire blade was uniformly heated to 600°C. After welding, the blades were heat treated as shown in Figure 7 to form wings.

翼は染色探傷試験等により健全性を調べた結果、割れの
発生は認められなかった。すなわち、本発明では単結晶
かそれに近い状態に分割溶製し、溶接により構造化した
場合には全く割れの発生は認められない。以上のことが
らNi基超超合金耐熱材料、溶接割れを発生しやすいも
のでは結晶粒を調整し、できるだけ単一の結晶粒とし粒
界に起因した溶接割れの発生を防止することで溶接割れ
のない高品質溶接部が得られる。
As a result of examining the integrity of the blades through dyeing and flaw detection tests, no cracks were found. That is, in the present invention, no cracking is observed when the crystal is divided into single crystals or nearly so, and structured by welding. For the above reasons, weld cracking can be avoided by adjusting the crystal grains of Ni-based super superalloy heat-resistant materials that are prone to weld cracking, and making them as single as possible to prevent weld cracking caused by grain boundaries. High quality welds are obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、複雑冷却孔をもつ翼を溶製する場合、
分割溶製が可能となるため溶製時に発生する欠陥を防ぐ
ことができ、製品性能を向上することができる。
According to the present invention, when manufacturing a blade with complicated cooling holes,
Since split melting is possible, defects that occur during melting can be prevented and product performance can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の熱処理の一例を示す図、第
2図はブレードの全体構造図、第3図ない第5図は本発
明で溶接構造化した翼の構造図、第6図は第3図及び第
4図において閉仮に蓋を設置する場合の設置方法を示す
図、第7図は溶接終了後に施こす熱処理の一例を示す図
である。 1・・・翼部、2・・・中子支持孔、3・・・基部、4
・・・閉板、5・・・閉板流路蓋、6・・・翼側板。 8 ノ 国 第2旧 第31!]     第4図 $ 5 ロ
Fig. 1 is a diagram showing an example of heat treatment according to an embodiment of the present invention, Fig. 2 is an overall structural diagram of a blade, Figs. The figure shows an installation method when the lid is temporarily closed in FIGS. 3 and 4, and FIG. 7 shows an example of heat treatment performed after welding is completed. DESCRIPTION OF SYMBOLS 1... Wing part, 2... Core support hole, 3... Base, 4
... Closing plate, 5... Closing plate channel cover, 6... Wing side plate. 8 No. Country 2nd Old No. 31! ] Figure 4 $ 5 b

Claims (1)

【特許請求の範囲】 1、Ni基超合金からなる複雑冷却構造ブレードの中子
の支持、及び、溶出を容易ならしめるために、翼先端部
に設けられた支持孔の封止接合、又は、前記翼先端部を
本体と分割溶製した後、接合によつて一体化する方法に
おいて、材料は単結晶材かそれに類似のもので、Fe又
はNi基の溶加棒を用い不活性雰囲気または真空中で溶
接し、結晶粒界に起因する溶接割れの発生を防止した溶
接構造体を得るようにしたことを特徴とする翼の製作方
法。 2、特許請求の範囲の第1項において、 前記翼は溶製時に単結晶かそれに類似に調整されたもの
で、その大きさは溶接後において溶接金属に接する結晶
数が極力少なくなるようにしたことを特徴とする翼の製
作方法。 3、特許請求の範囲の第1項において、 分割溶製は基部を含む前記翼部と閉板、前記基部を含む
前記翼の一部と翼先端部とを別々に行ない、結晶粒の大
きさが単結晶かそれと類似に調整されたものを用いるこ
とを特徴とする翼の製作方法。 4、特許請求の範囲の第1項、第2項または第3項にお
いて、 溶接は不活性ガス又は真空雰囲気中で500〜650℃
の予熱を行なった後、溶接欠陥の生じない程度の少ない
入熱で行なうことを特徴とする翼の製作方法。 5、特許請求の範囲の第1項において、 前記翼の溶接構造化は翼先端に設けた孔を部分的又全面
的に前記閉板で蓋するか前記基部を含む前記翼の一部と
前記翼先端部を別々に溶製、熱処理後に溶接構造体とす
ることを特徴とする翼の製作方法。
[Claims] 1. Supporting the core of a blade with a complex cooling structure made of a Ni-based superalloy, and sealing and joining of a support hole provided at the tip of the blade to facilitate elution; In the method in which the blade tip is melted separately from the main body and then integrated by joining, the material is a single crystal material or a similar material, and an Fe or Ni-based filler rod is used in an inert atmosphere or vacuum. A method for manufacturing a wing, characterized in that a welded structure is obtained by welding inside the blade to prevent the occurrence of weld cracks caused by grain boundaries. 2. In claim 1, the wing is a single crystal or adjusted to be similar to it at the time of melting, and its size is such that the number of crystals in contact with the weld metal after welding is as small as possible. A method for manufacturing wings characterized by the following. 3. In claim 1, split melting is performed separately for the wing portion including the base portion and the closing plate, and for the portion of the wing including the base portion and the blade tip portion, and the size of the crystal grains is A method for manufacturing a wing, characterized in that the method uses a single crystal or a material adjusted to be similar to the single crystal. 4. In claim 1, 2, or 3, welding is performed at 500 to 650°C in an inert gas or vacuum atmosphere.
1. A method of manufacturing a blade, which is characterized in that after preheating, the welding is performed with a low heat input that does not cause welding defects. 5. In claim 1, the welding structure of the blade includes partially or completely covering a hole provided at the tip of the blade with the closing plate, or connecting a part of the blade including the base with the blade. A method for manufacturing a blade, characterized by separately melting the tip of the blade, heat-treating it, and then forming a welded structure.
JP26385587A 1987-10-21 1987-10-21 How to make wings Pending JPH01107973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26385587A JPH01107973A (en) 1987-10-21 1987-10-21 How to make wings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26385587A JPH01107973A (en) 1987-10-21 1987-10-21 How to make wings

