[go: up one dir, main page]

JPH01118520A - Method for producing flame-retardant resin composition for laminates - Google Patents

Method for producing flame-retardant resin composition for laminates

Info

Publication number
JPH01118520A
JPH01118520A JP27695487A JP27695487A JPH01118520A JP H01118520 A JPH01118520 A JP H01118520A JP 27695487 A JP27695487 A JP 27695487A JP 27695487 A JP27695487 A JP 27695487A JP H01118520 A JPH01118520 A JP H01118520A
Authority
JP
Japan
Prior art keywords
diglycidyl ether
flame retardant
flame
resin composition
retardant resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27695487A
Other languages
Japanese (ja)
Inventor
Mitsutoshi Kamata
満利 鎌田
Masaru Ogata
緒方 優
Yukihiro Yamashita
幸宏 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP27695487A priority Critical patent/JPH01118520A/en
Publication of JPH01118520A publication Critical patent/JPH01118520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、難燃性、耐熱性、可撓性、低温打抜き加工性
の優れた積層板を提供でき、貯蔵安定性に優れた積層板
用難燃性樹脂組成物の製造法。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention can provide a laminate with excellent flame retardancy, heat resistance, flexibility, and low-temperature punching processability, and has excellent storage stability. Method for producing flammable resin composition.

従来の技術 近年、家庭用電気機器の安全性の面から、これに使用さ
れるプリント回路基板(積層板で構成される)の難燃化
の要求が高まって来た。同時に、多岐にわたる要求特性
項目の中でも、寸法精度の要求から低温打抜き加工性あ
るいは無加熱打抜き加工性及び耐熱性に対する要求が年
々厳しくなっている。
BACKGROUND OF THE INVENTION In recent years, in view of the safety of household electrical appliances, there has been an increasing demand for flame retardant printed circuit boards (comprised of laminated boards) used therein. At the same time, among the wide variety of required characteristic items, demands for low-temperature punching workability or non-heating punching workability and heat resistance are becoming stricter year by year due to demands for dimensional accuracy.

これに対し、従来の難燃樹脂あるいは難燃剤では、これ
らの要求を完全に満足することは困難であった。
In contrast, it has been difficult to completely satisfy these requirements with conventional flame retardant resins or flame retardants.

即ち、従来の難燃剤として、反応性を持たない低分子量
の添加型難燃剤と、反応性を持つ反応屋難燃剤が知られ
ている。添加を難燃剤を使用した場合、これを配合した
樹脂の耐熱性、耐薬品性、電気特性が低下し、さらに、
架橋密度の低下によシ、得られた積層板の眉間密着性が
著しく低下する。特に、打抜き加工性については、眉間
はく離、打抜き時の粉落ち、ダイスの大詰り等の欠点が
現われやすくなる。
That is, as conventional flame retardants, there are known low molecular weight additive flame retardants that do not have reactivity and reactive flame retardants that have reactivity. If a flame retardant is added, the heat resistance, chemical resistance, and electrical properties of the resin blended with it will decrease, and
As the crosslinking density decreases, the glabella adhesion of the obtained laminate significantly decreases. In particular, with regard to punching workability, defects such as flaking between the eyebrows, falling powder during punching, and clogging of the die are likely to occur.

反応型難燃剤を配合して使用した場合、前記の欠点は少
いものの、積層板とした時の樹脂の架橋密度の増加によ
り、積層板の軟化温度を高温側に移動させ、低温あるい
は無加熱の打抜きに適さなくなり、また、その反応性の
ため、配合樹脂、塗工基材の貯蔵安定性が悪くなる。
When used in combination with reactive flame retardants, the above disadvantages are small, but due to the increase in the crosslinking density of the resin when made into a laminate, the softening temperature of the laminate moves to a higher temperature side, and it can be used at low temperatures or without heating. Also, due to its reactivity, the storage stability of the compounded resin and coated substrate becomes poor.

前者の代表的な例として、ブロム化ビスフェノールA1
ブロム化ジフエニルエールa、)リフェニルフォスフェ
ート及びそのアルキル誘導体があり、また、後者の代聚
例として、ブロム化エポキシ樹脂がある。
A typical example of the former is brominated bisphenol A1
Examples include brominated diphenyl a) liphenyl phosphate and its alkyl derivatives, and examples of the latter include brominated epoxy resins.

