[go: up one dir, main page]

JPH01179487A - Distributed feedback-type semiconductor laser - Google Patents

Distributed feedback-type semiconductor laser

Info

Publication number
JPH01179487A
JPH01179487A JP63001881A JP188188A JPH01179487A JP H01179487 A JPH01179487 A JP H01179487A JP 63001881 A JP63001881 A JP 63001881A JP 188188 A JP188188 A JP 188188A JP H01179487 A JPH01179487 A JP H01179487A
Authority
JP
Japan
Prior art keywords
layer
laser
region
distributed feedback
window region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63001881A
Other languages
Japanese (ja)
Inventor
Shigeru Murata
茂 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63001881A priority Critical patent/JPH01179487A/en
Publication of JPH01179487A publication Critical patent/JPH01179487A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/124Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/164Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions comprising semiconductor material with a wider bandgap than the active layer

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To realize a laser which is small in a leakage current which leaks toward a window region and capable of a high speed modulation by a method wherein a window structure phase shift distributed feedback type semiconductor laser is provided, where a transparent window region formed of a high resistive layer the same as a channel section is formed at a projecting side. CONSTITUTION:A stripe-like light emitting region (mesa section) 130 comprising an active layer 103 and an optical guide layer 102 is formed on a substrate 1, where the light emitting region 130 is sandwiched in between channel sections 140 which are filled with a semiconductor layer. A phase shift section 160 and a diffraction grating 150 are formed near the center of a laser resonator. In the distributed feedback type semiconductor structured as mentioned above, the above channel layers 140 are formed of a high resistive semiconductor which is higher than the laser radiation in energy gap. The parts of the active layer 103 and the optical guide layer 102 on the projecting side are removed, and a window region 120 formed of the high resistive semiconductor layer 106 the same as the above channel sections 140 is formed on the part where the layers 103 and 102 are removed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は分布帰還型半導体レーザに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a distributed feedback semiconductor laser.

〔従来の技術〕[Conventional technology]

レーザ共振器内に回折格子を備えている分布帰還型半導
体レーザ(以下DFBレーザ)は、高速変調時にも単一
軸モードで発振するため、長距離大容量の光伝送システ
ムには不可欠のデバイスとなっている。DFBレーザは
、基本的にはレーザ共振器内部の回折格子による波長選
択機能を利用しているが、回折格子の形状や、レーザ端
面の構造によっていくつかのタイプがあり、それぞれ特
長がある。このうちで、レーザ共振器の中央部付近で、
回折格子の周期をずらしたいわゆる位相シフトDFBレ
ーザは、単一軸モードの歩留りが他の構造と比べて格段
にすぐれている。ただしこの位相シフトDFBレーザで
はレーザの両端面の反射率を極力低減する必要がある。
Distributed feedback semiconductor lasers (hereinafter referred to as DFB lasers), which are equipped with a diffraction grating inside the laser cavity, oscillate in a single-axis mode even during high-speed modulation, making them indispensable devices for long-distance, high-capacity optical transmission systems. ing. DFB lasers basically utilize the wavelength selection function of a diffraction grating inside a laser resonator, but there are several types depending on the shape of the diffraction grating and the structure of the laser end face, and each type has its own features. Among these, near the center of the laser resonator,
A so-called phase-shifted DFB laser in which the period of the diffraction grating is shifted has a much better yield of single-axis mode than other structures. However, in this phase-shifted DFB laser, it is necessary to reduce the reflectance of both end faces of the laser as much as possible.

このために両端面にSiN膜などを用いた無反射コート
を施す方法が一般に用いられているが、反射率を1%程
度以下に均一性良く制御するのは極めて難しいのが現状
である。これを解決する一つの方法として従来、「窓構
造」と呼ばれる構造を端面付近に形成する方法が知られ
ている。この構造について詳しくはIE、EBジャーナ
ル・オブ・カンタム・エレクトロニクス誌(K、UTA
KA他IEEE。
For this purpose, a method of applying an anti-reflection coating using a SiN film or the like on both end faces is generally used, but at present it is extremely difficult to control the reflectance to about 1% or less with good uniformity. One known method for solving this problem is to form a structure called a "window structure" near the end face. For more information about this structure, see IE, EB Journal of Quantum Electronics (K, UTA
KA et al. IEEE.

