[go: up one dir, main page]

JPH01145351A - infrared blocking glass - Google Patents

infrared blocking glass

Info

Publication number
JPH01145351A
JPH01145351A JP87301584A JP30158487A JPH01145351A JP H01145351 A JPH01145351 A JP H01145351A JP 87301584 A JP87301584 A JP 87301584A JP 30158487 A JP30158487 A JP 30158487A JP H01145351 A JPH01145351 A JP H01145351A
Authority
JP
Japan
Prior art keywords
film
glass
layer
nitride
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP87301584A
Other languages
Japanese (ja)
Other versions
JPH0764598B2 (en
Inventor
Hidekazu Ando
英一 安藤
Koichi Suzuki
巧一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP62301584A priority Critical patent/JPH0764598B2/en
Publication of JPH01145351A publication Critical patent/JPH01145351A/en
Publication of JPH0764598B2 publication Critical patent/JPH0764598B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To obtain infrared-shielding glass whose chemical stability and scuffing resistance are markedly improved by using tantalum oxide as the outermost dielectric layer from the glass base plate. CONSTITUTION:The subject infrared shielding glass is constituted by forming, in turn on the glass base plate 1, the first layer of clear dielectric film 2, the second layer of nitride film 3, and the third layer of tantalum oxide film 4. The base glass is a infrared shielding glass such as soda lime glass. The film 2 is titanium oxide, and the film 3 is titanium nitride or zirconium nitride. The use of the clear dielectric film 4 of tantalum oxide enables production of the infrared shielding glass having excellent properties prescribed above. Thus, the product can be applied to the more drastic fields, for example, as an infrared shielding car panes.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、赤外線遮断ガラス、特に自動車用、建築用な
どに単板でも使用可能な耐擦傷性と化学的安定性に優れ
た赤外線遮断ガラスに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an infrared-shielding glass, particularly an infrared-shielding glass with excellent scratch resistance and chemical stability that can be used as a single sheet for automobiles, architecture, etc. It is related to.

[従来の技術] 従来から窓ガラスを通して建物の室内に流入する太陽光
を遮断して室内の温度上昇を抑え、また冷房負荷を軽減
する目的で赤外線遮断ガラスの採用が検討されてきた。
[Prior Art] Consideration has been given to the use of infrared-shielding glass for the purpose of blocking sunlight flowing into the interior of a building through window glass, suppressing the rise in indoor temperature, and reducing the cooling load.

このために、ガラス基板の上に透明誘電体膜/AgAg
膜用透明誘電体膜るいはAg膜の代わりに窒化チタン、
窒化ジルコニウム、窒化ハフニウムなどの窒化物膜を用
いた多層膜構成の赤外線遮断ガラスが考案されている。
For this purpose, a transparent dielectric film/AgAg
Titanium nitride instead of transparent dielectric film or Ag film for film,
Infrared-shielding glass having a multilayer structure using nitride films such as zirconium nitride and hafnium nitride has been devised.

透明誘電体膜としては酸化亜鉛、酸化チタン、m化上、
酸化インジウムなどが用いられる。これらの膜は、イオ
ンブレーティング法やスパッタリング法などで形成され
る。
As the transparent dielectric film, zinc oxide, titanium oxide,
Indium oxide or the like is used. These films are formed by an ion blasting method, a sputtering method, or the like.