実際には、多岐にわたる特性上の要求から、添加型と反
応型難燃剤の両者それぞれの長所短所を考慮しつつ両者
が併用されている。
In reality, due to a wide variety of property requirements, additive type flame retardants and reactive type flame retardants are used in combination, taking into account their respective advantages and disadvantages.

また、両者の併用、特にノ・ロゲン(実用上Brが多用
されている)、リンの併用は別の側面からも利点がある
In addition, the combination of both, especially the combination of nitrogen (Br is often used in practice) and phosphorus, has advantages from other aspects as well.

即ち、難燃効果を持つ元素()飄ロゲン、リン、窒素、
ホウ素等)を単独で使用する場合より、それらを複数併
用した場合の方が、相乗効果によシ難燃効果が増大し、
結果的に難燃剤の総使用量を減少することができるof
た、添加型難燃剤は、優れた可m効果を持つため、その
併用によシ積層板の可撓性、打抜き加工性の向上を行う
ことができる。
In other words, elements that have flame retardant effects () chlorogen, phosphorus, nitrogen,
Boron, etc.) is more effective when used in combination than when used alone due to their synergistic effect.
As a result, the total amount of flame retardant used can be reduced of
In addition, since the additive flame retardant has an excellent molding effect, the flexibility and punching workability of the laminate can be improved by using it in combination.

しかし、例を最も使用頻度の高いBr、 Pの複合系に
ついて挙げると、Br系のものは、添加型と反応型の両
方が実用化されているが、P系のものについては添加型
しか実用化されていない。
However, to give an example of the most frequently used composite system of Br and P, both the additive type and the reactive type are in practical use for the Br type, but only the additive type is in practical use for the P type. has not been standardized.

従って、Br、Pの複合系において、最適難燃効果を示
す配合比を探し得たとしても、前述の添加型難燃剤の持
つ欠点のため、簡単に使用量を増加することができず、
充分な可撓性を発揮す石屑まで、増量することができな
かった。
Therefore, even if it were possible to find a blending ratio that exhibits the optimal flame retardant effect in a composite system of Br and P, it would not be possible to easily increase the amount used due to the drawbacks of the additive type flame retardant mentioned above.
It was not possible to increase the amount of stone chips that would provide sufficient flexibility.

発明が解決しようとする問題点 以上から、従来P系化合物を使用する難燃性樹脂及び難
燃剤は積層板特性上での様々な制約から、最適な難燃効
果を得るための配合比率の自由度が非常に狭く、必ずし
も最も難燃効果の高い配合系が選択されているとは言え
なかった0本発明は、上記の点に鑑み、これを配合使用
して、難燃性、耐熱性、可撓性、低温打抜き加工性に優
れた積層板を得られ、また、貯蔵安定性に優れた積層板
用難燃性樹脂組成物を提供することを目的とする。
Problems to be Solved by the Invention From the above, flame retardant resins and flame retardants that conventionally use P-based compounds have various restrictions on the properties of laminates, so there is a lack of freedom in the blending ratio to obtain the optimal flame retardant effect. The degree of flame retardancy is very narrow, and it cannot be said that the blending system with the highest flame retardant effect is necessarily selected. It is an object of the present invention to provide a flame-retardant resin composition for a laminate, which can provide a laminate with excellent flexibility and low-temperature punching processability, and also has excellent storage stability.

問題点を解決するための手段 本発明は上記の目的を達成するためになされたもので、
ブロム化ビスフェノールAジグリシジルエーテルと一般
式(1)で示されるブロム化ビスフェノールAアルキル
オキシド付加物ジグリシジルエーテルを第三級アミンを
触媒として反応させた後、トリフェニル7オスフアイト
を反応させ、さらにホルムアルデヒドを反応させること
を特徴とする積層板用難燃性樹脂組成物の製造法である
Means for Solving the Problems The present invention has been made to achieve the above objects.
Brominated bisphenol A diglycidyl ether and brominated bisphenol A alkyl oxide adduct diglycidyl ether represented by general formula (1) are reacted using a tertiary amine as a catalyst, and then triphenyl hepta-osphite is reacted, and formaldehyde is further reacted. This is a method for producing a flame-retardant resin composition for a laminate, which is characterized by reacting the following.