J、Quantum  Electron、VolGE
−20,1984,PP236〜245)などに報告さ
れている。この窓構造DFBレーザの共振器軸方向の断
面構造を第2図に示した。図がられかるように、このレ
ーザは端面付近の活性層203と光ガイド層202を除
去して、そこにレーザ光に対して透明なInP埋め込み
!205を形成している。この埋め込み層205が導波
路のない窓領域220となる。この構造では、活性層2
03からの出射光は窓領域220で回折によって広がる
なめ、窓領域220の端面で反射された光が活性層20
3にもどる割合(すなわち実効的な端面反射率)は極め
て小さくなる。なお第2図では明らかではないがこのレ
ーザは横モード制御構造としていわゆる埋め込み構造を
用いており、この埋め込み構造を成長する時同時に窓領
域220の埋め込み層205を成長している。具体的に
はこの埋め込み層はInPのpnp構造となっている。
J, Quantum Electron, VolGE
-20, 1984, PP236-245). A cross-sectional structure of this window structure DFB laser in the cavity axis direction is shown in FIG. As shown in the figure, this laser removes the active layer 203 and light guide layer 202 near the end face, and fills them with InP that is transparent to the laser beam! 205 is formed. This buried layer 205 becomes a window region 220 without a waveguide. In this structure, the active layer 2
The emitted light from 03 is spread by diffraction in the window region 220, and the light reflected by the end face of the window region 220 is reflected in the active layer 20.
The rate of return to 3 (that is, the effective end face reflectance) becomes extremely small. Although it is not clear in FIG. 2, this laser uses a so-called buried structure as a transverse mode control structure, and when growing this buried structure, the buried layer 205 of the window region 220 is grown at the same time. Specifically, this buried layer has a pnp structure of InP.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来例に示した窓構造DFBレーザには次のような問題
点があった。一つは窓領域220の埋め込み層205が
pnpl造となっているために、必ずしも完全な電流ブ
ロック層として働かず活性領域210から窓領域220
に電流がもれてそのためにレーザのしきい値が上昇する
点である。二つめは、この埋め込み層205がpnp構
造という多層構造であることや液相エピタキシャル成長
によって成長していることのために、製作した素子の歩
留りが必ずしも高くない点である。三つめは、やはりこ
のpnpi造のために素子全体の浮遊容量が大きくなり
、高速変調が困難になる点である。
The conventional window structure DFB laser has the following problems. One is that since the buried layer 205 of the window region 220 has a pnpl structure, it does not necessarily function as a complete current blocking layer, and does not necessarily function as a complete current blocking layer.
This is the point at which current leaks and the threshold of the laser increases. Second, since the buried layer 205 has a multilayer structure called a pnp structure and is grown by liquid phase epitaxial growth, the yield of manufactured devices is not necessarily high. The third problem is that the pnpi structure increases the stray capacitance of the entire element, making high-speed modulation difficult.

本発明の目的は、これらの問題点を改善し、窓領域への
もれ電流が極めて小さく、かつ製作歩留りが高く、かつ
超高速変調が可能な位相シフトDFBレーザを提供する
ことにある。
An object of the present invention is to improve these problems and provide a phase-shifted DFB laser that has extremely low leakage current to the window region, has a high manufacturing yield, and is capable of ultra-high-speed modulation.

