JPH01198456A - Manufacture of aluminum alloy excellent in stress corrosion cracking resistance - Google Patents
Manufacture of aluminum alloy excellent in stress corrosion cracking resistanceInfo
- Publication number
- JPH01198456A JPH01198456A JP2230988A JP2230988A JPH01198456A JP H01198456 A JPH01198456 A JP H01198456A JP 2230988 A JP2230988 A JP 2230988A JP 2230988 A JP2230988 A JP 2230988A JP H01198456 A JPH01198456 A JP H01198456A
- Authority
- JP
- Japan
- Prior art keywords
- stress corrosion
- corrosion cracking
- cracking resistance
- aluminum alloy
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005260 corrosion Methods 0.000 title claims abstract description 30
- 230000007797 corrosion Effects 0.000 title claims abstract description 30
- 238000005336 cracking Methods 0.000 title claims abstract description 30
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 238000010438 heat treatment Methods 0.000 claims abstract description 19
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 5
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 5
- 229910052709 silver Inorganic materials 0.000 abstract description 12
- 238000001816 cooling Methods 0.000 abstract description 11
- 229910052802 copper Inorganic materials 0.000 abstract description 11
- 238000011282 treatment Methods 0.000 abstract description 10
- 239000000203 mixture Substances 0.000 abstract description 8
- 229910045601 alloy Inorganic materials 0.000 abstract description 7
- 239000000956 alloy Substances 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 3
- 229910052748 manganese Inorganic materials 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 5
- 229910018134 Al-Mg Inorganic materials 0.000 description 3
- 229910018467 Al—Mg Inorganic materials 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Continuous Casting (AREA)
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はアルミニウム合金の製造法に係り、特に自動車
、車両、機械等において負荷応力が比較的高くかかる部
品等の用途に好適で、耐応力腐食割れ性に優れたアルミ
ニウム合金の製造法に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing aluminum alloys, and is particularly suitable for use in parts such as automobiles, vehicles, machines, etc., which are subjected to relatively high stress loads. This invention relates to a method for producing an aluminum alloy with excellent corrosion cracking resistance.
(従来の技術及び解決しようとする課題)従来、自動車
、車両、船舶などに用いられる5000系アルミニウム
合金として5o52.5454.5154.5086.
5182.5083等の合金があるが、構造材として6
6℃以上の腐食環境で使用する場合は、Mg3.5%以
上を含む合金である5086,5182.5083等は
応力腐食割れや剥離腐食の懸念があるとして、低Mg含
有合金の5052.5154.5454等を使用するこ
とが多かった。(Prior art and problems to be solved) Conventionally, 5o52.5454.5154.5086.
There are alloys such as 5182.5083, but 6 is used as a structural material.
When used in a corrosive environment at 6°C or higher, alloys containing 3.5% or more of Mg, such as 5086, 5182.5083, etc., may cause stress corrosion cracking or exfoliation corrosion, so low Mg-containing alloys such as 5052.5154. 5454 etc. were often used.
しかし、これらの低Mg含有アルミニウム合金は強度が
低いため、高M”g含有アルミニラム合金に比べて使用
板厚を厚くせざるを得ず、軽量化効果が小さいことが欠
点であった。However, since these low Mg-containing aluminum alloys have low strength, the plate thickness used must be thicker than that of high M''g-containing aluminum alloys, and the disadvantage is that the weight reduction effect is small.
また、自動車や車両の用途には、ボディやシャ−シ、−
など、アルミニウム合金薄板をプレス加工して部品を製
作することが多いが、このプレス成形性を良くするため
、材料の組織は繊維組織より等軸粒組織にコント9−ル
されることが多い。しかし、耐応力腐食割れ性の観点か
らすると等軸粒組織の方が繊維組織より不利であること
から、高い負荷応力がかかる構造体には、使用温度が6
6℃を超えなくても、高Mg含有アルミニウム合金で等
軸粒組織を有する材料の使用は控えられることが多かっ
た。In addition, for automobile and vehicle applications, bodies, chassis,
In many cases, parts are manufactured by pressing thin aluminum alloy sheets, but in order to improve press formability, the structure of the material is often controlled to be an equiaxed grain structure rather than a fibrous structure. However, from the perspective of stress corrosion cracking resistance, the equiaxed grain structure is more disadvantageous than the fibrous structure.