作用 ブロム化ビスフェノールAジグリシジルエーテルと一般
式(1)で示されるブロム化ビスフェノールAアルキル
オキシド付加物ジグリシジルエーテルを併用することに
より、後者のアルキルオキシド基造の存在が、可撓性を
与え、従来ブロム化ビスフェノールAジグリシジルエー
テルにおいては充分でなかった可撓性を発揮させ、かつ
、なお反応分子末端には反応基であるエボΦシ基を残す
ことにより、可撓性に優れた反応型難燃性樹脂を得るこ
とができる。
Effect By using brominated bisphenol A diglycidyl ether and brominated bisphenol A alkyl oxide adduct diglycidyl ether represented by general formula (1), the presence of the alkyl oxide group in the latter gives flexibility, This reaction type exhibits flexibility that was not sufficient in the conventional brominated bisphenol A diglycidyl ether, and still has a reactive group, the epoxy group, at the end of the reaction molecule, resulting in a highly flexible reaction type. Flame retardant resin can be obtained.

同時に、アルキルオキシド基を分子骨格に入れる事は、
ブロム置換されたビスフェノールA構造の間隔を可撓性
を持つアルキルオキシド基によって広げることになシ、
結晶化を抑制するため、貯蔵安定性が向上する。
At the same time, incorporating an alkyl oxide group into the molecular skeleton
By widening the spacing of the bromine-substituted bisphenol A structure by a flexible alkyl oxide group,
Storage stability is improved because crystallization is suppressed.

一般式(1)において、 R,、R,が炭素数4以上と
なると耐熱性が若干低下し、また、得られた組成物をメ
タノールリッチなフェノール樹脂に配合して使用すると
相溶性が低下する。
In general formula (1), when R,,R, has a carbon number of 4 or more, the heat resistance slightly decreases, and when the resulting composition is used by blending it with a methanol-rich phenol resin, the compatibility decreases. .

トリフェニルフォスファイトハ、フロム化ヒスフェノー
ルAジグリシジルエーテルと一般式(1)で示される化
合物の反応物が持つ水酸基とエステル反応を起こし、フ
ェノールを放出しながら該反応物分子に化学的に結合す
る(式(2)を参照)。
Triphenylphosphite causes an ester reaction with the hydroxyl group of the reactant of the compound represented by the general formula (1) and the furomated hisphenol A diglycidyl ether, and chemically bonds to the reactant molecules while releasing phenol. (see equation (2)).

OH+Q−0−fそO−Qう、 トリフェニルフォスファイトは、三官能のため、それ自
身が架橋形成の中心となり得る。この反応によシ、トリ
フェニルフォスファイトは、前記反応物の架橋に関与し
、その骨格に取り込まれて行くため、従来の添加型難燃
剤であるリン酸エステル類の持つ諸欠点を顕在化させず
に、従来よシ高いリン含有量を持たせる事が可能であり
、Br、Pの難燃性に対する相乗効果が最も効果的な所
まで使用量を増加することができる。
OH+Q-0-fsoO-Q Because triphenylphosphite is trifunctional, it can itself become the center of crosslink formation. As a result of this reaction, triphenylphosphite participates in the crosslinking of the reactant and is incorporated into its skeleton, thereby exposing the various drawbacks of phosphate esters, which are conventional additive flame retardants. It is possible to have a higher phosphorus content than in the past without reducing the flame retardance, and the amount used can be increased to the point where the synergistic effect of Br and P on flame retardancy is most effective.

式(2)に示した様に、トリフェニルフォスファイトが
水酸基1モルとエステル反応を行うと、1モルのフェノ
ールが生成する。生成フェノールは、エポキシ基と反応
することによシ、若干架橋密度を低下させ、さらに可撓
性を向上させる。
As shown in formula (2), when triphenylphosphite undergoes an ester reaction with 1 mole of hydroxyl group, 1 mole of phenol is produced. By reacting with the epoxy group, the generated phenol slightly lowers the crosslink density and further improves flexibility.

しかし、このiまでは、未反応のフェノールが残存する
ことは避けられない。従って、本発明は、ブロム化ビス
フェノールAジグリシジルエーテルと一般式(1)で示
されるジグリシジルニーテルトトリフェニルホスファイ
トの反応物に、さらに、生成フェノールをメチロール化
して反応性を持たせるため、ホルムアルデヒドを加える
ことを特徴とする。
However, it is inevitable that unreacted phenol remains until this point i. Therefore, the present invention provides a reaction product of brominated bisphenol A diglycidyl ether and diglycidyl nitrate triphenyl phosphite represented by the general formula (1), and further methylolates the produced phenol to impart reactivity. Characterized by the addition of formaldehyde.