〔問題点を解決するための手段〕[Means for solving problems]

本1発明の構成は活性層と光ガイド層を含むストライプ
状の発光領域の両側に埋め込み層を備え、レーザ共振器
の中央部付近に位相シフト部がある回折格子を有する分
布帰還型半導体レーザであって、発光領域の両側の埋め
込み層がレーザ光のエネルギよりもエネルギキャップの
大きな高抵抗半導体層から成っており、かつ、少くとも
一方の出射面付近にレーザ光に対して透明な窓領域が形
成されており、前記窓領域は活性層と光ガイド層が除去
され、かつ、除去された領域に前記埋め込み層と同じ前
記高抵抗半導体層が形成されていることを特徴とする。
The structure of the present invention is a distributed feedback semiconductor laser which has buried layers on both sides of a striped light emitting region including an active layer and a light guide layer, and has a diffraction grating with a phase shift part near the center of the laser cavity. The buried layers on both sides of the light-emitting region are made of high-resistance semiconductor layers with an energy cap larger than the energy of the laser light, and there is a window region transparent to the laser light near at least one emission surface. The active layer and the optical guide layer are removed from the window region, and the high-resistance semiconductor layer, which is the same as the buried layer, is formed in the removed region.

〔実施例〕〔Example〕

次に図面により本発明の詳細な説明する。 Next, the present invention will be explained in detail with reference to the drawings.

第1図(a)は本発明の実施例を示す斜視図、第1図(
b)はその共振器軸方向の断面図である。この半導体レ
ーザは基本的には従来例と同じ窓構造位相シフトDFB
レーザである。レーザの片端面付近は窓領域120とな
り、活性層103や光ガイド層102が除去されている
。もう一方の活性領域110の端面はへき開面で無反射
コートを施しである。横モード制御構造としては、いわ
ゆる埋め込み13fiをしている。すなわちレーザの発
光領域となる中央のメサ部130が、半導体層で埋め込
まれたチャンネル部140によって挟まれた構造である
。本発明の特徴は、このチャンネル部140と窓領域1
20がともにレーザ光に対して透明なくすなわちエネル
ギギャップの大きな〉高抵抗半導体層106で形成され
ている点である。このなめ活性領域110から窓領域1
20へのもれ電流や、チャンネル部140などを通じた
もれ電流が非常に小さい。また、窓領域120とチャン
ネル部140を同時に埋め込んでいるため、製作工程が
簡単で高い歩留りが得られる。さらに高抵抗層では浮遊
容量は極めて小さいため、pnp埋め込み構造を有する
従来例と比べて超高速変調が可能となる。
FIG. 1(a) is a perspective view showing an embodiment of the present invention;
b) is a sectional view in the axial direction of the resonator. This semiconductor laser basically has the same window structure and phase shift DFB as the conventional example.
It's a laser. The vicinity of one end face of the laser becomes a window region 120, and the active layer 103 and light guide layer 102 are removed. The end face of the other active region 110 is a cleavage plane and is coated with an anti-reflection coating. The transverse mode control structure is a so-called buried 13fi. That is, the structure is such that a central mesa portion 130 serving as a laser emission region is sandwiched between channel portions 140 filled with a semiconductor layer. The feature of the present invention is that the channel portion 140 and the window region 1
20 is formed of a high-resistance semiconductor layer 106 that is not transparent to laser light, that is, has a large energy gap. From this slanted active region 110 to the window region 1
Leakage current to 20 and leakage current through channel portion 140 and the like are very small. Further, since the window region 120 and the channel portion 140 are embedded at the same time, the manufacturing process is simple and a high yield can be obtained. Furthermore, since the stray capacitance in the high resistance layer is extremely small, ultrahigh-speed modulation is possible compared to the conventional example having a PNP buried structure.