Even if the temperature does not exceed 6°C, the use of high Mg-containing aluminum alloys with equiaxed grain structures has often been avoided.
本発明は、上記従来技術の欠点を解消し、3゜5%以上
の高Mg含有アルミニウム合金で、しかもプレス成形性
を良くした等軸粒組織であっても、66℃を超えると環
境において優れた耐応力腐食割れ性を発揮し得るアルミ
ニウム合金の製造法を提供することを目的とするもので
ある。The present invention eliminates the drawbacks of the prior art described above, and even if the aluminum alloy has a high Mg content of 3.5% or more and has an equiaxed grain structure that improves press formability, it is environmentally friendly at temperatures exceeding 66°C. The object of the present invention is to provide a method for producing an aluminum alloy that exhibits stress corrosion cracking resistance.
(課題を解決するための手段)
前記目的を達成するため1本発明者は、高Mg含有合金
でありながら、耐応力腐食割れ性を抑制し得る組成調整
とプロセス条件を見い出すべく鋭意研究を重ねた結果、
適切量のCu、Agを添加すると共に、溶体化処理条件
並びに溶体化処理後の冷却条件を規制し、且つ溶体化処
理後に加熱処理を施すことにより、可能であることを見
い出し。(Means for Solving the Problems) In order to achieve the above object, the present inventor has conducted extensive research to find composition adjustment and process conditions that can suppress stress corrosion cracking resistance even though it is a high Mg-containing alloy. As a result,
We discovered that this is possible by adding appropriate amounts of Cu and Ag, regulating the solution treatment conditions and cooling conditions after solution treatment, and performing heat treatment after solution treatment.
本発明をなしたものである。This invention has been made.
すなわち1本発明に係る耐応力腐食割れ性に優れたアル
ミニウム合金の製造法は、Mg:3.5〜5.5%、0
.2%≦Cu + A g≦1.0%を必須成分として
含み、必要に応じてMn:0.06〜0.3%、Cr:
0.06〜0.1%及びZr:0.06〜0゜1%のう
ちの1種又は2種を含むAl−Mg基合金につき、40
0℃を超える温度の場合は3分以下、300〜400℃
間の温度の場合は30分以上保持する条件の溶体化処理
を施し、溶体化処理後の100℃までの冷却を300’
C/分以上の冷却速度で行って常温まで冷却し、更に7
0〜2゜0℃で15分〜24時間の加熱処理を施すこと
を特徴とするものである。That is, the method for producing an aluminum alloy with excellent stress corrosion cracking resistance according to the present invention includes Mg: 3.5 to 5.5%, 0
.. Contains 2%≦Cu + A g≦1.0% as essential components, and optionally Mn: 0.06-0.3%, Cr:
For Al-Mg-based alloys containing one or two of 0.06 to 0.1% and Zr: 0.06 to 0°1%, 40
If the temperature exceeds 0℃, 3 minutes or less, 300-400℃
If the temperature is between
Cool to room temperature at a cooling rate of C/min or higher, and then cool to room temperature for a further 7
It is characterized by heat treatment at 0 to 2.0°C for 15 minutes to 24 hours.
以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.
本発明者は、種々実験の結果、Al−Mg基アルミニウ
ム合金において耐応力腐食割れ性に優れた成分としてC
uとAgを見い出した。しかし、単にこれらCu、Ag
を添加した組成下では耐応力腐食割れ性の改善は認めら
れないことも判明した。As a result of various experiments, the present inventor found that carbon is a component with excellent stress corrosion cracking resistance in Al-Mg-based aluminum alloys.
I found u and Ag. However, these Cu, Ag
It was also found that no improvement in stress corrosion cracking resistance was observed under the composition in which .
すなわち、これらの成分を含むAl−Mg基アルミニウ
ム合金に対し、従来通り、耐応力腐食割れ性に最も優れ
る焼鈍調質(300〜400℃で数時間加熱し徐冷する
処理)を施しても、添加しない場合と同様に耐応力腐食
割れ性に劣ることが判明した。そこで、熱処理条件につ
いて鋭意研究した結果、CuやAgの元素を十分に溶体
化し、その後加熱してCuやAgの析出物をコントロー
ルして析出させることにより、耐応力腐食割れ性を著し
く改善できることが判ったのである。That is, even if an Al-Mg-based aluminum alloy containing these components is subjected to conventional annealing treatment (heating at 300 to 400°C for several hours and slow cooling), which has the best stress corrosion cracking resistance, It was found that stress corrosion cracking resistance was inferior to the case without addition. Therefore, as a result of intensive research on heat treatment conditions, it was found that stress corrosion cracking resistance could be significantly improved by sufficiently solutionizing Cu and Ag elements and then heating to control and precipitate Cu and Ag precipitates. I got it.