以上の様に、本発明による難燃性樹脂は、リン原子を、
ブロム化ビスフェノールAジグリシジルエーテルと一般
式(1)で示される化合物の反応物の架橋構造中に取シ
込む事によって、特性低下を生じさせずに従来よシリン
含有量を増加させ、単位使用量当量の難燃効果を増加さ
せると共に、生成フェノールの一部がエポキシ基と反応
する事により可撓性を向上させる。さらに、遊離フェノ
ールをメチロール化する事で、系中の全ての成分を、こ
れを離燃剤として配合したフェノール樹脂との反応に関
与させる事が可能である。
As described above, the flame retardant resin according to the present invention has phosphorus atoms,
By incorporating brominated bisphenol A diglycidyl ether and the compound represented by the general formula (1) into the crosslinked structure of the reactant, the syrin content can be increased compared to conventional methods without deteriorating the properties, and the unit usage amount can be increased. In addition to increasing the equivalent flame retardant effect, a portion of the produced phenol reacts with epoxy groups, thereby improving flexibility. Furthermore, by converting free phenol into methylol, all the components in the system can participate in the reaction with the phenolic resin containing this as a flame release agent.

実施例 本発明を実施するに当量、プロふ化ビスフェノールAジ
グリシジルニーチルと一般式(1)で示されるブロム化
ビスフェノールAアルキルオキシド付加物ジグリシジル
エーテルの混合比については、特に制限するものではな
いが、可撓性、貯蔵安定性に対して効果を発揮するため
には、前者100重量部に対して後者が5重量部以上で
あることが望ましい。後者の配合量が増加して来ると、
可撓性、貯蔵安定性は向上するため、単独で使用しても
良い。しかし、前者の配合量が多い場合に比較するとB
r含有率が小さくなるため、所定の難燃効果を得るため
に、適用系に応じて二者の混合比率を調整する方が良い
。この二者の反応に使用できる触媒としては、トリメチ
ルアミン、トリエチルアミン、トリ゛エタノールアミン
、ベンジルジメチルアミン等の第三級アミンを使用する
。第一、第二級アミンを使用すると、三次元の架橋構造
が生成しゃすくなシ、本発明によシ得た難燃性樹脂を配
合して使用するフェノール樹脂との相溶性が失われる。
EXAMPLE There is no particular restriction on the mixing ratio of pro-prophylated bisphenol A diglycidyl nityl and brominated bisphenol A alkyl oxide adduct diglycidyl ether represented by the general formula (1) in an amount equivalent to carrying out the present invention. However, in order to exhibit effects on flexibility and storage stability, it is desirable that the latter be at least 5 parts by weight per 100 parts by weight of the former. As the amount of the latter increases,
Since flexibility and storage stability are improved, it may be used alone. However, when compared to the case where the former is blended in a large amount, B
Since the r content decreases, it is better to adjust the mixing ratio of the two depending on the application system in order to obtain a predetermined flame retardant effect. As a catalyst that can be used for the reaction between the two, tertiary amines such as trimethylamine, triethylamine, triethanolamine, and benzyldimethylamine are used. If a primary or secondary amine is used, a three-dimensional crosslinked structure will not be formed, and the flame retardant resin obtained according to the present invention will lose its compatibility with the phenolic resin used in the blend.

力a 触媒添可量としては、プロふ化ビスフェノールAジグリ
シジルエーテルと一般式(1)で示される化合物の固形
重量に対し、O,OS〜5チの範囲が望ましい。
Force a The amount of catalyst that can be added is preferably in the range of O,OS to 5% based on the solid weight of the prophylated bisphenol A diglycidyl ether and the compound represented by the general formula (1).

プロふ化ビスフェノールAジグリシジルエーテル、一般
式(1)で示される化合物とトリフェニルフォスファイ
トの使用比率については、未反応のトリフェニルフォス
ファイトが残存することを避けるため、〔ブロム化ビス
フェノールAジグリシジルエーテルと一般式(1)で示
される化合物の反応物の水酸基当量〕≧〔トリフェニル
フオスファイトの分子量X 1/3)となる様にした方
が良い。
Regarding the usage ratio of pro-brominated bisphenol A diglycidyl ether, the compound represented by the general formula (1) and triphenylphosphite, in order to avoid unreacted triphenylphosphite remaining, [brominated bisphenol A diglycidyl ether] It is preferable that the hydroxyl group equivalent of the reaction product of the ether and the compound represented by the general formula (1)]≧[molecular weight of triphenylphosphite X 1/3].

