[go: up one dir, main page]

JPH01110295A - Water pressure control unit inspection equipment - Google Patents

Water pressure control unit inspection equipment

Info

Publication number
JPH01110295A
JPH01110295A JP62266396A JP26639687A JPH01110295A JP H01110295 A JPH01110295 A JP H01110295A JP 62266396 A JP62266396 A JP 62266396A JP 26639687 A JP26639687 A JP 26639687A JP H01110295 A JPH01110295 A JP H01110295A
Authority
JP
Japan
Prior art keywords
control valve
valve
directional control
water
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62266396A
Other languages
Japanese (ja)
Inventor
Takao Ishiyama
石山 孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62266396A priority Critical patent/JPH01110295A/en
Publication of JPH01110295A publication Critical patent/JPH01110295A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は制御棒駆動系水圧制御ユニット(HCU)の検
査装置に係り、特に、HCU内弁のシートリーク検査に
好適な水圧制御ユニット検査装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an inspection device for a control rod drive system hydraulic control unit (HCU), and in particular, a hydraulic control unit inspection device suitable for inspecting seat leaks of valves in the HCU. Regarding.

〔従来の技術〕[Conventional technology]

原子炉の出力制御のため、原子炉の炉心部には多数の制
御棒が配置されており、各々の制御棒の挿入・引抜きを
行なうため制御棒の下端は制御棒駆動機構に連結されて
いる。更に、この制御棒駆動機構に供給する駆動水を制
御するため、制御棒駆動機構に一対一で対応したHCU
内方向制御弁ユニットが設けられ、これには制御棒駆動
水圧系で調整された水圧を、常時、供給できるように駆
動水ラインが接続されている。そして、中央制御室から
の駆動信号に応答して各方向制御弁が作動し、必要な水
圧を制御棒駆動機構に供給して制御棒を挿入し、引抜く
ことで原子炉の出力制御を行なっている。
In order to control the output of a nuclear reactor, a large number of control rods are arranged in the core of a nuclear reactor, and the lower ends of the control rods are connected to a control rod drive mechanism to insert and withdraw each control rod. . Furthermore, in order to control the drive water supplied to this control rod drive mechanism, an HCU that corresponds one-to-one to the control rod drive mechanism is installed.
An inward control valve unit is provided, to which a drive water line is connected so that water pressure regulated by the control rod drive hydraulic system can be constantly supplied. Then, each directional control valve operates in response to a drive signal from the central control room, supplies the necessary water pressure to the control rod drive mechanism, inserts and withdraws the control rods, and controls the reactor's output. ing.

これを、従来の制御棒駆動水圧装置の概略を示した第2
図を参照して説明する。水源に接続された駆動水ポンプ
4と、このポンプ4の吐出側に流量調整弁5と圧力調整
弁6とを、順次、直列に接続して設け、流量調整弁5と
圧力調整弁6との間より駆動水ライン7を分岐する。ま
た、この駆動水ライン7は、逆止弁12を介して方向制
御弁ユニット19における挿入方向制御弁15、引抜方
向制御弁17の上流側に接続される。挿入方向制御弁1
5の下流側は二叉に分岐され、一方は、制筒棒駆動機構
2のピストン3の下面に連通ずる挿入ライン10に、他
方は引抜排水方向制御弁18の上流側に接続される。ま
た、引抜方向制御弁17の下流側も二叉に分岐され、一
方は制御棒駆動機構2のピストン3の上面に連通する引
抜ライン11に、他方は挿入排水方向制御弁16の上流
側に接続されている。そして引抜排出方向制御弁18と
、挿入排水方向制御弁16とは、直列に接続されており
、こわらの中間より排水ライン9が分岐されて圧力調整
弁6の下流側に接続されており、更に、圧力調整弁6の
下流側は分岐された冷却水ライン8を介して、挿入ライ
ン10に接続されている。方向制御弁ユニット19にお
ける挿入方向制御弁15.挿入排水方向制御弁16.引
抜方向制御弁17.引抜排水方向制御弁18は、図示さ
れていない中央制御室に電気的に接続されている。
This is shown in Section 2, which shows an outline of the conventional control rod drive hydraulic system.
This will be explained with reference to the figures. A driving water pump 4 connected to a water source, and a flow rate regulating valve 5 and a pressure regulating valve 6 connected in series on the discharge side of this pump 4 are provided, and the flow rate regulating valve 5 and pressure regulating valve 6 are The drive water line 7 is branched from between. Further, this driving water line 7 is connected to the upstream side of the insertion direction control valve 15 and the withdrawal direction control valve 17 in the direction control valve unit 19 via the check valve 12 . Insertion direction control valve 1
The downstream side of 5 is branched into two parts, one of which is connected to an insertion line 10 that communicates with the lower surface of the piston 3 of the cylinder control rod drive mechanism 2, and the other connected to the upstream side of the extraction and drainage directional control valve 18. Furthermore, the downstream side of the withdrawal direction control valve 17 is also branched into two branches, one of which is connected to the withdrawal line 11 communicating with the upper surface of the piston 3 of the control rod drive mechanism 2, and the other connected to the upstream side of the insertion and drainage direction control valve 16. has been done. The extraction and discharge direction control valve 18 and the insertion and drainage direction control valve 16 are connected in series, and the drainage line 9 is branched from the middle of the stiffener and connected to the downstream side of the pressure regulating valve 6. Further, the downstream side of the pressure regulating valve 6 is connected to an insertion line 10 via a branched cooling water line 8. Insertion direction control valve 15 in direction control valve unit 19. Insertion drainage directional control valve 16. Pull-out direction control valve 17. The extraction and drainage directional control valve 18 is electrically connected to a central control room (not shown).

