[go: up one dir, main page]

JPH01176001A - Method and device for reforming recovered iron powder - Google Patents

Method and device for reforming recovered iron powder

Info

Publication number
JPH01176001A
JPH01176001A JP62332737A JP33273787A JPH01176001A JP H01176001 A JPH01176001 A JP H01176001A JP 62332737 A JP62332737 A JP 62332737A JP 33273787 A JP33273787 A JP 33273787A JP H01176001 A JPH01176001 A JP H01176001A
Authority
JP
Japan
Prior art keywords
iron powder
tank
vessel
oxidizing
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62332737A
Other languages
Japanese (ja)
Inventor
Eiji Ikezaki
英二 池崎
Kimihisa Kishigami
公久 岸上
Tsutomu Ishita
井下 力
Yonejiro Nagaoka
米治郎 永岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62332737A priority Critical patent/JPH01176001A/en
Publication of JPH01176001A publication Critical patent/JPH01176001A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To uniformly treat recovered iron powder, to stably form porous surface layer on the iron powder particle and to uniformize product quality by continuously treating the recovered iron powder with the apparatus directly connecting a fluidized bed type oxidizing vessel and reducing vessel. CONSTITUTION:The iron powder 1 recovered from a converter dust, etc., is continuously carried from a hopper 2 to the oxidizing vessel 3. Oxidizing gas 5 is blown from a blowing nozzle 4 at the bottom part of the oxidizing vessel 3 and the iron powder 1 is held in the fluidized condition at high temp. The surface-oxidized iron powder 1 in the oxidizing vessel 3 is carried into the reducing vessel 7 through piping 6 at >=200 deg.C. The reducing gas 9 is blown from a blowing nozzle 8 at the bottom part in the reducing vessel 7, and the iron ore 1 is made to the fluidized condition and high temp. The iron powder 1 treated in the reducing vessel 7 is discharged into a cooling vessel 11 held to non-oxidizing condition through a discharging pipe 10 and cooled to the room temp. By this method, the ion powder is supplied into the vessel 7 without any detaching the surface-oxidized layer formed in the vessel 3 from the base iron.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、転炉等の溶融金属処理容器で発生したダスト
から回収された鉄粉の有用性を高めるため、その表面を
改質する方法及び装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for modifying the surface of iron powder recovered from dust generated in a molten metal processing vessel such as a converter in order to increase its usefulness. and related to equipment.

〔従来の技術〕[Conventional technology]

転炉等の溶融金属処理容器で発生したダストは、たとえ
ばベンチ二リースクラバー等の湿式集塵機によって排ガ
スと分離される。そして、ダストに含まれている鉄分は
、磁選機でスラグ等の非金属物質と分離され、更に磨鉱
によって表面に付着している酸化物やスケール等と分離
される。このようにして得られた回収鉄粉は、緻密で純
度97%程度の極めて高品位なものであり、粉末冶金、
ショツトブラスト、磁粉探傷、溶接棒、切断用鉄粉等の
各種用途に使用されている(特開昭54−127810
号公報、特開昭55−14825号公報等参照)。
Dust generated in a molten metal processing vessel such as a converter is separated from exhaust gas by a wet dust collector such as a bench scrubber. Then, the iron contained in the dust is separated from non-metallic substances such as slag by a magnetic separator, and further separated from oxides, scales, etc. attached to the surface by grinding ore. The recovered iron powder obtained in this way is dense and of extremely high quality with a purity of about 97%, and is suitable for powder metallurgy.
It is used for various purposes such as shot blasting, magnetic particle inspection, welding rods, and iron powder for cutting (Japanese Patent Application Laid-Open No. 54-127810).
(See Japanese Patent Application Laid-open No. 14825/1984, etc.).

ところが、表面に付着している酸化物やスケール等を分
離する磨鉱工程で、鉄粉粒子は、その表面が平滑で突起
の少ない球状又は球状に近い形状になる。そのため、こ
の鉄粉の表面活性は低く、たとえば粉末冶金用原料とし
て使用する場合、鉄粉粒子相互の結合が円滑に進行せず
、焼結性に劣るものとなる。また、溶断用鉄粉として使
用した場合、着火が遅く、溶断速度が低下する等の問題
がある。
However, during the polishing process to separate oxides, scale, etc. adhering to the surface, the iron powder particles become spherical or nearly spherical in shape with a smooth surface and few protrusions. Therefore, the surface activity of this iron powder is low, and when used, for example, as a raw material for powder metallurgy, the bonding between iron powder particles does not proceed smoothly, resulting in poor sinterability. Furthermore, when used as iron powder for fusing, there are problems such as slow ignition and reduced fusing speed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