また、ホルムアルデヒドの使用量としては、〔トリフェ
ニルフォスファイトのモルaX3)≧〔ホルムアルデヒ
ドのモル数〕≧〔トリフェニルフォスファイトのモル数
〕の範囲が望ましい。過剰に使用すると、ホルムアルデ
ヒドが残存し、使用量が少ない場合、フェノールが残存
する。
The amount of formaldehyde to be used is preferably within the range of [mole aX3 of triphenylphosphite]≧[number of moles of formaldehyde]≧[number of moles of triphenylphosphite]. If used in excess, formaldehyde will remain; if used in small quantities, phenol will remain.

本発明の難燃性樹脂は、これを配合して使用するとき、
単独で使用しても、あるいは比較的少量のトリフェニル
ホスフェート、ブロム化ジフェニルエーテル等の添加型
難燃剤を併用する事も可能であるが、いずれの場合も、
難燃性樹脂及び難燃剤の総使用量を減少することができ
るO 次に、本発明の一実施例を説明する。
When the flame retardant resin of the present invention is blended and used,
It can be used alone or in combination with a relatively small amount of additive flame retardant such as triphenyl phosphate or brominated diphenyl ether, but in either case,
The total amount of flame retardant resin and flame retardant used can be reduced.Next, an embodiment of the present invention will be described.

実施例1 ブロム含有率48チ、エポキシ当量400、水酸基当f
i 2200のブロム化ビスフェノールAジグリシジル
エーテルの60%)ルエン溶液920gト、式1a)で
示されるジグリシジルエーテルの60チトに:r−7溶
t1.613f/ト% ジメチルベンジルアミン2.7
6 pを三ツロフラスコに投入し、90℃で3時間反応
させた。
Example 1 Bromine content 48 t, epoxy equivalent 400, hydroxyl equivalent f
i 2200 brominated bisphenol A diglycidyl ether (60%) toluene solution 920g, 60g of diglycidyl ether of formula 1a): r-7 dissolved t1.613f/t% dimethylbenzylamine 2.7
6p was put into a Mitsuro flask and reacted at 90°C for 3 hours.

次ニ、トリフェニルフォスファイト20Iiを投入し、
80℃で4時間反応後、869bパラホルムアルデヒド
12J[−、Vえ、さらに80℃で2時間反応を続けた
(反応物1)。
Next, add triphenylphosphite 20Ii,
After reacting at 80°C for 4 hours, 869b paraformaldehyde 12J[-, V] was added, and the reaction was further continued at 80°C for 2 hours (Reactant 1).

また、別途桐油変性フェノール樹脂を次の様にして得た
Additionally, a tung oil-modified phenol resin was separately obtained in the following manner.

三ツロフラスコに桐油720 p 、 m−クレゾール
sso、y、パラトルエンスルホン酸0.749を投入
し、80℃で1時間反応後、フェノールsoo、y。
720p of tung oil, m-cresol sso,y, and 0.749p of paratoluenesulfonic acid were put into a Mitsuro flask, and after reacting at 80°C for 1 hour, phenol soo,y was added.

86%パラホルムアルデヒド450II、25%アンモ
ニア水35gを投入し、80℃反応を進めて、反応生成
物の160℃熱盤上での硬化時間が6分になった時点で
脱水濃縮し、後にメタノールを加え、樹脂分50q6に
v4整した。
86% paraformaldehyde 450II and 35 g of 25% aqueous ammonia were added, the reaction was carried out at 80°C, and when the reaction product hardened on a 160°C heating plate for 6 minutes, it was dehydrated and concentrated, and then methanol was added. In addition, the resin content was adjusted to v4 to 50q6.

との桐油変性フェノール樹脂と前記反応物1を固形分比
率で、〔桐油変性フェノール樹脂〕/〔反応物1 ) 
=80/20の割合で混合溶解し、11ミルスのクラフ
ト紙基材に樹脂付着量509bとなるよう塗工乾燥した
The solid content ratio of the tung oil-modified phenolic resin and the reactant 1 is [tung oil-modified phenolic resin]/[reactant 1].
The mixture was mixed and dissolved in a ratio of 80/20, and coated and dried on a kraft paper base of 11 mils to a resin adhesion amount of 509b.