まずp−InP基板101の上に周期236 nmの位
相シフト回折格子150を形成する。次に液層エピタキ
シャル成長法によって、この回折格子150の上にp−
InGaAsP光ガイド層(λg=1.3μm)102
.InGaAsP活性層(λg=1.55μm)103
.n−InPクラッドffJ n −I n Pクラッ
ド層104.n−InGaAsPキャップ層(λg=1
.3μm>105を順次成長する。次に、SiO2膜を
エツチングマスクとして、窓領域120とチャンネル部
140のキャップ層105から光ガイド層102までを
、選択エツチングにより除去する。チャンネル部140
の幅は20μm、メサ部1コ0の幅は1.5μmである
。窓領域120は、第1図からは明らかではないが、こ
のエツチングによってチャンネル部140と同じように
溝(ただし方向はチャンネル部の溝に直交する方向)と
なる。この溝の幅は50μmで、実際の素子の窓領域1
20の長さは、この約1/2となる。この時回折格子1
50の位相シフト部160は、活性領域110のほぼ中
央部ないしは、若干、活性領域110の端面寄りに位置
するようにしておく。次に上述のSi02Mをマスクと
して、ハイドライド気相成長法によって、チャンネル部
140と窓領域120を同時にFeドープInP層(高
抵抗層)で埋め込む。この時、成長時間等を制御するこ
とで素子の表面がほぼ平坦になるように埋め込むことが
可能である。次に5i02膜を除去する。第1図はこの
状態を示している。次に再び5i02膜を中央のメサ部
130以外の全面に形成した後、素子の両面に電極を形
成する。最後にへき開により素子を切り出し、活性領域
110の端面にSiN膜を用いて無反射コートを施す。
First, a phase shift diffraction grating 150 with a period of 236 nm is formed on a p-InP substrate 101. Next, by liquid layer epitaxial growth, p-
InGaAsP light guide layer (λg=1.3μm) 102
.. InGaAsP active layer (λg=1.55 μm) 103
.. n-InP cladding ffJ n-InP cladding layer 104. n-InGaAsP cap layer (λg=1
.. 3μm>105 are grown sequentially. Next, using the SiO2 film as an etching mask, the window region 120 and channel portion 140 from the cap layer 105 to the light guide layer 102 are removed by selective etching. Channel section 140
The width of each mesa portion is 20 μm, and the width of each mesa portion is 1.5 μm. Although it is not clear from FIG. 1, the window region 120 becomes a groove (but in a direction perpendicular to the groove of the channel portion) like the channel portion 140 due to this etching. The width of this groove is 50 μm, and the window area 1 of the actual device
The length of 20 is approximately 1/2 of this length. At this time, the diffraction grating 1
The phase shift portion 160 of 50 is positioned approximately at the center of the active region 110 or slightly toward the end surface of the active region 110. Next, using the above-mentioned Si02M as a mask, the channel portion 140 and the window region 120 are simultaneously filled with an Fe-doped InP layer (high resistance layer) by hydride vapor phase epitaxy. At this time, by controlling the growth time and the like, it is possible to embed the element so that the surface of the element becomes substantially flat. Next, the 5i02 film is removed. FIG. 1 shows this state. Next, the 5i02 film is again formed on the entire surface except for the central mesa portion 130, and then electrodes are formed on both sides of the device. Finally, the device is cut out by cleavage, and an anti-reflection coating is applied to the end face of the active region 110 using a SiN film.

この素子では窓領域120側の実効的な反射率はほぼ無
視できるほど小さいため、活性領域110側の無反射コ
ートは、あまり厳密に反射率を制御しなくてもレーザ特
性に大きな影響を与えず、そのため高い単一軸モードの
歩留りが得られる。実際製作した素子の特性は以下の通
りである。発振波長は1.55μm、平均しきい値は1
2mA、平均微分量子効率は0.2W/Aで20mW以
上まで単一軸モード動作する素子の歩留りは95%以上
であった。また小信号応等特性ではカットオフ周波数と
して14GHzという高い値が得られた。また1 0 
G b / sの変調が可能であった。
In this element, the effective reflectance on the window region 120 side is so small that it can be ignored, so the anti-reflection coating on the active region 110 side will not have a large effect on the laser characteristics even if the reflectance is not controlled too strictly. , so a high single-axis mode yield can be obtained. The characteristics of the actually manufactured device are as follows. The oscillation wavelength is 1.55μm, and the average threshold is 1
The yield of devices operating in single-axis mode up to 20 mW or more at 2 mA and an average differential quantum efficiency of 0.2 W/A was 95% or more. In addition, a high cutoff frequency of 14 GHz was obtained for the small signal response characteristic. Also 1 0
Modulation of G b/s was possible.