回収鉄粉の表面活性を向上させる手段として、酸化・還
元により表面層を活性度の高い多孔質にすることが考え
られる。しかしながら、たとえば通常の耐熱容器で構成
される酸化炉又は還元炉にを使用して、鉄粉粒子の表面
に対して均一な処理を施すことは困難である。更に、単
純に鉄粉を酸化し、次いで還元するだけでは、鉄粉を酸
化工程から還元工程に移送する過程において、酸化工程
で形成された表面酸化層が地鉄から剥離し易く、還元工
程で形成される多孔質表面層にバラツキが生じる。その
結果、製品である改質鉄粉の性状が不安定なものとなる
One possible means of improving the surface activity of recovered iron powder is to make the surface layer porous with high activity through oxidation and reduction. However, it is difficult to uniformly treat the surface of iron powder particles using, for example, an oxidation furnace or a reduction furnace configured with an ordinary heat-resistant container. Furthermore, if the iron powder is simply oxidized and then reduced, the surface oxide layer formed in the oxidation process will easily peel off from the base iron during the process of transferring the iron powder from the oxidation process to the reduction process, and Variations occur in the porous surface layer formed. As a result, the properties of the product, the modified iron powder, become unstable.

そこで、流動床式の酸化槽及び還元槽を直接接続した装
置で回収鉄粉を連続的に処理することによって、回収鉄
粉の均一な処理を可能にすると共に、鉄粉粒子の表面に
形成される多孔質表面層の生成条件を安定化させ、一定
した品質の改質鉄粉を得ることを目的とする。
Therefore, by continuously processing the recovered iron powder in a device that directly connects a fluidized bed type oxidation tank and reduction tank, it is possible to treat the recovered iron powder uniformly, and to prevent the formation of particles on the surface of the iron powder particles. The purpose is to stabilize the conditions for forming a porous surface layer and obtain modified iron powder of consistent quality.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の改質方法は、その目的を達成するために、溶融
金属処理容器で発生したダストから回収された鉄粉を流
動床酸化槽で表面酸化し、この鉄粉を200℃以上の高
温状態で流動床酸化槽から直接的に流動床還元槽に導き
、次いで鉄粉表面に形成している表面酸化層を還元して
多孔質表面層とすることを特徴とする。
In order to achieve the objective, the reforming method of the present invention surface-oxidizes the iron powder recovered from the dust generated in the molten metal processing container in a fluidized bed oxidation tank, and the iron powder is heated to a high temperature of 200°C or higher. The iron powder is introduced directly from the fluidized bed oxidation tank to the fluidized bed reduction tank, and then the surface oxidation layer formed on the surface of the iron powder is reduced to form a porous surface layer.

また、この方法で使用する改質装置は、溶融金属処理容
器で発生したダストから回収された鉄粉を表面酸化する
流動床酸化槽と形成された表面酸化層を還元する流動床
還元槽との間に、表面酸化された鉄粉を高温状態のまま
で流動床還元槽に供給する配管を設けたことを特徴とす
る。
In addition, the reforming equipment used in this method consists of a fluidized bed oxidation tank that oxidizes the surface of iron powder recovered from the dust generated in the molten metal processing container, and a fluidized bed reduction tank that reduces the surface oxidation layer formed. In between, a pipe is provided to supply the surface-oxidized iron powder to the fluidized bed reduction tank in a high-temperature state.

〔作用〕[Effect]

本発明においては、鉄粉の酸化及び還元を行うために流
動床式の処理槽を使用している。これによって、個々の
鉄粉粒子の表面が均一に処理される。たとえば、通常の
条件下では酸化工程における昇温によって鉄粉粒子相互
が凝集し、表面の一部のみが酸化され易くなるものであ
るが、この酸化工程を流動状態で行うことにより、凝集
を防ぎながら全表面を均一に処理することができる。ま
た、酸化槽及び還元槽内部の雰囲気を調節することが容
易であるため、表面酸化及び還元の程度も自由に制御す
ることができる。
In the present invention, a fluidized bed type treatment tank is used to oxidize and reduce iron powder. As a result, the surface of each iron powder particle is uniformly treated. For example, under normal conditions, iron powder particles coagulate with each other due to the temperature increase during the oxidation process, making it easy for only a portion of the surface to be oxidized, but by performing this oxidation process in a fluid state, aggregation can be prevented. However, the entire surface can be treated uniformly. Furthermore, since the atmosphere inside the oxidation tank and the reduction tank can be easily controlled, the degree of surface oxidation and reduction can also be freely controlled.