次に、制御棒を出入りさせる動作について説明する。制
御棒駆動機構2に、挿入動作を行なわせるときは中央制
御室の電気信号による挿入スインチを手動でONすれば
、セットされたタイマが働き自動的に挿入信号が伝送さ
れる。すると、挿入方向制御弁15.挿入排水方向制御
弁16が開き、駆動水が駆動水ライン7、挿入方向制御
弁15゜挿入ライン10を経て制御棒駆動機構2のピス
トン3下面に注入され、ピストン3を押し上げる。
Next, the operation of moving the control rod in and out will be explained. When the control rod drive mechanism 2 is to perform an insertion operation, the insertion switch is manually turned on by an electric signal from the central control room, and the set timer is activated and the insertion signal is automatically transmitted. Then, the insertion direction control valve 15. The insertion/drainage direction control valve 16 opens, and driving water is injected into the lower surface of the piston 3 of the control rod drive mechanism 2 through the driving water line 7, the insertion direction control valve 15° and the insertion line 10, and pushes the piston 3 up.

同にピストン3の上面の水は引抜ライン11.挿入排水
方向制御弁16.排水ライン9を経て排出されることに
よって制御棒駆動機構2は制御棒を原子炉内炉心部へ挿
入する。
Similarly, the water on the top surface of the piston 3 is removed from the drawing line 11. Insertion drainage directional control valve 16. By being discharged through the drainage line 9, the control rod drive mechanism 2 inserts the control rod into the core of the nuclear reactor.

また、逆に制御棒駆動機構2に引抜動作を行なわせると
きは、中央制御室の電気信号による引抜きスツチを手動
でONすれば、引抜信号が伝送され、引抜方向制御弁1
7.引抜排水方向制御弁18が開き、駆動水が駆動水ラ
イン7、引抜方向制御弁17.引抜ラインライン11を
経て制御棒駆動機構2のピストン3の上面に注入作用し
、ピストン3を押し下げる。同時に、ピストン3の下面
の水は挿入ライン10.引抜排水方向制御弁18、排水
ライン9を経て排水され、制御棒駆動機構2は、制御棒
を原子炉内炉心部から引抜かれる。
Conversely, if you want the control rod drive mechanism 2 to perform a withdrawal operation, manually turn on the withdrawal switch based on the electric signal in the central control room, and the withdrawal signal will be transmitted to the withdrawal direction control valve 1.
7. The extraction and drainage direction control valve 18 opens, and the driving water flows through the driving water line 7 and the extraction direction control valve 17. The injection acts on the upper surface of the piston 3 of the control rod drive mechanism 2 through the drawing line 11, and pushes the piston 3 down. At the same time, the water on the lower surface of the piston 3 is removed from the insertion line 10. Drainage is carried out through the withdrawal and drainage directional control valve 18 and the drainage line 9, and the control rod drive mechanism 2 withdraws the control rod from the core of the reactor.