接着剤付き35μ厚銅箔と前記塗工済み紙基材8枚を組
合せ積層し、加熱・加圧して厚さ1.6 mmの片面銅
張り積層板を得た。
A 35μ thick copper foil coated with an adhesive and eight sheets of the above-mentioned coated paper base material were combined and laminated, and heated and pressed to obtain a single-sided copper-clad laminate having a thickness of 1.6 mm.

実施例2 ブロム含有448%、エポキシ当i 400 、水酸基
当量2200のブロム化ビスフェノールAジグリシジル
エーテルのトルエン溶液1380gと式(b)で示され
るジグリシジルエーテルの60%)ルエン溶液153g
とトリエチルアミン2.09を三ツロフラスコに投入し
、90℃で3時間反応させた。
Example 2 1380 g of a toluene solution of brominated bisphenol A diglycidyl ether having a bromine content of 448%, an epoxy equivalent i of 400, and a hydroxyl equivalent of 2200, and 153 g of a 60% toluene solution of the diglycidyl ether represented by formula (b).
and 2.09 g of triethylamine were charged into a Mitsuro flask and reacted at 90° C. for 3 hours.

次に、トリフェニルフォスファイト309を投入し、8
0℃で4時間反応後、86%パラホルムアルデヒド15
gを加え、さらに80℃で2時間反応を続けた(反応物
2)。
Next, add triphenyl phosphite 309 and
After reacting for 4 hours at 0°C, 86% paraformaldehyde 15
g was added thereto, and the reaction was further continued at 80° C. for 2 hours (Reactant 2).

反応物2を用い、以下、実施例1と同様の配合量、方法
によシ、厚さ1.6 mmの片面銅張シ積層板を得た。
Using Reactant 2 and using the same blending amount and method as in Example 1, a single-sided copper-clad laminate with a thickness of 1.6 mm was obtained.

比較例1 実施例1で使用した桐油変性フェノール樹脂とブロム含
有率48チ、エポキシ当量400のブロム化ビスフェノ
ールAジグリシジルエーテルの60%)ルエン溶液を固
形分比率で、〔桐油変性フェノール樹脂)/(ブロム化
ビスフェノールAジグリシジルエーテル)=80/20
の割合で混合溶解し、これを11ミルスのクラフト紙に
塗工乾燥して、以下、実施例1と同様の方法で厚さ1.
6Mの片面銅張)積層板を得た。
Comparative Example 1 The tung oil-modified phenolic resin used in Example 1 and a 60% toluene solution of brominated bisphenol A diglycidyl ether with a bromine content of 48 T and an epoxy equivalent of 400 were mixed in terms of solid content ratio, [tung oil-modified phenolic resin]/ (Bromated bisphenol A diglycidyl ether) = 80/20
The mixture was mixed and dissolved at a ratio of 1.5 mils, coated on 11 mils kraft paper and dried.
A 6M single-sided copper-clad) laminate was obtained.

比較例2 実施例1で使用した桐油変性フェノール樹脂ト比較例1
で使用し、たブロム化ビスフェノールAジグリシジルエ
ーテルとトリフェニルホスフェートを固形分比率で、〔
桐油変性フェノ−ルミt脂)/(ブロム化ビスフェノー
ルAジグリシジルエーテル)/()リフェニルホスフェ
ート) =60/30/10の割合で混合溶解し、これ
を11ミルスのクラフト紙に塗工乾燥して、以下、実施
例1と同様の方法で厚さ1.6Mの片面鋼張り積層板を
得た。
Comparative Example 2 Tung oil modified phenolic resin used in Example 1 Comparative Example 1
The solid content of brominated bisphenol A diglycidyl ether and triphenyl phosphate was [
Tung oil modified phenolumite fat)/(brominated bisphenol A diglycidyl ether)/() liphenyl phosphate) were mixed and dissolved in a ratio of 60/30/10, and this was coated on 11 mils kraft paper and dried. Then, a single-sided steel-clad laminate having a thickness of 1.6M was obtained in the same manner as in Example 1.

実施例、比較例で得た積層板の試験結果を第1表に示す
Table 1 shows the test results of the laminates obtained in Examples and Comparative Examples.