また、表面酸化層と地鉄とでは熱収縮率が相違するため
、表面酸化層を形成した鉄粉を冷却するとき、熱収縮率
の差に応じた応力が表面酸化層と地鉄との境界に発生し
、表面酸化層が剥離する原因となる。ところが、本発明
にあっては、表面酸化された鉄粉が高温状態のままで還
元槽に送られるため、冷却に起因した熱収縮が小さく、
表面酸化層と地鉄との間に剥離が生じない。その結果、
酸化工程で形成された表面酸化層が還元工程での処理に
付される。したがって、還元槽に送り込まれる鉄粉が所
定の表面酸化層をもつものとなり、還元後の鉄粉は一定
した多孔質の表面層となる。
In addition, since the thermal contraction rate is different between the surface oxidized layer and the steel base, when the iron powder with the surface oxidized layer is cooled, stress corresponding to the difference in thermal contraction rate is generated at the boundary between the surface oxide layer and the base steel. This causes the surface oxide layer to peel off. However, in the present invention, since the surface-oxidized iron powder is sent to the reduction tank in a high temperature state, the thermal contraction caused by cooling is small.
No peeling occurs between the surface oxidized layer and the base iron. the result,
The surface oxidized layer formed in the oxidation step is subjected to treatment in the reduction step. Therefore, the iron powder sent into the reduction tank has a predetermined surface oxidation layer, and the iron powder after reduction has a uniform porous surface layer.

この酸化槽から還元槽に送り込まれる鉄粉の温度は、2
00 ℃以上に保持することが必要である。
The temperature of the iron powder sent from this oxidation tank to the reduction tank is 2
It is necessary to maintain the temperature above 00°C.

酸化から還元の連続処理において、所定の時間還元処理
した鉄粉を無作為に一定量サンプリングし、断面を顕微
鏡で観察し、鉄粉の表層の酸化−還元された多孔質層の
剥離の有無を調べた結果を第3図示す。酸化槽−還元種
間の鉄粉温度を横軸にとると、208℃以上では剥離は
観察されないが、それ以下では剥離が観察された。
In the continuous process from oxidation to reduction, a certain amount of iron powder that has been reduced for a predetermined period of time is sampled at random, and the cross section is observed under a microscope to determine whether or not the oxidized-reduced porous layer on the surface of the iron powder has peeled off. Figure 3 shows the results of the investigation. Taking the iron powder temperature between the oxidation tank and the reducing species as the horizontal axis, no peeling was observed at temperatures above 208°C, but peeling was observed at temperatures below 208°C.

更に、高温状態の鉄粉を還元槽に送給しているので、還
元槽での反応に必要な温度がこの鉄粉によって補給され
る。したがって、還元槽に対する熱供給量も節減される
Furthermore, since hot iron powder is fed to the reduction tank, the temperature required for the reaction in the reduction tank is replenished by the iron powder. Therefore, the amount of heat supplied to the reduction tank is also reduced.

〔実施例〕〔Example〕

以下、図面を参照しながら、実施例により本発明の特徴
を具体的に説明する。
Hereinafter, the features of the present invention will be specifically explained using examples with reference to the drawings.

第1図は、本発明実施例で使用した装置の概略を示す。FIG. 1 schematically shows the apparatus used in the embodiment of the present invention.

転炉ダスト等から回収された鉄粉1は、ホッパー2に蓄
えられており、このホッパー2から酸化槽3に連続的に
送り込まれる。酸化槽3には、底部に設けたガス吹込み
ノズル4から酸化性ガス5が吹き込まれ、この酸化性ガ
ス5によって鉄粉1が酸化槽3内で流動状態に維持され
る。本実施例では、酸化性ガス5として窒素、空気及び
水蒸気の組成をもつ混合ガスを使用し、酸化槽3の内部
を600〜900℃の温度範囲に維持した。
Iron powder 1 recovered from converter dust and the like is stored in a hopper 2, and is continuously fed into an oxidation tank 3 from this hopper 2. Oxidizing gas 5 is blown into the oxidizing tank 3 from a gas blowing nozzle 4 provided at the bottom, and the iron powder 1 is maintained in a fluid state within the oxidizing tank 3 by the oxidizing gas 5. In this example, a mixed gas having a composition of nitrogen, air, and water vapor was used as the oxidizing gas 5, and the temperature inside the oxidizing tank 3 was maintained in a temperature range of 600 to 900°C.