このように、制御棒駆動機構2の挿入、引抜動作は中央
制御室から駆動信号が出力されている間、それに対応し
た方向制御弁15,16、または、17.18が開くこ
とによってなされ、駆動信号の出力が終了すれば、方向
制御弁15,16または17,18が閉じて挿入、引抜
動作が完了する。
In this way, the insertion and withdrawal operations of the control rod drive mechanism 2 are performed by opening the corresponding directional control valves 15, 16 or 17, 18 while the drive signal is being output from the central control room. When the output of the signal is completed, the directional control valves 15, 16 or 17, 18 are closed, and the insertion/extraction operation is completed.

しかし、このとき、方向制御弁15,16、または、1
7.18のシート面に傷や劣化等があり、シート漏洩が
発生すると駆動信号の出力が終了しても水の流れは止ま
らず、駆動水は制御棒駆動機構2に、引き続き注入され
、制御棒駆動機構は当初の方向に連続的に作動したり、
駆動水量が少ない時には、ドリフトする。特に、制御棒
駆動機構2の引抜動作時にこの現象が発生すると、原子
炉内での出力が過度に上昇して原子炉は緊急停止しプラ
ントの稼動率が低下する。
However, at this time, the direction control valves 15, 16 or 1
7. If there is damage or deterioration on the sheet surface of 18, and sheet leakage occurs, the flow of water will not stop even after the output of the drive signal ends, and the drive water will continue to be injected into the control rod drive mechanism 2, causing the control The rod drive mechanism operates continuously in the original direction,
When the amount of driving water is low, it will drift. In particular, if this phenomenon occurs during the withdrawal operation of the control rod drive mechanism 2, the power within the reactor will increase excessively, causing the reactor to come to an emergency shutdown and reducing the operating rate of the plant.

検出器を装着して方向制御弁の健全性を確認するため、
特開昭60−104287号公報に記載のように、駆動
水をHCUへ供給するラインに水流検出器を設置する方
法があるが、この方法は、駆動水を制御駆動機構へ供給
するラインに水の流れがあるがどうかを判定するもので
あって不具合な方向制御弁を特定するものではなかった
In order to check the health of the directional control valve by installing a detector,
As described in JP-A-60-104287, there is a method of installing a water flow detector in the line that supplies drive water to the HCU; The purpose was to determine whether there was a flow, not to identify a defective directional control valve.

従来、方向制御弁のシートリークの有無を判定する方法
として一般的なものは、定期点検時、HCUから方向制
御弁を取外して、リークテスト装置に取付は一台ずつシ
ートリークの有無を判定するものであった。
Conventionally, a common method for determining the presence or absence of seat leaks in directional control valves is to remove the directional control valves from the HCU during periodic inspections, and attach them to a leak test device one by one to determine the presence or absence of seat leaks. It was something.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

1100MWi原子力発電プラントの場合、方向制御弁
の数は740台と多い。従来方法は取外し取付けの工数
・場所、シール部品交換員数、弁取付後の試験検査等、
多くの時間と費用を要していた。
In the case of a 1100 MWi nuclear power plant, the number of directional control valves is as large as 740. Conventional methods require time and location for removal and installation, number of personnel replacing seal parts, testing and inspection after valve installation, etc.
It required a lot of time and money.

本発明の目的は方向制御弁をHCUに取付けてリークテ
ストを行い、時間・費用を削減する水圧制御ユニット検
査装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a water pressure control unit inspection device that reduces time and costs by attaching a directional control valve to an HCU and performing a leak test.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は方向制御弁出口側に検出器を設置することに
より達成される。
The above object is achieved by installing a detector on the outlet side of the directional control valve.

例えば、振動計を方向制御弁の本体出口側に取付けて、
弁を閉じた状態で弁の入口側に所定の水圧を加える。水
圧を加えた後に振動計により流れの有無を測定する。弁
のシートリーク量は、あらかじめ、リーク量に対する振
動計の数値を測定しておいて判定する。
For example, by installing a vibration meter on the outlet side of the directional control valve,
Apply a predetermined water pressure to the inlet side of the valve with the valve closed. After applying water pressure, use a vibration meter to measure the presence or absence of flow. The amount of seat leakage of the valve is determined by measuring the value of the leakage amount using a vibration meter in advance.