Publications (1)

Publication Number Publication Date
JPH01107973A true JPH01107973A (en) 1989-04-25

Family

ID=17395168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26385587A Pending JPH01107973A (en) 1987-10-21 1987-10-21 How to make wings

Country Status (1)

Country Link
JP (1) JPH01107973A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569239A (en) * 1991-03-11 1993-03-23 General Motors Corp <Gm> Joining method for single crystal turbine blade half
JP2003065068A (en) * 2001-08-29 2003-03-05 Mitsubishi Heavy Ind Ltd Method for closing used hole on top of gas turbine blade
JP2010042448A (en) * 2008-08-04 2010-02-25 General Electric Co <Ge> Strategically placed large grain in superalloy casting to improve weldability
KR20140141470A (en) * 2013-05-29 2014-12-10 알스톰 테크놀러지 리미티드 Method for closing an aperture on a blade of a gas turbine
JP2016513183A (en) * 2013-02-22 2016-05-12 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Pre-weld heat treatment for nickel-base superalloys
US20190022784A1 (en) * 2017-07-18 2019-01-24 General Electric Company Method for closing a hole in a metal article

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569239A (en) * 1991-03-11 1993-03-23 General Motors Corp <Gm> Joining method for single crystal turbine blade half
JP2003065068A (en) * 2001-08-29 2003-03-05 Mitsubishi Heavy Ind Ltd Method for closing used hole on top of gas turbine blade
US6984801B2 (en) 2001-08-29 2006-01-10 Mitsubishi Heavy Industries, Ltd. Method of closing a hole in a gas turbine blade top by laser welding
JP2010042448A (en) * 2008-08-04 2010-02-25 General Electric Co <Ge> Strategically placed large grain in superalloy casting to improve weldability
US8809724B2 (en) 2008-08-04 2014-08-19 General Electric Company Strategically placed large grains in superalloy casting to improve weldability
JP2016513183A (en) * 2013-02-22 2016-05-12 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Pre-weld heat treatment for nickel-base superalloys
US9528175B2 (en) 2013-02-22 2016-12-27 Siemens Aktiengesellschaft Pre-weld heat treatment for a nickel based superalloy
KR20140141470A (en) * 2013-05-29 2014-12-10 알스톰 테크놀러지 리미티드 Method for closing an aperture on a blade of a gas turbine
JP2014231096A (en) * 2013-05-29 2014-12-11 アルストム テクノロジー リミテッドALSTOM Technology Ltd Method for closing aperture provided on blade of gas turbine
US20190022784A1 (en) * 2017-07-18 2019-01-24 General Electric Company Method for closing a hole in a metal article
US10618128B2 (en) * 2017-07-18 2020-04-14 General Electric Company Method for closing a hole in a metal article

Similar Documents

Publication Publication Date Title
EP2902516B1 (en) A weld filler for nickel-base superalloys
US6164916A (en) Method of applying wear-resistant materials to turbine blades, and turbine blades having wear-resistant materials
US3632319A (en) Diffusion bonding of superalloy members
JP4485619B2 (en) Nickel-base superalloy and pre-weld heat treatment of this nickel-base superalloy
US5902421A (en) Nickel-base braze material
US6596411B2 (en) High energy beam welding of single-crystal superalloys and assemblies formed thereby
JP3218567B2 (en) Welding of high-strength nickel-base superalloys.
RU2679503C2 (en) Precipitation strengthened nickel based welding material for fusion welding of superalloys
KR102456806B1 (en) Method of welding superalloys
Ren et al. Liquation cracking in fiber laser welded joints of inconel 617
US5951792A (en) Method for welding age-hardenable nickel-base alloys
KR100876171B1 (en) Electron beam welding method
US6639173B1 (en) Electron beam welding method providing post-weld heat treatment
US7533795B2 (en) Welding process
CN106077951B (en) Control the method that nickel-base alloy multilayer wire filling laser welding beat-affected zone crack is formed
US6652677B2 (en) Process of welding gamma prime-strengthened nickel-base superalloys
US3711936A (en) Method for forming composite articles from alloy in temporary condition of superplasticity
Wang et al. Microstructure evolution of laser repair welded René 77 nickel-based superalloy cast
RU2666822C2 (en) Ductile boron-bearing nickel based welding material
US6049060A (en) Method for welding an article and terminating the weldment within the perimeter of the article
JPH01107973A (en) How to make wings
Sjöberg et al. Evaluation of the in 939 alloy for large aircraft engine structures
US20230123302A1 (en) Method for welding iron-aluminum intermetallic compound microporous material and welded part made thereby
CN113547188B (en) Welding process of high-temperature alloy with high Al and Ti contents
JP3210398B2 (en) Repair method of bucket