[発明の解決しようとする問題点] Ag膜を用いた系の赤外線遮断ガラスは、耐擦傷性や化
学的安定性に劣るため、膜面が外部に露出しないように
複層ガラスまたは合わせガラスにして用いられる。この
ため製造コストが高く、また用途によっては使用できな
いなどの問題がある。一方、窒化チタンなどの窒化物膜
を用いた系の赤外線遮断ガラスは、Ag系に較べれば安
定であるので、一部単板の赤外線遮断ガラス、即ち、複
層ガラス化、あるいは合わせガラス化することのない1
枚板の赤外線遮断ガラス、として実用化されている。し
かし、自動車のサイドガラス、リヤーガラスなどのよう
な高い信頼性と耐久性が要求される用途に使用するには
、透明誘電体膜の耐擦傷性や化学的安定性がまだ充分と
は言えない、透明誘電体膜として酸化チタンを用いた系
は、化学的安定性に優れるが、耐擦傷性に問題があり、
又酸化亜鉛、酸化錫、酸化インジウムを用いた系は、耐
酸性などに問題があり、いまだ充分に耐久性の優れた赤
外線遮断ガラスが得られていないというのが現状である
[Problems to be solved by the invention] Infrared shielding glass using an Ag film has poor scratch resistance and chemical stability, so it is necessary to use double-layered or laminated glass to prevent the film surface from being exposed to the outside. It is used as For this reason, there are problems such as high manufacturing costs and unusability depending on the application. On the other hand, infrared-shielding glass based on a nitride film such as titanium nitride is more stable than Ag-based glass, so some infrared-shielding glasses are made into single-pane infrared-shielding glass, that is, double-glazed or laminated glass. Never 1
It has been put into practical use as a single sheet of infrared-blocking glass. However, the scratch resistance and chemical stability of transparent dielectric films are not yet sufficient for use in applications that require high reliability and durability, such as automobile side and rear windows. Systems using titanium oxide as a transparent dielectric film have excellent chemical stability, but have problems with scratch resistance.
Furthermore, systems using zinc oxide, tin oxide, and indium oxide have problems with acid resistance, and the current situation is that infrared-shielding glasses with sufficiently excellent durability have not yet been obtained.

[問題点を解決するための手段] 本発明は、前述の問題点を解決すべくなされたものであ
り、ガラス基板上に該基板側から順に透明誘電体膜、窒
化物膜、及び透明誘電体膜の少なくとも3層構成膜が形
成されてなる赤外線遮断ガラスに於いて、少なくともガ
ラス基板側からみて一番外側の透明誘電体膜が酸化タン
タルよりなることを特徴とする赤外線遮断ガラスを提供
するものである。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and includes forming a transparent dielectric film, a nitride film, and a transparent dielectric film on a glass substrate in order from the substrate side. To provide an infrared shielding glass formed with at least three layers of films, characterized in that at least the outermost transparent dielectric film when viewed from the glass substrate side is made of tantalum oxide. It is.

以下、本発明を更に詳細に説明する0図1は、本発明に
係わる赤外線遮断ガラスの断面図を示したものであり、
lはソーダーライムシリケートガラス、ボロシリケート
ガラス、アルミノシリケートガラス、各種色調の熱線吸
収ガラスなどから選ばれるガラス基板、2はガラス基板
側に第1層として形成された透明誘電体膜。
Hereinafter, the present invention will be explained in more detail. Figure 1 shows a cross-sectional view of an infrared shielding glass according to the present invention.
1 is a glass substrate selected from soda lime silicate glass, borosilicate glass, aluminosilicate glass, heat ray absorbing glass of various colors, etc., and 2 is a transparent dielectric film formed as a first layer on the glass substrate side.

3は第1層の該透明誘電体膜上に形成された第2層とし
ての窒化物膜である。この窒化物膜3としては、具体的
には窒化チタン、窒化ジルコニウム、窒化ハフニウム、
窒化タンタル、及び窒化クロムのうち少なくとも1種か
らなる窒化物、あるいはこれらを主成分とする窒化物か
らなるものが使用される。4は第2層の窒化物膜3上に
第3層として形成された酸化タンタル膜を示す。
3 is a nitride film as a second layer formed on the first transparent dielectric film. Specifically, the nitride film 3 includes titanium nitride, zirconium nitride, hafnium nitride,
A nitride made of at least one of tantalum nitride and chromium nitride, or a nitride made of these as main components, is used. 4 indicates a tantalum oxide film formed as a third layer on the second layer nitride film 3.