〔作用〕[Effect]

弁のシートリークを検出するために、方向制御弁出口側
口側に検出器を取付けている。HCU内の各隔離弁を全
閉し、HCU外への試験水の流出を防止する。次に、方
向制御弁前後のテストプラグを開放し、方向制御弁を閉
じる。方向制御弁の入口側に所定の水圧を加えると弁に
シートリークが生じた場合、検出器に表示され、リーク
があることが分る。
In order to detect valve seat leaks, a detector is installed on the outlet side of the directional control valve. Fully close each isolation valve inside the HCU to prevent the test water from flowing out of the HCU. Next, open the test plugs before and after the directional control valve, and close the directional control valve. If a seat leak occurs in the valve when a predetermined water pressure is applied to the inlet side of the directional control valve, it will be displayed on the detector, indicating that there is a leak.

〔実施例〕〔Example〕

以下、第1図を参照して本発明の一実施例を説明する。 An embodiment of the present invention will be described below with reference to FIG.

制御棒駆動機構2 (CRD)は原子炉1の下部に設け
られ、水圧による駆動水の流路を切替える制御棒駆動水
系から構成される。
The control rod drive mechanism 2 (CRD) is provided at the lower part of the nuclear reactor 1, and is composed of a control rod drive water system that switches the flow path of drive water using hydraulic pressure.

この水圧系は、水源に接続された駆動水ポンプ4と、こ
のポンプ3の吐出側に流量調整弁5.圧力調整弁6を直
列に接続することで駆動水調整部をなし、流量調整弁5
と圧力調整弁6との間より駆動水ライン7を分岐し、こ
の駆動水ライン7に逆止弁12を介して、駆動水流路の
切替を行なう挿入方向制御弁15.引抜排水方向制御弁
16゜引抜方向制御弁17.引抜排水方向制御弁18を
組合せた方向制御弁ユニット19の合流した上流側と、
原子炉における炉心反応度を制御すべく原子炉内炉心部
へ制御棒を出入駆動させるために制御棒に連結された制
御棒駆動機構2とに配管を接続させたものである。
This hydraulic system includes a driving water pump 4 connected to a water source, and a flow rate regulating valve 5 on the discharge side of this pump 3. By connecting the pressure regulating valves 6 in series, a drive water regulating section is formed, and the flow regulating valve 5
The drive water line 7 is branched from between the drive water line 7 and the pressure regulating valve 6, and the drive water line 7 is connected to an insertion direction control valve 15 for switching the drive water flow path via a check valve 12. Pull-out drainage direction control valve 16° Pull-out direction control valve 17. The upstream side where the directional control valve unit 19 combined with the pull-out drainage directional control valve 18 merges;
Piping is connected to a control rod drive mechanism 2 connected to the control rods in order to drive the control rods in and out of the core of the nuclear reactor in order to control the core reactivity in the nuclear reactor.

方向制御弁ユニット19における各方向制御弁15.1
G、17.18は各々二個ずつ並列に設けられており、
直列に接続されて挿入方向制御弁15と引抜方向制御弁
16との間には駆動水ライン7の下流側か逆止弁12を
介して接続され、逆止弁12の下流側にはプラグ25が
設けられている。同じく直列に接続された挿入方向制御
弁16と引抜排水方向制御弁18との間にはプラグ26
が設けられ、各方向制御弁16.18の間からは排水ラ
イン9が分岐されていて圧力調整弁6の下流側に接続さ
れている。尚、各方向調整弁15゜16.17.18の
出口側には流れによる震動を検出する検出器27,28
,29,30を設置する。また、並列に接続された挿入
方向制御弁15と引抜排水方向制御弁1λとの間には圧
力調整弁6の下流側から分岐された冷却水ライン8が、
逆止弁13を介して接続され、CRD2のピストン3の
下面に連通ずる挿入ライン10に接続されている。また
、並列に接続された引抜方向制御弁17と挿入排水方向
制御弁16との間からは、引抜ライン11が分岐されて
いて、CRD2のピストン3の上面に連通されている。
Each directional control valve 15.1 in the directional control valve unit 19
Two G, 17 and 18 are provided in parallel,
The insertion direction control valve 15 and the withdrawal direction control valve 16 are connected in series and are connected on the downstream side of the driving water line 7 or via the check valve 12, and a plug 25 is connected on the downstream side of the check valve 12. is provided. A plug 26 is provided between the insertion direction control valve 16 and the withdrawal and drainage direction control valve 18, which are also connected in series.
A drainage line 9 is branched from between each directional control valve 16, 18 and connected to the downstream side of the pressure regulating valve 6. Furthermore, on the outlet side of each directional control valve 15, 16, 17, and 18, detectors 27 and 28 are installed to detect vibrations caused by the flow.
, 29, 30 will be installed. In addition, a cooling water line 8 branched from the downstream side of the pressure regulating valve 6 is connected between the insertion direction control valve 15 and the withdrawal/drainage direction control valve 1λ which are connected in parallel.
It is connected via a check valve 13 to an insertion line 10 that communicates with the lower surface of the piston 3 of the CRD 2. Further, a withdrawal line 11 is branched from between the withdrawal direction control valve 17 and the insertion/drainage direction control valve 16 which are connected in parallel, and is communicated with the upper surface of the piston 3 of the CRD 2.