、l0鈎 第1表 発明の効果 以上の試験結果から明らかなように、本発明によ)、難
燃効果が向上し、可撓性、耐熱性、に優れた積層板のた
めの難燃性樹脂組成物を製造でき、樹脂溶液及び塗工基
材の貯蔵安定性も向上する。
, 10 Hook Table 1 Effects of the Invention As is clear from the above test results, the present invention has improved flame retardant effect, and provides flame retardant properties for laminates with excellent flexibility and heat resistance. A resin composition can be produced, and the storage stability of the resin solution and coating substrate can also be improved.

また、本発明の手法により、系中に未反応の可m剤的作
用を示す成分をほとんど含まないため、上記の効果に加
えて、積層板の耐薬品性も著しく向上する。
Further, by the method of the present invention, since the system contains almost no unreacted components exhibiting a mercury-like action, in addition to the above-mentioned effects, the chemical resistance of the laminate is also significantly improved.

Claims (1)

【特許請求の範囲】 ブロム化ビスフェノールAジグリシジルエーテルと、一
般式(1)で示されるブロム化ビスフェ▲数式、化学式
、表等があります▼(1) m、n=1〜6の整数 ノールAアルキルオキシド付加物ジグリシジルエーテル
を第三級アミンを触媒として反応させた後、トリフェニ
ルフォスファイトを反応させ、さらに、ホルムアルデヒ
ドを反応させることを特徴とする積層板用難燃性樹脂組
成物の製造法。
[Claims] Brominated bisphenol A diglycidyl ether and brominated bisphene represented by the general formula (1) ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼ (1) Integer Nord A where m and n = 1 to 6 Production of a flame-retardant resin composition for a laminate, which comprises reacting an alkyl oxide adduct diglycidyl ether using a tertiary amine as a catalyst, then reacting triphenylphosphite, and then reacting formaldehyde. Law.
JP27695487A 1987-10-30 1987-10-30 Method for producing flame-retardant resin composition for laminates Pending JPH01118520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27695487A JPH01118520A (en) 1987-10-30 1987-10-30 Method for producing flame-retardant resin composition for laminates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27695487A JPH01118520A (en) 1987-10-30 1987-10-30 Method for producing flame-retardant resin composition for laminates

Publications (1)

Publication Number Publication Date
JPH01118520A true JPH01118520A (en) 1989-05-11

Family

ID=17576727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27695487A Pending JPH01118520A (en) 1987-10-30 1987-10-30 Method for producing flame-retardant resin composition for laminates

Country Status (1)

Country Link
JP (1) JPH01118520A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101039474B1 (en) * 2006-01-27 2011-06-07 가부시키가이샤 소키아·토푸콘 Rotary encoder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101039474B1 (en) * 2006-01-27 2011-06-07 가부시키가이샤 소키아·토푸콘 Rotary encoder

Similar Documents

Publication Publication Date Title
JPH0411662A (en) Flame-retardant thermosetting resin composition
JPS636016A (en) Production of flame-retarding resin composition for laminate
CN102838841B (en) Epoxy resin composition and prepreg and copper clad laminate manufactured by using same
JPH01118520A (en) Method for producing flame-retardant resin composition for laminates
JPH0315927B2 (en)
JPH01223158A (en) Flame-retardant phenolic resin composition
JPH01118521A (en) Method for producing flame-retardant resin composition for laminates
JPH01144414A (en) Method for producing flame-retardant resin composition for laminates
JPH01115922A (en) Method for producing flame-retardant resin composition for laminates
JPH01144413A (en) Method for producing flame-retardant resin composition for laminates
JPH01108229A (en) Production of flame-retarding laminate
JPS60192732A (en) Manufacturing method of laminates
JPS6356517A (en) Production of flame-retardant resin composition for laminated sheet
JPH01118522A (en) Preparation of flame-retardant resin composition for laminate
JPS6018531A (en) Resin composition for flame-retardant laminated board
JPS636014A (en) Method for producing flame-retardant resin composition for laminates
JPS6357627A (en) Production of flame-retarding resin composition for laminate
JP3148050B2 (en) Manufacturing method of flame retardant copper clad laminate
JP2000336145A (en) Flame-retardant epoxy resin composition free from halogen
JPH0267310A (en) Flame retardant phenolic resin composition and laminate
JPS5952905B2 (en) Flame retardant phenolic resin composition
JPS5853909A (en) Method for producing modified phenolic resin composition for flame-retardant laminates
JPS633016A (en) Production of flame-retardant resin composition for laminated sheet
JPS6112720A (en) Flame-retardant for laminate
JPH07119354B2 (en) Phenolic resin composition for laminated board