この酸化槽3内で表面酸化された鉄粉1は、温度200
℃以上の高温状態で配管6を経由して、還元槽7に送り
込まれる。還元槽7では、底部に設けられたガス吹込み
ノズル8から還元性ガス9を吹き込むことにより、酸化
槽3から送り込まれた鉄粉1を流動状態にする。本実施
例では、還元性ガス9としてN2.Co又はC0G(コ
ークス炉ガス)とN2との混合ガスを使用し、還元槽7
の内部を500〜800℃、好ましくは550〜580
℃の温度範囲に維持した。
The iron powder 1 whose surface has been oxidized in this oxidation tank 3 has a temperature of 200
It is sent to the reduction tank 7 via the piping 6 in a high temperature state of ℃ or more. In the reducing tank 7, the iron powder 1 sent from the oxidizing tank 3 is brought into a fluid state by blowing reducing gas 9 through a gas blowing nozzle 8 provided at the bottom. In this embodiment, the reducing gas 9 is N2. Using a mixed gas of Co or C0G (coke oven gas) and N2, reducing tank 7
500-800℃, preferably 550-580℃
The temperature range was maintained at ℃.

還元槽7で処理された鉄粉lは、排出管10を経て無酸
化状態に維持された冷却槽11に排出され、冷却槽11
で常温まで冷却される。
The iron powder l treated in the reduction tank 7 is discharged through the discharge pipe 10 to the cooling tank 11 maintained in a non-oxidized state.
is cooled to room temperature.

第2図は、酸化槽3に対し熱供給系統及び制御系統を付
加したものである。
FIG. 2 shows the oxidation tank 3 with a heat supply system and a control system added thereto.

本実施例においては、酸化槽3の周囲を加熱槽20で取
り囲んでいる。加熱槽20内では、空気21及び燃料ガ
ス22を熱風発生炉23で燃焼させることによって発生
した熱風を熱風配管24を経由して送り込むことにより
、熱担体としてのセラッミクス粒子25を流動状態に維
持している。そして、セラッミクス粒子25の熱は、加
熱槽20と酸化槽3との間の槽壁を介して酸化槽3に伝
えられ、酸化槽3の内部を所定の温度に維持する。セラ
ッミクス粒子25に受熱した後の熱風は、排気管26か
ら系外に排出される。なお、酸化槽3を取り囲むように
加熱槽20を配置することに代え、複数の酸化槽3及び
加熱槽20を交互にサンドウィッチ状に配列しても良い
。或いは、熱風を酸化槽3に直接吹き込むことによって
も、酸化槽3内の鉄粉1を加熱することもできる。この
加熱手段は、還元槽7に対しても同様に適用することが
できる。
In this embodiment, the oxidation tank 3 is surrounded by a heating tank 20. Inside the heating tank 20, hot air generated by burning air 21 and fuel gas 22 in a hot air generating furnace 23 is sent through a hot air pipe 24 to maintain ceramic particles 25 as a heat carrier in a fluid state. ing. The heat of the ceramic particles 25 is transmitted to the oxidation tank 3 via the tank wall between the heating tank 20 and the oxidation tank 3, and maintains the inside of the oxidation tank 3 at a predetermined temperature. The hot air after receiving heat from the ceramic particles 25 is discharged from the system through the exhaust pipe 26. Note that instead of arranging the heating tanks 20 so as to surround the oxidation tank 3, a plurality of oxidation tanks 3 and heating tanks 20 may be arranged alternately in a sandwich shape. Alternatively, the iron powder 1 in the oxidation tank 3 can also be heated by blowing hot air directly into the oxidation tank 3. This heating means can be applied to the reduction tank 7 as well.