CRD2に挿入動作を行なわせるときは、中央制御室の
電気信号による挿入スイッチをONにするとタイマが働
き、自動的に挿入信号が伝送されて挿入方向制御弁15
.挿入排水方向制御弁16が開く。すると、駆動水は駆
動水ライン10.挿入方向制御弁15、及び、挿入ライ
ン10を経て、CRD2のピストン3の下面に作用し、
ピストン3を押し上げる。同時に、ピストン3の上面の
駆動水は引抜ライン11.挿入排水方向制御弁16を経
て排水ライン9により排水されて制御棒は挿入される。
To make the CRD 2 perform an insertion operation, turn on the insertion switch using an electric signal in the central control room, the timer will work, and the insertion signal will be automatically transmitted to the insertion direction control valve 15.
.. The insertion and drainage directional control valve 16 opens. Then, the driving water flows through the driving water line 10. Acts on the lower surface of the piston 3 of the CRD 2 via the insertion direction control valve 15 and the insertion line 10,
Push up piston 3. At the same time, the driving water on the upper surface of the piston 3 is drawn out from the drawing line 11. The control rod is inserted after being drained by the drain line 9 via the insertion/drain directional control valve 16.

また、逆に、CRD2に引抜動作を行なわせるときには
、中央制御室の電気信号による引抜スイッチをONにす
ると、自動的に引抜信号が伝送されて、引抜方向制御弁
17.引抜排水方向制御弁18が開く。すると、駆動水
は駆動水ライン8.引抜方向制御弁17、及び、引抜ラ
イン11を経てCRD2のピストン3の上面に作用し、
ピストン3を押し下げる。同時に、ピストン3の下面の
駆動水は挿入ライン10.引抜排水方向制御弁18を経
て、排水ライン9により排水されて、制御棒は引抜かれ
る。このような挿入、引抜き動作を終了させる際に、各
々のスイッチをOFFさせるが、方向制御弁15,16
,17,18のいずれかにシート漏洩等の不具合が発生
した場合には、挿入動作中であったものは挿入動作を、
引抜動中であったものは引抜動作を引き続き行う。この
不具合を防ぐため、定期的にシート漏洩の点検。
Conversely, when the CRD 2 is to perform a pulling operation, when the pulling switch is turned on using an electric signal in the central control room, a pulling signal is automatically transmitted to the pulling direction control valve 17. The extraction and drainage directional control valve 18 opens. Then, the driving water flows through the driving water line 8. Acts on the upper surface of the piston 3 of the CRD 2 via the withdrawal direction control valve 17 and the withdrawal line 11,
Push down piston 3. At the same time, the driving water on the lower surface of the piston 3 is transferred to the insertion line 10. The control rod is withdrawn through the withdrawal and drainage directional control valve 18 and drained through the drainage line 9. When finishing such insertion and withdrawal operations, each switch is turned OFF, but the direction control valves 15 and 16 are turned off.
, 17, 18, if a problem such as sheet leakage occurs, the insertion operation that was in progress will be stopped.
Those that were in the process of being pulled out continue to do so. To prevent this problem, regularly check for sheet leakage.

部品交換を実施するが、その際、方向制御弁15゜16
.17,18を取付けたまま点検を行なう。
Parts will be replaced, but at that time, the directional control valves 15° and 16
.. Inspect with 17 and 18 attached.