まず、本発明の化学成分限定理由について説明する。First, the reason for limiting the chemical components of the present invention will be explained.
Mgは強度を付与する元素であり、含有量が3゜5%未
満では耐応力腐食割れ性(以下、耐SSC性と略す)に
優れるものの、伸びと強度が低くなり、また、5.5%
を超えると強度は高いが、本発明の製造法でも耐SCC
性が劣るようになる。Mg is an element that imparts strength, and if the content is less than 3.5%, it has excellent stress corrosion cracking resistance (hereinafter abbreviated as SSC resistance), but elongation and strength decrease.
Although the strength is high when it exceeds the
Become less sexually active.
したがって、Mg量は3.5〜5.5%の範囲とする。Therefore, the Mg amount is set in the range of 3.5 to 5.5%.
Cu及びAgは耐SCC性を改善する元素である。Cu and Ag are elements that improve SCC resistance.
しかし、Cu+Agの合計量が0.2%未満ではその効
果がなく、また1、0%を超えると一般耐食性が劣るよ
うになると共に溶接割れ性が劣り、構造用材料として不
適となる。したがって、Cu及びAgは合計量で0.2
%≦Cu+Ag≦1.0%の範囲となるように添加する
。However, if the total amount of Cu+Ag is less than 0.2%, there is no effect, and if it exceeds 1.0%, general corrosion resistance and weld cracking resistance will be poor, making it unsuitable as a structural material. Therefore, the total amount of Cu and Ag is 0.2
It is added so that %≦Cu+Ag≦1.0%.
Mn、Cr及びZrは強度を向上すると共に組織を微細
化して耐応力腐食割れ性、成形性、耐溶接割れ性を改善
する元素であるが、その効果は著しくないため、必須成
分とせず、任意成分とした。Mn, Cr, and Zr are elements that improve strength, refine the structure, and improve stress corrosion cracking resistance, formability, and weld cracking resistance, but their effects are not significant, so they are not required as essential components and are optional. as an ingredient.
添加するときは、Mn:0.06〜0.3%、Cr:0
゜06〜0.1%、Zr:0.06〜0.1%の範囲で
、これらの少なくとも1種を添加する。なお、それぞれ
、下限値を割ると上記の効果がなく、また上限値を超え
ると伸びが低下して成形性を劣るようになるので、好ま
しくない。When adding, Mn: 0.06 to 0.3%, Cr: 0
Zr: 0.06 to 0.1%, Zr: 0.06 to 0.1%, and at least one of these is added. It should be noted that if the lower limit values are exceeded, the above-mentioned effects will not be obtained, and if the upper limit values are exceeded, the elongation will decrease and the moldability will deteriorate, which is not preferable.
なお、上記成分のAfl−Mg基アルミニウム合金には
不純物が含まれるが、不純物量は可及的に少ないのが望
ましい。例えば、Fe、Si、Znはそれぞれ0.5%
以下、その他の元素は0.1%以下であれば、特に本発
明の効果を失うものではない。Note that although the Afl-Mg-based aluminum alloy having the above components contains impurities, it is desirable that the amount of impurities be as small as possible. For example, Fe, Si, and Zn are each 0.5%
Hereinafter, the effects of the present invention will not be particularly lost as long as the other elements are 0.1% or less.
次に、上記化学成分を有するアルミニウム合金の熱処理
条件について説明する。Next, heat treatment conditions for an aluminum alloy having the above chemical components will be explained.
溶体化処理ではCuとAgを十分に固溶する必要があり
、そのためには、300〜400℃間の加熱温度の場合
は30分以上、400℃を超える加熱温度の場合は3分
以下で保持する必要である。In the solution treatment, it is necessary to form a sufficient solid solution of Cu and Ag, and for this purpose, the heating temperature must be maintained for 30 minutes or more when the heating temperature is between 300 and 400°C, and for 3 minutes or less when the heating temperature is over 400°C. It is necessary to do so.