他方、酸化槽3に送り込まれる酸化性ガス5は、次のよ
うにして調整した。まず、窒素45及び空気27を混合
して昇圧ブロア28で昇圧した後、流量調整弁29を経
てガス流量計30で流量を測定しながら熱交換器31に
送り込む。熱交換器31では、C0G32を空気33で
燃焼することにより発生した燃焼熱で、昇圧ブロア28
からの混合ガスを加熱する。次いで、この加熱された混
合ガスに、水34を必要に応じて添加する。また、水3
4の添加は、酸化槽3に吹き込まれる酸化性ガス5の温
度を調節することに役立つ。また、水は層内に直接添加
しても良い。
On the other hand, the oxidizing gas 5 sent into the oxidizing tank 3 was adjusted as follows. First, nitrogen 45 and air 27 are mixed and the pressure is increased by a pressure booster blower 28 , and then the mixture is fed into a heat exchanger 31 via a flow rate adjustment valve 29 while measuring the flow rate with a gas flow meter 30 . In the heat exchanger 31, the combustion heat generated by burning the C0G32 with the air 33 is used to blow up the pressure in the booster blower 28.
Heating the gas mixture from Next, water 34 is added to this heated mixed gas as necessary. Also, water 3
The addition of 4 serves to adjust the temperature of the oxidizing gas 5 blown into the oxidizing tank 3. Alternatively, water may be added directly into the layer.

このようにして調整された酸化性ガス5は、酸化槽3の
下部に設けられている整流器36を介して酸化槽3の半
径方向に関して均一な流量分布をもつ流れにされた後、
多孔板37を通過して、酸化槽3の内部にある鉄粉1を
流動化させる。
The oxidizing gas 5 thus adjusted is made to flow with a uniform flow rate distribution in the radial direction of the oxidizing tank 3 via the rectifier 36 provided at the bottom of the oxidizing tank 3, and then
The iron powder 1 inside the oxidation tank 3 is fluidized by passing through the perforated plate 37.

このとき、酸化槽3に吹き込まれる酸化性ガス5の組成
は分析器35でガス分析され、分析結果に基づき窒素4
5.空気27.水34の流量が調節される。
At this time, the composition of the oxidizing gas 5 blown into the oxidizing tank 3 is analyzed by the analyzer 35, and based on the analysis results, the composition of the oxidizing gas 5 is blown into the oxidizing tank 3.
5. Air 27. The flow rate of water 34 is adjusted.

これによって、酸化槽3内にある雰囲気ガスの酸化能力
が制御される。また、酸化性ガス5の入側温度を温度計
38で測定し、酸化槽3内の流動層の温度を温度計39
で測定し、加熱槽20内にあるセラッミクス粒子25の
流動層の温度を温度計40で測定する。そして、酸化槽
3内の流動層の温度を設定値に維持するように、熱交換
器31による加熱条件及び熱風発生炉23で発生する熱
風の温度を制御する。更に、酸化槽3内の圧力を一定に
維持するため、入側圧力計41及び出側圧力計42が設
けられており、これら圧力計41.42で検出された圧
力値を昇圧ブロア28にフィードバックして、酸化槽3
こ送り込まれる酸化性ガス5の圧力を制御する。また、
酸化槽3内における酸化状況を把握するため、サンプリ
ング計43から延びたサンプリング管44を酸化槽3内
部の流動層に臨ませている。
As a result, the oxidizing ability of the atmospheric gas in the oxidizing tank 3 is controlled. In addition, the inlet temperature of the oxidizing gas 5 is measured with a thermometer 38, and the temperature of the fluidized bed in the oxidizing tank 3 is measured with a thermometer 39.
The temperature of the fluidized bed of ceramic particles 25 in the heating tank 20 is measured with a thermometer 40. Then, the heating conditions by the heat exchanger 31 and the temperature of the hot air generated in the hot air generating furnace 23 are controlled so as to maintain the temperature of the fluidized bed in the oxidation tank 3 at a set value. Furthermore, in order to maintain the pressure inside the oxidation tank 3 constant, an inlet pressure gauge 41 and an outlet pressure gauge 42 are provided, and the pressure values detected by these pressure gauges 41 and 42 are fed back to the boost blower 28. Then, oxidation tank 3
The pressure of the oxidizing gas 5 sent is controlled. Also,
In order to grasp the oxidation situation in the oxidation tank 3, a sampling pipe 44 extending from a sampling meter 43 is placed facing the fluidized bed inside the oxidation tank 3.

この熱供給系統及び制御系統は、空気27の吹込みを除
き同様に還元槽7に対しても設けることができる。
This heat supply system and control system can be similarly provided to the reduction tank 7 except for the blowing of the air 27.

次いで、この装置を使用して、次表に示す組成及び粒度
分布をもつ回収鉄粉を酸化及び還元処理したときの操業
条件及び処理結果を説明する。
Next, the operating conditions and treatment results when using this apparatus to oxidize and reduce recovered iron powder having the composition and particle size distribution shown in the following table will be explained.