まず、HCUの各隔離弁20,21,22,23゜24
を全閉する。次に、プラグ25.プラグ26を取外し、
プラグ25に加圧ポンプ31を接続する。方向制御弁1
6.18を開き、方向制御弁15.17を閉じる。加圧
ポンプ31により所定圧に吸し、方向制御弁15.17
の開閉動作を繰り返し、方向制御弁ユニット19内の空
気を排出し、水を充填する。方向制御弁15.17を閉
じ検出器27のスイッチをONL、方向制御弁15の振
動量を、検出器29のスイッチをONL、、方向制御弁
17の振動量をオシログラフにより検知する。次に方向
制御弁16.18を閉じ、方向制御弁15.17を開き
、前述と同様に、方向制御弁16.18の開閉を繰り返
し方向制御弁ユニット19内の空気を排出する。次に、
方向制御弁16.18を閉じ、検出器28のスイッチを
ONし、方向制御弁16の振動量を、検出器30のスイ
ッチをONし、方向制御弁18の振動量をオシログラフ
により検知する。検知した振動量をあらかじめシート漏
洩を模擬した振動量と比較し、漏洩量を決定する。従っ
て、110MW発電所で740台と多数ある方向制御弁
を取外すことなくシート漏洩量を測定することができる
First, each isolation valve 20, 21, 22, 23°24 of HCU
fully close. Next, plug 25. Remove the plug 26,
A pressure pump 31 is connected to the plug 25. Directional control valve 1
6.18 and close the directional control valve 15.17. The pressure is drawn to a predetermined pressure by the pressurizing pump 31, and the directional control valve 15.17
The air inside the directional control valve unit 19 is discharged and water is filled by repeating the opening and closing operations of the directional control valve unit 19. The directional control valves 15 and 17 are closed, the switch of the detector 27 is turned ONL, the amount of vibration of the directional control valve 15 is detected, the switch of the detector 29 is turned ONL, and the amount of vibration of the directional control valve 17 is detected by an oscilloscope. Next, the directional control valve 16.18 is closed, the directional control valve 15.17 is opened, and the air in the directional control valve unit 19 is discharged by repeating the opening and closing of the directional control valve 16.18 in the same manner as described above. next,
The directional control valves 16 and 18 are closed, the detector 28 is turned on, and the amount of vibration of the directional control valve 16 is detected by turning on the switch of the detector 30, and the amount of vibration of the directional control valve 18 is detected by an oscillograph. The amount of vibration detected is compared with the amount of vibration that simulates sheet leakage in advance to determine the amount of leakage. Therefore, the amount of sheet leakage can be measured without removing the 740 directional control valves in a 110 MW power plant.

本実施例によれば、原子炉の運転中にでも、常駆動をす
る前に動かそうとする方向制御弁の検出器をON操作す
ることにより、シートリークのある方向制御弁を知るこ
とができ、運転中に方向制御弁の修理は不能であるが、
該当する不具合弁をもHCUの操作機能を隔離すること
により、CHDの過挿入、過引抜を防止することもでき
る。
According to this embodiment, even while the reactor is operating, it is possible to know which directional control valve has a seat leak by turning on the detector of the directional control valve to be operated before normal operation. Although it is impossible to repair the directional control valve during operation,
By isolating the operating function of the HCU from the relevant malfunctioning valve, it is also possible to prevent excessive insertion and withdrawal of the CHD.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、定期点検時の方向制御弁のシートリー
ク試験を方向制御弁ユニットから取り外すことな〈実施
可能であるため、定検工数が低減し、定検期間が短縮さ
れ、シール部品の取替えが不要となる。
According to the present invention, the seat leak test of the directional control valve can be performed during periodic inspection without removing it from the directional control valve unit, which reduces the number of man-hours for periodic inspection, shortens the period of periodic inspection, and improves the quality of seal parts. No need for replacement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の配管系統図、第2図は従来
技術の配管系統図である。 1・・・原子炉、2・・・制御棒駆動機構、3・・・ピ
ストン、4・・・駆動水ポンプ、5・・・流量調整弁、
6・・・圧力調整弁。
FIG. 1 is a piping system diagram of an embodiment of the present invention, and FIG. 2 is a piping system diagram of a conventional technique. DESCRIPTION OF SYMBOLS 1... Nuclear reactor, 2... Control rod drive mechanism, 3... Piston, 4... Driving water pump, 5... Flow rate adjustment valve,
6...Pressure regulating valve.