300℃未満ではそれらが固溶せず、耐SCC性向上の
効果がなく、400℃超で3分を超えると十分固溶する
ものの、組織が粗大化するため、成形性や耐SCC性も
劣るようになる。At temperatures below 300°C, they do not form a solid solution and have no effect on improving SCC resistance, and at temperatures above 400°C for more than 3 minutes, they form a solid solution, but the structure becomes coarse, resulting in poor formability and SCC resistance. It becomes like this.
溶体化処理後の冷却は、100℃までの冷却を300℃
/分以上の冷却速度としないと、耐SCC性の改善が認
められない。Cooling after solution treatment is from 100℃ to 300℃
Unless the cooling rate is 1/min or more, no improvement in SCC resistance will be observed.
溶体処理化後の冷却を行った後は、70〜200℃で1
5分〜24hrの加熱処理を行う必要がある。70℃未
満ではCuやAgの析出が少なく、耐SCC性が劣化し
、かつ、一般耐食性も劣るようになる。加熱時間につい
ても同様であり、15分未満や24時間を超える時間で
は耐SCC性が改善されない。After cooling after solution treatment, 1
It is necessary to perform heat treatment for 5 minutes to 24 hours. Below 70°C, precipitation of Cu and Ag is small, SCC resistance deteriorates, and general corrosion resistance also deteriorates. The same applies to the heating time, and the SCC resistance will not be improved if the heating time is less than 15 minutes or more than 24 hours.
(実施例) 次に本発明の実施例を示す。(Example) Next, examples of the present invention will be shown.
災旌貫工
第1表に示す化学成分を有するアルミニウム合金の50
0mm厚の鋳塊に520℃X2hrの均質化処理を行っ
た後、520〜280℃間で板厚4mmまで熱間圧延を
し、続いて板厚lamまで冷間圧延を行った。50 of aluminum alloy having the chemical composition shown in Table 1
After homogenizing the 0 mm thick ingot at 520°C for 2 hours, it was hot rolled at 520 to 280°C to a plate thickness of 4 mm, and then cold rolled to a plate thickness of lam.
この板厚1■のAl合金板に第2表に示す条件で溶体化
処理、冷却、加熱処理を施した。熱処理後、機械的性質
、エリクセン値、耐SC′C性、−般耐食性、溶接割れ
性及び組織を調査した。その結果を第2表に併記する。This Al alloy plate having a thickness of 1 inch was subjected to solution treatment, cooling, and heat treatment under the conditions shown in Table 2. After heat treatment, mechanical properties, Erichsen value, SC'C resistance, general corrosion resistance, weld cracking resistance, and structure were investigated. The results are also listed in Table 2.
なお、各試験条件は次のとおりである。The test conditions are as follows.
耐SCC性については、材料に30%の冷間加工を施し
、次いで120℃×7日の熱処理を行った後、180°
の曲げによる負荷応力をかけ、3゜5%NaCQ水溶液
中で試料を陽極に、鉛を陰極にして直流で40 ra
A / 1nch”の通電を行って応力腐食割れを促進
させた。30分未満で割れた場合にx印、30〜240
分で割れた場合にΔ印、240〜900分で割れた場合
に0印、900分を超えても割れない場合にO印をそれ
ぞれ付して評価した。Regarding SCC resistance, the material was subjected to 30% cold working, then heat treated at 120°C for 7 days, and then heated at 180°C.
Applying stress due to bending of
A/1nch" current was applied to promote stress corrosion cracking. If cracking occurred in less than 30 minutes, mark x, 30-240
Evaluation was made by marking Δ if the film cracked within minutes, marking 0 if it cracked within 240 to 900 minutes, and marking O if it did not crack even after 900 minutes.
一般耐食、性は、JISに規定されている塩水噴霧試験
に準じて1ケ月行い、評価゛した。General corrosion resistance and properties were evaluated by conducting a one-month salt spray test according to JIS.
溶接割れ性は、フィッシュ・ボーン試験のなめづけテス
トにより評価した。Weld cracking resistance was evaluated by a fish-bone tanning test.