以上の実施例ではp−InPを基板として用いたがn−
InPを用いても大きな違いはない。また、窓領域を両
端面に形成することも可能である。成長方法としては、
液相エピタキシャル成長法とハイドライド気相成長法の
組合せを用いたが、有機金属気相成長法など他の方法で
もダブルへテロ構造の成長および高抵抗層の成長が可能
である。また、レーザ波長が1.55μm帯以外の1.
3μm帯の素子や、A I G a A s系など他の
材料系の素子に対しても同様の効果が得られる。
In the above embodiments, p-InP was used as the substrate, but n-InP was used as the substrate.
There is no big difference even if InP is used. It is also possible to form window regions on both end faces. The growth method is
Although a combination of liquid-phase epitaxial growth and hydride vapor-phase epitaxy was used, it is also possible to grow double heterostructures and high-resistance layers using other methods such as metal-organic vapor-phase epitaxy. In addition, if the laser wavelength is other than the 1.55 μm band, 1.
Similar effects can be obtained for elements in the 3 μm band and elements made of other materials such as AIGaAs.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように、本発明によれば、活性層以外へ
のもれ電流が極めて小さく、製作歩留りが高く、かつ、
高速変調が可能な位相シフI・DFBレーザが実現でき
る。実際1.55μm帯の素子で、平均しきい値12m
A、単一軸モードの歩留り95%が得られた。まな10
 G b / sの高速変調が可能であった。
As described above, according to the present invention, leakage current to areas other than the active layer is extremely small, manufacturing yield is high, and
A phase-shifted I/DFB laser capable of high-speed modulation can be realized. In fact, for a 1.55 μm band element, the average threshold value is 12 m.
A. A yield of 95% in single-axis mode was obtained. Mana 10
High-speed modulation of Gb/s was possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は一実施例を示す斜視図、第1図(b)は
その共振器軸方向の断面図、第2図は従来例を示す断面
図である。図において、110゜210は活性領域、1
20,220は窓領域、101は基板、102.202
は光ガイド層、103.203は活性層、104はクラ
ッド層、105はキャップ層、205は埋め込み層、1
06は高抵抗層、130はメサ部、140はチャンネル
部、150は回折格子、160は位相シフト部である。
FIG. 1(a) is a perspective view showing one embodiment, FIG. 1(b) is a sectional view in the axial direction of the resonator, and FIG. 2 is a sectional view showing a conventional example. In the figure, 110°210 is the active region, 1
20, 220 are window areas, 101 is a substrate, 102.202
is a light guide layer, 103.203 is an active layer, 104 is a cladding layer, 105 is a cap layer, 205 is a buried layer, 1
06 is a high resistance layer, 130 is a mesa portion, 140 is a channel portion, 150 is a diffraction grating, and 160 is a phase shift portion.

Claims (1)