Claims (1)

【特許請求の範囲】 1、沸騰水型原子炉の制御棒駆動機構を駆動する給排出
水の流れ方向を制御する水圧制御ユニットの方向制御弁
において、 前記方向制御弁の出口側の外部に弁のシートリークを検
出する検出器を設けたことを特徴とする水圧制御ユニッ
ト検査装置。
[Scope of Claims] 1. In a directional control valve of a water pressure control unit that controls the flow direction of supply and discharge water that drives a control rod drive mechanism of a boiling water reactor, a valve is provided externally on the outlet side of the directional control valve. A water pressure control unit inspection device characterized by being provided with a detector for detecting seat leaks.
JP62266396A 1987-10-23 1987-10-23 Water pressure control unit inspection equipment Pending JPH01110295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62266396A JPH01110295A (en) 1987-10-23 1987-10-23 Water pressure control unit inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62266396A JPH01110295A (en) 1987-10-23 1987-10-23 Water pressure control unit inspection equipment

Publications (1)

Publication Number Publication Date
JPH01110295A true JPH01110295A (en) 1989-04-26

Family

ID=17430351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62266396A Pending JPH01110295A (en) 1987-10-23 1987-10-23 Water pressure control unit inspection equipment

Country Status (1)

Country Link
JP (1) JPH01110295A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025416A3 (en) * 2000-09-20 2003-07-17 Intel Corp Method and apparatus to improve the protection of information presented by a computer
US7073070B2 (en) 2001-06-29 2006-07-04 Intel Corporation Method and apparatus to improve the protection of information presented by a computer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025416A3 (en) * 2000-09-20 2003-07-17 Intel Corp Method and apparatus to improve the protection of information presented by a computer
US7007304B1 (en) 2000-09-20 2006-02-28 Intel Corporation Method and apparatus to improve the protection of information presented by a computer
CN100430859C (en) * 2000-09-20 2008-11-05 英特尔公司 Method and apparatus for improving protection of computer-presented information
US7073070B2 (en) 2001-06-29 2006-07-04 Intel Corporation Method and apparatus to improve the protection of information presented by a computer

Similar Documents

Publication Publication Date Title
CN109855814B (en) Method and system for detecting tightness of RCPB isolation valve of nuclear power plant
CN109443663B (en) Gate valve online pressing system
US5438862A (en) System and method for in situ testing of the leak-tightness of a tubular member
CN105383027A (en) Detecting method and device of die-casting die cooling system
CN202330173U (en) Valve pressure inspection device
US4133373A (en) Leak detecting apparatus
KR101221631B1 (en) Apparatus of performance testing console for the Pilot Operated Check Valve
CN104089748B (en) A kind of air-brake coupling hose air pressure level pressure detects testing machine
KR200475667Y1 (en) Leak test device and method for close torque control moter operated parallel gate valve
CN110411680A (en) A kind of liquid injection and pressure-detecting device for closed liquid cooling system
CN105551553A (en) Pilot type safety valve jumping monitoring device and method of PWR (Pressured Water Reactor) nuclear power station
CN104458160B (en) Pipeline piece pressure testing system and pressure testing method thereof
KR20090065907A (en) Drainage and Drainage Method of Reactor Coolant System
JPH01110295A (en) Water pressure control unit inspection equipment
CN105571794B (en) A kind of method of safe detection high-pressure solenoid valve
CN110689975B (en) Nuclear power station nuclear island exhaust drainage system and leakage detection method
CN209247279U (en) A kind of gate valve suppresses system online
CN114526877A (en) Check valve low-pressure-difference sealing performance detection system and detection method
CN214742152U (en) Converter valve cooling system main pump simulation test device
CN220084279U (en) Safety valve opening and leakage testing device
DK181524B1 (en) System for leakage protection of heating installations
CN111521352A (en) Nuclear power station unit check valve sealing performance detection and exception handling method
JPH031798Y2 (en)
CN219657150U (en) Resistance simulation device for thermal hydraulic test piece
CN221925945U (en) Full-size fatigue test device for pipeline