第1層の透明誘電体膜は、酸化チタン、m化上、酸化ジ
ルコニウム、#化タンタル、又はこれらを主成分とする
ものなどの透明誘電体膜からなるものが選ばれるが、第
2層の窒化物膜との付着力やスパッタリングでの生産性
を考えると、第2層の窒化物膜と同様な元素を含む透明
誘電体膜が好ましい、同様に、第2層の窒化物膜と第3
層の酸化タンタル膜の構成も考慮すると、m3J#がタ
ンタルを含むので、f51層、第2層は、それぞれ酸化
タンタル、窒化タンタルの組み合わせが特に好ましい、
しかし、特にこ・れだけに限定されるものではなく、第
1層/第2層の組み合わせは、酸化タンタル!IQ/窒
化チタン膜、酸化チタン膜/窒化チタン膜、あるいは酸
化ジルコニウム膜/窒化ジルコニウム膜などその他種々
の組み合わせがとりうる。しかし、生産効率を重視すれ
ば第1層として成膜速度の速い酸化タンタルが好ましい
The transparent dielectric film of the first layer is selected from a transparent dielectric film made of titanium oxide, m-oxide, zirconium oxide, tantalum, or those containing these as main components. Considering the adhesion with the nitride film and the productivity in sputtering, a transparent dielectric film containing the same elements as the second layer nitride film is preferable.
Considering the structure of the tantalum oxide film of the layer, since m3J# contains tantalum, it is particularly preferable that the f51 layer and the second layer are a combination of tantalum oxide and tantalum nitride, respectively.
However, it is not limited to this, and the combination of the first layer/second layer is tantalum oxide! Various other combinations such as IQ/titanium nitride film, titanium oxide film/titanium nitride film, or zirconium oxide film/zirconium nitride film can be used. However, if production efficiency is important, tantalum oxide, which has a fast film formation rate, is preferable as the first layer.

本発明は上記したような少なくとも3層構成よりなるが
、場合によってはガラス基板と第1層との間、第1層と
第2層との間、又は第2層と第3層との間に1層、又は
複数の層の付着力向上や光学特性の調整などの機能を持
つ層を形成しても良い0本発明における最も大きな特徴
は、ガラス基板から見て一番外側、すなわち空気側に酸
化タンタルを形成することであり、これによって耐擦傷
性と化学的安定性に優れた赤外線遮断ガラスを可能にし
ている。
The present invention has at least a three-layer structure as described above, but in some cases, between the glass substrate and the first layer, between the first layer and the second layer, or between the second layer and the third layer. A layer having functions such as improving the adhesion of one or more layers or adjusting optical properties may be formed on the glass substrate. This is to form tantalum oxide into the glass, making it possible to create infrared-shielding glass with excellent scratch resistance and chemical stability.

第3層の酸化タンタル膜のII!厚は特に限定はされな
いが、透過色や反射色を考慮して通常400〜800人
に調節され、特に可視域での高透過、低反射を目的とす
る場合には、 550〜750人の範囲が選択される。
II of the third layer tantalum oxide film! The thickness is not particularly limited, but it is usually adjusted to 400 to 800 thickness in consideration of transmitted color and reflected color, and is in the range of 550 to 750 thickness, especially when the purpose is high transmission and low reflection in the visible range. is selected.

第1層の透明誘電体膜の膜厚も特に限定はないが、可視
域での高透過、低反射を目的とする場合には、光学的膜
厚で1000〜1800Aの範囲で調節される。第2層
の窒化物膜の膜厚は透過率の面から通常50〜500人
の範囲で選ばれる。
The thickness of the first transparent dielectric film is also not particularly limited, but when the objective is high transmission and low reflection in the visible range, the optical thickness is adjusted in the range of 1000 to 1800 A. The thickness of the second layer nitride film is usually selected in the range of 50 to 500 layers from the viewpoint of transmittance.