【特許請求の範囲】[Claims] 活性層と光ガイド層を少なくとも含んでいるストライプ
状の発光領域の両側に埋め込み層を備え、レーザ共振器
の中央部付近に位相シフト部がある回折格子を有する分
布帰還型半導体レーザであって、前記発光領域の両側の
埋め込み層がレーザ光のエネルギよりもエネルギキャッ
プ(禁制帯幅)の大きな高抵抗半導体層から成っており
、かつ、少くとも一方の出射面付近にレーザ光に対して
透明な窓領域が形成されており、前記窓領域は前記活性
層と光ガイド層が除去され、かつ、除去された領域に前
記埋め込み層と同じ前記高抵抗半導体層が形成されてい
ることを特徴とする分布帰還型半導体レーザ。
A distributed feedback semiconductor laser comprising buried layers on both sides of a striped light emitting region including at least an active layer and a light guide layer, and a diffraction grating having a phase shift portion near the center of the laser cavity, The buried layers on both sides of the light-emitting region are made of high-resistance semiconductor layers with an energy cap (forbidden width) larger than the energy of the laser beam, and a layer transparent to the laser beam is formed near at least one emission surface. A window region is formed, the active layer and the light guide layer are removed from the window region, and the high-resistance semiconductor layer, which is the same as the buried layer, is formed in the removed region. Distributed feedback semiconductor laser.
JP63001881A 1988-01-08 1988-01-08 Distributed feedback-type semiconductor laser Pending JPH01179487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63001881A JPH01179487A (en) 1988-01-08 1988-01-08 Distributed feedback-type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63001881A JPH01179487A (en) 1988-01-08 1988-01-08 Distributed feedback-type semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01179487A true JPH01179487A (en) 1989-07-17

Family

ID=11513907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63001881A Pending JPH01179487A (en) 1988-01-08 1988-01-08 Distributed feedback-type semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01179487A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100713342B1 (en) * 2005-05-30 2007-05-04 삼성전자주식회사 Broadband gain laser
JP2008066647A (en) * 2006-09-11 2008-03-21 Fujitsu Ltd Optical semiconductor device and manufacturing method thereof
JP2008177405A (en) * 2007-01-19 2008-07-31 Fujitsu Ltd Optical semiconductor device and manufacturing method thereof
JP2019009348A (en) * 2017-06-27 2019-01-17 住友電気工業株式会社 Quantum cascade semiconductor laser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100713342B1 (en) * 2005-05-30 2007-05-04 삼성전자주식회사 Broadband gain laser
JP2008066647A (en) * 2006-09-11 2008-03-21 Fujitsu Ltd Optical semiconductor device and manufacturing method thereof
JP2008177405A (en) * 2007-01-19 2008-07-31 Fujitsu Ltd Optical semiconductor device and manufacturing method thereof
JP2019009348A (en) * 2017-06-27 2019-01-17 住友電気工業株式会社 Quantum cascade semiconductor laser

Similar Documents

Publication Publication Date Title
US5436195A (en) Method of fabricating an integrated semiconductor light modulator and laser
JPH08271743A (en) Semiconductor optical waveguide and its production
JPH1075009A (en) Optical semiconductor device and its manufacture
JP2937751B2 (en) Method for manufacturing optical semiconductor device
US6224667B1 (en) Method for fabricating semiconductor light integrated circuit
JPH06338659A (en) Laser element
US6391671B2 (en) Method of producing an optical semiconductor device having a waveguide layer buried in an InP current blocking layer
JP2002353559A (en) Semiconductor laser and method of manufacturing the same
JPH06260727A (en) Optical semiconductor device and manufacture thereof
JP2000261093A (en) Distribution feedback type semiconductor laser
JPH01319986A (en) Semiconductor laser device
US5756373A (en) Method for fabricating optical semiconductor device
JP2950302B2 (en) Semiconductor laser
JPH01179487A (en) Distributed feedback-type semiconductor laser
US6228671B1 (en) Process for production of semiconductor laser grating
JP2000012963A (en) Manufacture of optical semiconductor device
JP3264179B2 (en) Semiconductor light emitting device and method of manufacturing the same
CN115280609B (en) Optics
JP3700245B2 (en) Phase-shifted distributed feedback semiconductor laser
JPH08274406A (en) Distributed feedback semiconductor laser device and manufacturing method thereof
JPS63166281A (en) Distributed feedback semiconductor laser
JPS6373585A (en) Frequency tunable distributed bragg reflection-type semiconductor laser
JP2000137126A (en) Optical function element
JP2950297B2 (en) Distributed feedback semiconductor laser and method of manufacturing the same
JP2771276B2 (en) Semiconductor optical integrated device and manufacturing method thereof