鉄粉の組成 成分       C金属鉄 FeOFe20s含有量
(重量%)  0.50 95.8  1.72 0.
67鉄粉の粒度分布 粒度(膚)      含有量(重量%)>250  
      2.1 250〜149       16.0149〜105
       26.9105〜74       1
5.2 74〜63       12.7 63〜44       16.1 <44        11.1 (平均粒径  94.6AO1+) この鉄粉を、窒素をベースとし、空気5容量%。
Composition of iron powder C metallic iron FeOFe20s content (wt%) 0.50 95.8 1.72 0.
Particle size distribution of 67 iron powder Particle size (skin) Content (weight%)>250
2.1 250~149 16.0149~105
26.9105~74 1
5.2 74-63 12.7 63-44 16.1 <44 11.1 (Average particle size 94.6AO1+) This iron powder is made of nitrogen as a base and air is 5% by volume.

水蒸気5容量%の組成をもち温度750℃の酸化性ガス
5によって平均滞留時間で1時間処理した。
The sample was treated with oxidizing gas 5 having a composition of 5% by volume of water vapor and a temperature of 750° C. for an average residence time of 1 hour.

このとき、酸化槽3に吹き込まれる酸化性ガス5の流量
は、0.2 N m″/分に維持した。qの酸化処理に
よって、鉄粉粒子の表面に、平均厚み15〜20pの表
面酸化層が形成された。さらに本鉄粉は炭素を含んでい
るため脱炭も同時に進行した。
At this time, the flow rate of the oxidizing gas 5 blown into the oxidizing tank 3 was maintained at 0.2 N m''/min. By the oxidation treatment of q, the surface of the iron powder particles was oxidized to an average thickness of 15 to 20 p. A layer was formed.Furthermore, since the iron powder contains carbon, decarburization progressed at the same time.

次いで、表面酸化された鉄粉を、200 ℃以上の高温
状態で配管6を経由して還元槽7に送り込んだ。この還
元槽7には、窒素をベースとし、水素40容量%の組成
をもち温度550℃の還元性ガス9を流量0.2 N 
rn”7分で吹き込んだ。還元槽7で鉄粉の還元を平均
滞留時間で2時間行った後、排出管10を介して冷却槽
11に鉄粉を排出し、そこで常温まで冷却した。
Next, the surface-oxidized iron powder was fed into the reduction tank 7 via the pipe 6 at a high temperature of 200° C. or more. This reducing tank 7 is supplied with a reducing gas 9 based on nitrogen, having a composition of 40% by volume of hydrogen, and having a temperature of 550° C. at a flow rate of 0.2 N.
After reducing the iron powder in the reduction tank 7 for an average residence time of 2 hours, the iron powder was discharged to the cooling tank 11 via the discharge pipe 10, where it was cooled to room temperature.

このように酸化・還元された鉄粉の表面は、平均厚み2
0pの多孔質表面層が形成されていた。この多孔質表面
層の状態は、酸化槽3と還元槽7とを連絡する配管6内
を流れる鉄粉の温度によって大きく影響される。第3図
は、この配管6を流れる鉄粉の温度が、冷却槽11に収
容された処理後の鉄粉の表面状態に与えた影響を示す。
The surface of the iron powder oxidized and reduced in this way has an average thickness of 2
A porous surface layer of 0p was formed. The state of this porous surface layer is greatly influenced by the temperature of the iron powder flowing through the pipe 6 that connects the oxidation tank 3 and the reduction tank 7. FIG. 3 shows the influence of the temperature of the iron powder flowing through the pipe 6 on the surface condition of the treated iron powder stored in the cooling tank 11.

゛第3図から明らかなように、鉄粉の温度が200℃以
下になると、還元処理後の鉄粉に形成された多孔質表面
層が剥離することが判る。これは、酸化槽3から還元槽
7に送られる途中で、酸化槽3内の処理により形成され
た表面酸化層の一部が剥離したことを示す。
As is clear from FIG. 3, when the temperature of the iron powder becomes 200° C. or lower, the porous surface layer formed on the iron powder after reduction treatment peels off. This indicates that a part of the surface oxidation layer formed by the treatment in the oxidation tank 3 was peeled off while being sent from the oxidation tank 3 to the reduction tank 7.