本発明の成膜法としては特に限定されるものではないが
、赤外線遮断ガラスの主要な用途が大面積コーティング
の必要な自動車や建築用などのため、均一性に優れる反
応性スパッタリング法が好ましい。
The film forming method of the present invention is not particularly limited, but since the main uses of infrared-shielding glass are automobiles and buildings that require large-area coating, a reactive sputtering method is preferred since it has excellent uniformity.

[作用] 図1で示される様な本発明の透明誘電体膜/窒化膜/透
明誘電体膜の3層構成膜を持つ赤外線遮断ガラスに於い
ては、第2層の窒化物膜が赤外線反射機能を受は持つも
のである。第1層及び第3層の透明誘電体膜は、窒化物
膜の可視域での反射防止機能を受は持つ、必要とされる
屈折率は、通常2.0〜2.5の範囲で選択されるが、
この範囲外でも使用可能である。
[Function] In the infrared-shielding glass having a three-layer structure of transparent dielectric film/nitride film/transparent dielectric film of the present invention as shown in FIG. 1, the second layer nitride film reflects infrared rays. Uke has a function. The transparent dielectric films of the first and third layers have the antireflection function in the visible range of the nitride film, and the required refractive index is usually selected in the range of 2.0 to 2.5. However,
It can also be used outside this range.

光学性能の他に、各層は硬く、相互の付着力が強く、熱
、紫外線などに安定でなければならず、又第1層は更に
ガラス基板との付着力が大きいこと、第3Mは滑らかな
表面を持ち、l!i11、アルカリなどに安定であるこ
とが必要であることなどの点から前述した様な膜材料が
使用される。
In addition to optical performance, each layer must be hard, have strong mutual adhesion, and be stable against heat and ultraviolet rays, and the first layer must also have strong adhesion to the glass substrate, and the third layer must be smooth. Hold the surface and l! The above-mentioned membrane materials are used because they need to be stable to i11, alkalis, and the like.

酸化タンタルは屈折率が約2.1であり、且つ滑らかな
表面と、高い化学的安定性を示す材料であることから第
1層及び第3Mの透明誘電体膜の膜材料として最適であ
る。
Tantalum oxide has a refractive index of about 2.1, has a smooth surface, and is a material exhibiting high chemical stability, so it is optimal as a film material for the first layer and the 3M transparent dielectric film.

[実施例] 実施例1 ガラス基板をスパッタリング装置の真空槽にセットし、
 1×1叶6Torrまで排気した。アルゴンと酸素の
混合ガスを導入して圧力を2X 1O−3Torrとし
た後、タンタルターゲットを高周波マグネトロンスパッ
タリングして酸化タンタル膜(第1層)を約600人形
成した6次にアルゴンと窒素の混合ガスに切り替え圧力
を2X 1O−3Tartにしてチタンターゲットを高
周波マグネトロンスパッタリングして窒化チタン膜(第
2層)を約 120人形成した。その後、再び第1層と
同じ条件で酸化タンタル膜(第3層)を約800人形成
した。
[Example] Example 1 A glass substrate was set in a vacuum chamber of a sputtering device,
Exhausted to 1×1 6 Torr. After introducing a mixed gas of argon and oxygen and setting the pressure to 2X 1O-3 Torr, a tantalum target was subjected to high-frequency magnetron sputtering to form a tantalum oxide film (first layer) of approximately 600 layers. About 120 titanium nitride films (second layer) were formed by switching to gas and applying high-frequency magnetron sputtering to a titanium target at a pressure of 2×1O-3Tart. Thereafter, about 800 people formed a tantalum oxide film (third layer) again under the same conditions as the first layer.