第2表より明らかなとおり、本発明例はいずれも耐応力
腐食割れ性が特に優れており1等軸粒組織でプレス成形
性(張出し性)も良好である。As is clear from Table 2, all of the examples of the present invention have particularly excellent stress corrosion cracking resistance, and have a monoaxed grain structure and good press formability (stretchability).
一方、比較例はいずれも耐応力腐食割れ性が劣っている
。特に本発明範囲内の組成の場合(Nn16〜Nα19
)であっても、耐応力腐食割れ性の改善は認められない
。On the other hand, all of the comparative examples have poor stress corrosion cracking resistance. Especially when the composition is within the range of the present invention (Nn16 to Nα19
), no improvement in stress corrosion cracking resistance was observed.
(以下余白]
ス新11影
第1表に示した合金Na2とNa 9のアルミニウム合
金の190mmφのビレット鋳塊に520℃×4hrの
均質化処理を施した後、5mm(肉厚)x 200mm
(幅)の型材に熱間押出をした。この型材に第3表に示
す条件にて熱処理を施し、機械的性質と耐SCC性を調
査した。その結果を第3表に併記する。(Left below) A 190 mm diameter billet ingot of the aluminum alloys Na2 and Na 9 shown in Table 1 was homogenized at 520°C for 4 hours, then 5 mm (thickness) x 200 mm.
(width) was hot extruded. This mold material was heat treated under the conditions shown in Table 3, and its mechanical properties and SCC resistance were investigated. The results are also listed in Table 3.
同表に示すように、本発明例はいずれも耐応力腐食割れ
性に優れている。一方、比較例は、耐応力腐食割れ性が
劣っており、溶体化処理後の冷却速度が適切でないため
、本発明範囲内の組成の場合(Nn3)は却って悪い結
果となっている。As shown in the table, all the examples of the present invention are excellent in stress corrosion cracking resistance. On the other hand, in the comparative example, the stress corrosion cracking resistance was poor and the cooling rate after the solution treatment was not appropriate, so in the case of the composition within the range of the present invention (Nn3), the results were even worse.
τ以下余白】
(発明の効果)
以上詳述したように、本発明によれば、3.5%以上の
高Mg含有アルミニウム合金で、しかもプレス成形性を
良好にした等軸位組織であっても、特にCu、Agを適
量添加して組成調整し、且つ熱処理条件を規制したので
、極めて優れた耐応力腐食割れ性を有するアルミニウム
合金が得られ、66℃以上の使用環境ではもとより、こ
の温度以下の使用環境であっても応力腐食割れの懸念が
全くなく、しかもプレス成形性も良好である。したがっ
て、高Mg含有アルミニウム合金に一層の用途の拡大に
貢献する効果が大きい。[Margin below τ] (Effects of the invention) As detailed above, according to the present invention, an aluminum alloy with a high Mg content of 3.5% or more and an equiaxed structure with good press formability. In particular, by adding appropriate amounts of Cu and Ag to adjust the composition and regulating the heat treatment conditions, an aluminum alloy with extremely excellent stress corrosion cracking resistance was obtained, and it can be used not only in environments of 66°C or higher, but also at temperatures above 66°C. Even in the following usage environments, there is no concern about stress corrosion cracking, and the press formability is also good. Therefore, it has a great effect of contributing to further expanding the applications of high Mg-containing aluminum alloys.
特許出願人 株式会社神戸製鋼所 代理人弁理士 中 村 尚Patent applicant: Kobe Steel, Ltd. Representative Patent Attorney Takashi Nakamura
Claims (1)
0.2%≦Cu+Ag≦1.0%を必須成分として含み
、必要に応じてMn:0.06〜0.3%、Cr:0.
06〜0.1%及びZr:0.06〜0.1%のうちの
1種又は2種以上を含むAl−Mg基合金につき、40
0℃を越える温度の場合は3分以下、300〜400℃
間の温度の場合は30分以上保持する条件の溶体化処理
を施し、溶体化処理後の100℃までの冷却を300℃
/分以上の冷却速度で行って常温まで冷却し、更に70
〜200℃で15分〜24時間の加熱処理を施すことを
特徴とする耐応力腐食割れ性に優れたアルミニウム合金
の製造法。In weight% (the same applies hereinafter), Mg: 3.5 to 5.5%,
Contains 0.2%≦Cu+Ag≦1.0% as essential components, Mn: 0.06 to 0.3%, Cr: 0.
06 to 0.1% and Zr: 0.06 to 0.1%.