これに対し、200 ℃以上の高温状態で酸化槽3から
還元槽7に鉄粉を供給すると、前述したように表面酸化
層と地鉄との境界に生じる熱応力が小さなため、表面酸
化層の剥離が抑制される。その結果、酸化槽3で生成し
た表面酸化層は効率良く還元槽7における処理に付され
る。これが、第3図において、鉄粉温度200℃以上と
したときに多孔質表面層の剥離が観察されなかったこと
に現れている。また、表面酸化層の剥離がないため、還
元槽7で形成された多孔質表面層の厚みも、バラツキの
小さなものとなっている。
On the other hand, when iron powder is supplied from the oxidation tank 3 to the reduction tank 7 at a high temperature of 200°C or higher, the thermal stress generated at the boundary between the surface oxidation layer and the steel base is small, so that the surface oxidation layer is Peeling is suppressed. As a result, the surface oxidized layer generated in the oxidation tank 3 is efficiently processed in the reduction tank 7. This is reflected in the fact that, in FIG. 3, no peeling of the porous surface layer was observed when the iron powder temperature was set to 200° C. or higher. Further, since there is no peeling of the surface oxidized layer, the thickness of the porous surface layer formed in the reduction tank 7 also has small variations.

また、高温状態で鉄粉を還元槽7に送給することにより
、鉄粉の保有熱が還元反応に利用され、還元槽7を加熱
するのに必要な熱量を節減することができた。たとえば
、100 ℃程度の鉄粉を還元槽7に送り込むとき、還
元槽7内で還元反応の進行を維持するために19 xi
o” kcal 7時の熱補給が必要であった。これに
対し、温度300 ℃の高温鉄粉を酸化槽3から還元槽
7に送給するとき、還元槽7内を加熱するのに必要な熱
量は15 XIO’ kcalZ時であった。
Further, by feeding the iron powder to the reduction tank 7 in a high temperature state, the heat retained in the iron powder was utilized for the reduction reaction, and the amount of heat required to heat the reduction tank 7 could be reduced. For example, when sending iron powder at a temperature of about 100 °C to the reduction tank 7, 19 xi
o" kcal It was necessary to replenish heat at 7 o'clock. On the other hand, when sending high-temperature iron powder at a temperature of 300 °C from the oxidation tank 3 to the reduction tank 7, the amount of heat required to heat the inside of the reduction tank 7 was The amount of heat was 15 XIO' kcalZ hours.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、酸化槽から
還元槽に送られる鉄粉の温度を200 ℃以上に維持す
ることにより、酸化槽で形成された表面酸化層が地鉄か
ら剥離することなく、還元槽に鉄粉を送給することがで
きる。その結果、還元槽で所定の厚みをもつ多孔質表面
層を安定して形成することが可能となり、一定した品質
の製品が得られる。また、高温状態で鉄粉を酸化槽から
還元槽に送るため、連続処理が可能となり、生産性の向
上が図られる。このようにして製造された鉄粉は、表面
活性に優れた多孔質表面層をもち、しかも緻密度の高い
内層をもっている。そのため、たとえば焼結原料として
使用するとき、優れた焼結性を示し、得られた焼結体の
強度も高いものとなる。
As explained above, in the present invention, by maintaining the temperature of the iron powder sent from the oxidation tank to the reduction tank at 200 °C or higher, the surface oxidation layer formed in the oxidation tank can be peeled off from the base iron. It is possible to feed iron powder to the reduction tank. As a result, it becomes possible to stably form a porous surface layer with a predetermined thickness in the reduction tank, and a product of constant quality can be obtained. In addition, since the iron powder is sent from the oxidation tank to the reduction tank in a high temperature state, continuous processing is possible and productivity is improved. The iron powder produced in this manner has a porous surface layer with excellent surface activity and a highly dense inner layer. Therefore, when used as a sintering raw material, for example, it exhibits excellent sinterability and the strength of the obtained sintered body is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例で使用した装置の概略を示し、第
2図は熱供給系統及び制御系統を付設した酸化槽を示し
、第3図は本発明の効果を具体的に表したグラフである
。 特許出願人    新日本製鐵 株式會社代  理  
人      小  堀   益 (ほか2名)第1図
Fig. 1 shows an outline of the apparatus used in the embodiment of the present invention, Fig. 2 shows an oxidation tank equipped with a heat supply system and a control system, and Fig. 3 is a graph specifically expressing the effects of the present invention. It is. Patent applicant Nippon Steel Corporation Representative
Masu Kobori (and 2 others) Figure 1

Claims (1)