こうして得られた試料の可視光透過率、太陽光透過率は
それぞれ約79%、81%であった。膜の耐久性を調べ
るために1規定のtl!酸、水酸化ナトリウム中に6時
間、または、沸騰水中に2時間浸漬したが、いずれも透
過率、反射率の変化は0.3%以内であった。テーパー
摩耗1000回転後のヘーズ変化も3%以内であった。
The visible light transmittance and sunlight transmittance of the sample thus obtained were approximately 79% and 81%, respectively. 1 normal tl! to check the durability of the membrane. When immersed in acid or sodium hydroxide for 6 hours or in boiling water for 2 hours, the change in transmittance and reflectance was within 0.3%. The change in haze after 1000 revolutions of taper wear was also within 3%.

実施例2 実施例1と同様にガラス基板上に酸化タンタル膜(第1
層)を約600人形成した0次に、アルゴンと窒素の混
合ガスに切り替え圧力を2×10−”Tarrにしてジ
ルコニウムターゲットを高周波マグネトロンスパッタリ
ングして窒化ジルコニウム(第2層)を約200人形成
した。その後、再びi1層と同じ条件で酸化タンタル膜
(第3層)を約80OA形成した。
Example 2 Similar to Example 1, a tantalum oxide film (first
Approximately 600 layers of zirconium nitride (second layer) were formed Next, the pressure was changed to a mixed gas of argon and nitrogen to 2 x 10-'' Tarr, and a zirconium target was subjected to high-frequency magnetron sputtering to form approximately 200 layers of zirconium nitride (second layer). Thereafter, a tantalum oxide film (third layer) of about 80 OA was formed again under the same conditions as the i1 layer.

こうして得られた試料の可視光透過率、太陽光透過率は
、それぞれ約87%、54%であった。
The visible light transmittance and sunlight transmittance of the sample thus obtained were approximately 87% and 54%, respectively.

膜の耐久性、耐摩耗性は実施例1と同様に優れていた。The durability and abrasion resistance of the film were excellent as in Example 1.

実施例3 実施例1と同様にガラス基板上に酸化タンタル膜(第1
層)を800人形成した0次に、アルゴンと窒素の混合
ガスに切り替え圧力を2×101Torrにしてタンク
ルターゲットを高周波マグネトロンスパッタリングして
窒化タンタル  ゛(第2層)を約100人形成した。
Example 3 Similar to Example 1, a tantalum oxide film (the first
Next, about 100 tantalum nitride layers (second layer) were formed by switching to a mixed gas of argon and nitrogen and setting the pressure to 2 x 101 Torr and performing high-frequency magnetron sputtering on a tank target.

その後、再び第1層と同じ条件で酸化タンタル膜(第3
層)を約6oo人形成した。
After that, the tantalum oxide film (third layer) is again under the same conditions as the first layer.
About 600 layers were formed.

こうして得られた試料の可視光透過率、太陽光透過率は
、それぞれ約84%、68%であった。
The visible light transmittance and sunlight transmittance of the sample thus obtained were approximately 84% and 68%, respectively.

■りの耐久性、耐摩耗性は実施例1と同様に優れていた
(2) Durability and abrasion resistance were excellent as in Example 1.

[発明の効果] 実施例1〜3に記載しであるように1本発明によれば、
ガラス基板からみて一番外側の透明誘電体膜として酸化
タンタル膜が用いられているので、化学的安定性と耐擦
傷性を飛躍的に向上させた優れた赤外線遮断ガラスが得
られる。
[Effect of the invention] As described in Examples 1 to 3, according to the present invention,
Since a tantalum oxide film is used as the outermost transparent dielectric film when viewed from the glass substrate, an excellent infrared-shielding glass with dramatically improved chemical stability and scratch resistance can be obtained.