If the temperature exceeds 0℃, 3 minutes or less, 300-400℃
If the temperature is between
/ minute or more to cool to room temperature, and then further cooled to 70
A method for producing an aluminum alloy with excellent stress corrosion cracking resistance, which comprises performing heat treatment at ~200°C for 15 minutes to 24 hours.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2230988A JPH01198456A (en) | 1988-02-02 | 1988-02-02 | Manufacture of aluminum alloy excellent in stress corrosion cracking resistance |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2230988A JPH01198456A (en) | 1988-02-02 | 1988-02-02 | Manufacture of aluminum alloy excellent in stress corrosion cracking resistance |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH01198456A true JPH01198456A (en) | 1989-08-10 |
| JPH0327624B2 JPH0327624B2 (en) | 1991-04-16 |
Family
ID=12079139
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2230988A Granted JPH01198456A (en) | 1988-02-02 | 1988-02-02 | Manufacture of aluminum alloy excellent in stress corrosion cracking resistance |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH01198456A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6238495B1 (en) | 1996-04-04 | 2001-05-29 | Corus Aluminium Walzprodukte Gmbh | Aluminium-magnesium alloy plate or extrusion |
| JP2012052220A (en) * | 2010-08-05 | 2012-03-15 | Kobe Steel Ltd | Aluminum alloy sheet excellent in formability |
-
1988
- 1988-02-02 JP JP2230988A patent/JPH01198456A/en active Granted
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6238495B1 (en) | 1996-04-04 | 2001-05-29 | Corus Aluminium Walzprodukte Gmbh | Aluminium-magnesium alloy plate or extrusion |
| US6342113B2 (en) | 1996-04-04 | 2002-01-29 | Corus Aluminium Walzprodukte Gmbh | Aluminum-magnesium alloy plate or extrusion |
| JP2012052220A (en) * | 2010-08-05 | 2012-03-15 | Kobe Steel Ltd | Aluminum alloy sheet excellent in formability |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0327624B2 (en) | 1991-04-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPH0127146B2 (en) | ||
| US5441582A (en) | Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardenability | |
| EP0480402B1 (en) | Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability | |
| JPH0747807B2 (en) | Method for producing rolled aluminum alloy plate for forming | |
| US5460666A (en) | Method of manufacturing natural aging-retardated aluminum alloy sheet | |
| JPS62207851A (en) | Rolled aluminum alloy sheet for forming and its production | |
| JP4086350B2 (en) | Method for producing aluminum alloy sheet for forming | |
| CN1269844A (en) | Process for producing aluminium alloy sheet | |
| JPH09249950A (en) | Method for producing aluminum alloy sheet excellent in formability and paint bake hardenability | |
| JPS62207850A (en) | Rolled aluminum alloy sheet for forming and its production | |
| JPH0547615B2 (en) | ||
| JP2599861B2 (en) | Manufacturing method of aluminum alloy material for forming process excellent in paint bake hardenability, formability and shape freezing property | |
| JPH0257655A (en) | Method for manufacturing aluminum alloy plate material for forming with excellent surface treatment characteristics | |
| JPS61272342A (en) | Aluminum alloy sheet excelling in formability and baking hardening and its production | |
| JPH06212338A (en) | Al-zn-mg alloy hollow shape excellent in strength and formability and its production | |
| JP2626958B2 (en) | Method for producing aluminum alloy sheet excellent in formability and bake hardenability | |
| JPH01198456A (en) | Manufacture of aluminum alloy excellent in stress corrosion cracking resistance | |
| JPH0480979B2 (en) | ||
| JPH0788558B2 (en) | Method for producing aluminum alloy sheet excellent in formability and bake hardenability | |
| JP3686146B2 (en) | Method for producing aluminum alloy sheet for forming | |
| JPS61163232A (en) | High strength al-mg-si alloy and its manufacture | |
| JP3208234B2 (en) | Aluminum alloy sheet for forming process excellent in formability and method for producing the same | |
| JPH04304339A (en) | Aluminum alloy sheet for press forming excellent in balance between strength and ductility and baking hardenability and its production | |
| JP3359428B2 (en) | Manufacturing method of aluminum alloy sheet for forming | |
| JPH01225738A (en) | Heat treatment-type aluminum alloy rolled plate for forming and its manufacture |