【特許請求の範囲】 1、溶融金属処理容器で発生したダストから回収された
鉄粉を流動床酸化槽で表面酸化し、この鉄粉を200℃
以上の高温状態で前記流動床酸化槽から直接的に流動床
還元槽に導き、次いで鉄粉表面に形成している表面酸化
層を還元して多孔質表面層とすることを特徴とする回収
鉄粉の改質方法。 2、溶融金属処理容器で発生したダストから回収された
鉄粉を表面酸化する流動床酸化槽と形成された表面酸化
層を還元する流動床還元槽との間に、表面酸化された鉄
粉を高温状態のままで前記流動床還元槽に供給する配管
を設けたことを特徴とする回収鉄粉の改質装置。
[Claims] 1. Surface oxidation of iron powder recovered from dust generated in a molten metal processing container is carried out in a fluidized bed oxidation tank, and the iron powder is heated at 200°C.
The recovered iron is led directly from the fluidized bed oxidation tank to the fluidized bed reduction tank in the above high temperature state, and then the surface oxidation layer formed on the surface of the iron powder is reduced to form a porous surface layer. Method for modifying powder. 2. Surface-oxidized iron powder is placed between a fluidized bed oxidation tank that oxidizes the surface of iron powder recovered from the dust generated in the molten metal processing container and a fluidized bed reduction tank that reduces the formed surface oxidation layer. A reforming apparatus for recovered iron powder, characterized in that a pipe is provided to supply the fluidized bed reduction tank in a high temperature state.
JP62332737A 1987-12-29 1987-12-29 Method and device for reforming recovered iron powder Pending JPH01176001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62332737A JPH01176001A (en) 1987-12-29 1987-12-29 Method and device for reforming recovered iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62332737A JPH01176001A (en) 1987-12-29 1987-12-29 Method and device for reforming recovered iron powder

Publications (1)

Publication Number Publication Date
JPH01176001A true JPH01176001A (en) 1989-07-12

Family

ID=18258294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62332737A Pending JPH01176001A (en) 1987-12-29 1987-12-29 Method and device for reforming recovered iron powder

Country Status (1)

Country Link
JP (1) JPH01176001A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103551582A (en) * 2013-11-12 2014-02-05 攀枝花钢城集团有限公司 Method for producing fine iron powder from converter sludge in vanadium-titanium magnetite smelting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103551582A (en) * 2013-11-12 2014-02-05 攀枝花钢城集团有限公司 Method for producing fine iron powder from converter sludge in vanadium-titanium magnetite smelting
CN103551582B (en) * 2013-11-12 2016-06-01 攀枝花钢城集团有限公司 Method for producing fine iron powder from converter sludge in vanadium-titanium magnetite smelting

Similar Documents

Publication Publication Date Title
US9555474B2 (en) High temperature fluidized bed for powder treatment
AU658146B2 (en) Preheating of iron ore feed, prior to reduction to iron carbide in a fluidised bed reactor
JP5442260B2 (en) Method for producing densified molybdenum metal powder
EP0558489B1 (en) Fluidized bed reactor and process for using same
JPH04308011A (en) Manufacture of tungsten powder using fluidized bed
JPS61122106A (en) Method for producing finely powdered magnesium oxide
JPS5818962B2 (en) Sponge iron carbonization method
JP3342670B2 (en) Manufacturing method of iron carbide
US5207839A (en) Processes for the production of a controlled atmosphere for heat treatment of metals
JPH01176001A (en) Method and device for reforming recovered iron powder
JP3157478B2 (en) Operation management method of iron anchor hydride manufacturing process
JP4839869B2 (en) Finishing heat treatment method and finishing heat treatment apparatus for iron powder
US6113668A (en) Process for manufacture of powder compact feed materials for fine grained hardmetal
US3147106A (en) Use of lined passivation chamber in an iron powder passivating process
US3223521A (en) Methods for increasing the proportion of scrap metal charged to basic oxygen conversion processes
JP2001280849A (en) Method and apparatus for controlling rotary kiln
EP0186497A2 (en) Process for producing silicon nitride of high alpha content
JPH0461913A (en) Carbon dioxide decomposition method and decomposition device
JPS63195102A (en) Continuous production method and apparatus for aluminum nitride powder
US1481357A (en) Treatment of ores
JP7727257B1 (en) Iron carbide manufacturing method
RU2820584C1 (en) Upper blowing tuyere for converter, method of auxiliary raw material addition and method of liquid cast iron refining
JPS6136573B2 (en)
US826557A (en) Process of reducing metals.
Stobbs et al. The oxidation of pure U in CO2 between 700° and 1000° C