これによって、従来は使用出来なかった苛酷な用途にも
単板の赤外線反射ガラスを応用することが出来、例えば
、自動車の窓用の赤外線遮断ガラスとして期待される。
This makes it possible to apply single-pane infrared-reflecting glass to harsh applications that could not be used in the past, such as infrared-blocking glass for automobile windows.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は、本発明に係わる赤外線遮断ガラスの一部断面図
を示す。 1、ガラス基板 2、透明誘電体膜 (第1層) 3、窒化物膜   (第2層) 4、酸化タンタル膜(第3層) 四 1
FIG. 1 shows a partial cross-sectional view of an infrared shielding glass according to the present invention. 1. Glass substrate 2. Transparent dielectric film (first layer) 3. Nitride film (second layer) 4. Tantalum oxide film (third layer) 4 1

Claims (4)

【特許請求の範囲】[Claims] (1)ガラス基板上に、該基板側から順に透明誘電体膜
、窒化物膜、及び透明誘電体膜の少なくとも3層構成膜
が形成されてなる赤外線遮断ガラスに於いて、少なくと
もガラス基板側からみて一番外側の透明誘電体膜が酸化
タンタルよりなることを特徴とする赤外線遮断ガラス。
(1) In an infrared shielding glass in which at least three layers of a transparent dielectric film, a nitride film, and a transparent dielectric film are formed on a glass substrate in order from the substrate side, at least from the glass substrate side An infrared-shielding glass characterized in that the outermost transparent dielectric film is made of tantalum oxide.
(2)窒化物膜が窒化チタン、窒化ジルコニウム、窒化
ハフニウム、窒化タンタル、及び窒化クロムのうち少な
くとも1種からなることを特徴とする特許請求の範囲第
1項記載の赤外線遮断ガラス。
(2) The infrared shielding glass according to claim 1, wherein the nitride film is made of at least one of titanium nitride, zirconium nitride, hafnium nitride, tantalum nitride, and chromium nitride.
(3)ガラス基板側の透明誘電体膜が酸化タンタルであ
ることを特徴とする特許請求の範囲第1項記載の赤外線
遮断ガラス。
(3) The infrared shielding glass according to claim 1, wherein the transparent dielectric film on the glass substrate side is tantalum oxide.
(4)透明誘電体膜と窒化物膜が反応性スパッタリング
により形成されたことを特徴とする特許請求の範囲第1
項記載の赤外線遮断ガラ ス。
(4) Claim 1, characterized in that the transparent dielectric film and the nitride film are formed by reactive sputtering.
Infrared-shielding glass as described in section.
JP62301584A 1987-12-01 1987-12-01 Infrared blocking glass Expired - Fee Related JPH0764598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62301584A JPH0764598B2 (en) 1987-12-01 1987-12-01 Infrared blocking glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62301584A JPH0764598B2 (en) 1987-12-01 1987-12-01 Infrared blocking glass

Publications (2)

Publication Number Publication Date
JPH01145351A true JPH01145351A (en) 1989-06-07
JPH0764598B2 JPH0764598B2 (en) 1995-07-12

Family

ID=17898707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62301584A Expired - Fee Related JPH0764598B2 (en) 1987-12-01 1987-12-01 Infrared blocking glass

Country Status (1)

Country Link
JP (1) JPH0764598B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2676047A1 (en) * 1991-04-30 1992-11-06 Saint Gobain Vitrage Int Glass substrate covered with thin metal multilayers for solar protection
FR2676046A1 (en) * 1991-04-30 1992-11-06 Saint Gobain Vitrage Int Glass substrate coated with thin multilayers for solar protection
FR2676048A1 (en) * 1991-04-30 1992-11-06 Saint Gobain Vitrage Int Glass substrate coated with thin metal multilayers for solar protection
JPH0558680A (en) * 1991-08-29 1993-03-09 Nippon Sheet Glass Co Ltd Heat-ray shielding glass
EP0678483A3 (en) * 1991-04-30 1995-12-27 Saint Gobain Vitrage Glass substrate with a thin multilayer coating for solar protection.
US5543229A (en) * 1991-10-30 1996-08-06 Asahi Glass Company Ltd. Method of making a heat treated coated glass

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174240A (en) * 1981-04-22 1982-10-26 Teijin Ltd Selective beam transmitting laminate
JPS6036355A (en) * 1983-03-31 1985-02-25 ライボルト・アクチェンゲゼルシャフト Manufacture of plate with permeability of 5-40 percents in visible spectrum zone and reflectivity against heat ray
JPS62216943A (en) * 1986-03-10 1987-09-24 ロイ ジエラルド ゴ−ドン Protective coating for solar shielding film
JPS62216944A (en) * 1985-12-06 1987-09-24 ライボルト−ヘレ−ウス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Manufacture of window glass with high permeability characteristics within visible spectrum scope and high reflective characteristics against heat ray
JPS6455022U (en) * 1987-10-02 1989-04-05

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174240A (en) * 1981-04-22 1982-10-26 Teijin Ltd Selective beam transmitting laminate
JPS6036355A (en) * 1983-03-31 1985-02-25 ライボルト・アクチェンゲゼルシャフト Manufacture of plate with permeability of 5-40 percents in visible spectrum zone and reflectivity against heat ray
JPS62216944A (en) * 1985-12-06 1987-09-24 ライボルト−ヘレ−ウス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Manufacture of window glass with high permeability characteristics within visible spectrum scope and high reflective characteristics against heat ray
JPS62216943A (en) * 1986-03-10 1987-09-24 ロイ ジエラルド ゴ−ドン Protective coating for solar shielding film
JPS6455022U (en) * 1987-10-02 1989-04-05

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2676047A1 (en) * 1991-04-30 1992-11-06 Saint Gobain Vitrage Int Glass substrate covered with thin metal multilayers for solar protection
FR2676046A1 (en) * 1991-04-30 1992-11-06 Saint Gobain Vitrage Int Glass substrate coated with thin multilayers for solar protection
FR2676048A1 (en) * 1991-04-30 1992-11-06 Saint Gobain Vitrage Int Glass substrate coated with thin metal multilayers for solar protection
EP0678483A3 (en) * 1991-04-30 1995-12-27 Saint Gobain Vitrage Glass substrate with a thin multilayer coating for solar protection.
JPH0558680A (en) * 1991-08-29 1993-03-09 Nippon Sheet Glass Co Ltd Heat-ray shielding glass
US5543229A (en) * 1991-10-30 1996-08-06 Asahi Glass Company Ltd. Method of making a heat treated coated glass

Also Published As

Publication number Publication date
JPH0764598B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
JP7682371B2 (en) Membrane-coated glass and laminated glass
KR100763543B1 (en) Transparent substrate with low emissivity anti-glare or infrared absorption coating
CN101124085B (en) Anti-reflective thermal insulation glazing
US5772862A (en) Film comprising silicon dioxide as the main component and method for its productiion
EP1861339B1 (en) Coating composition with solar properties
EP0925260B1 (en) Coated glass
KR920001387B1 (en) Low emissivity film for automotive heat load reduction
KR101739563B1 (en) Solar control coatings providing increased absorption or tint
CA2041038C (en) Durable low-emissivity thin film interference filter
JPH029731A (en) Gray highly transparent and low radioactivity article and its manufacturing method
JPH05254969A (en) Functional article
WO1991002102A1 (en) Film based on silicon dioxide and production thereof
JPS63206333A (en) Single plate heat reflective glass
JP2535350B2 (en) High transmission solar control glass
JPH01145351A (en) infrared blocking glass
KR20230092986A (en) Reflective solar control coatings and articles coated therewith
US7947373B2 (en) High luminance coated glass
JP2811885B2 (en) Heat shielding glass
JP2014124815A (en) Low-radiation film
JPH02164744A (en) Optical body with excellent heat ray reflection properties and durability
JPH02901A (en) Highly durable optical body
US20230393315A1 (en) Asymmetric Patterned Reflective Coating
US20240083807A1 (en) Reflective Coating
JPH01314163A (en) Heat ray shielded glass
JP2576662B2 (en) Heat blocking glass

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees