[go: up one dir, main page]

JPH01193597A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH01193597A
JPH01193597A JP1660188A JP1660188A JPH01193597A JP H01193597 A JPH01193597 A JP H01193597A JP 1660188 A JP1660188 A JP 1660188A JP 1660188 A JP1660188 A JP 1660188A JP H01193597 A JPH01193597 A JP H01193597A
Authority
JP
Japan
Prior art keywords
fin
alloy
heat exchanger
tube
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1660188A
Other languages
Japanese (ja)
Inventor
Shoji Shiga
志賀 章二
Takaya Nishimoto
卓矢 西本
Yoshito Suzuki
鈴木 悦人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1660188A priority Critical patent/JPH01193597A/en
Publication of JPH01193597A publication Critical patent/JPH01193597A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/085Heat exchange elements made from metals or metal alloys from copper or copper alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/04Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of rubber; of plastics material; of varnish
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To obtain a heat exchanger, strong against corrosion, prominent in heat radiating property and capable of using for a long period of time, by forming a gas phase polymerized polymer film, having a specified thickness, at least on a fin and a jointing part between the fin and a tube. CONSTITUTION:In a heat exchanger, consisting of tubes, through which refrigerant flows, and heat conductive thin fins, provided integrally with the tubes, a gas phase polymerized polymer film, having the thickness of 0.01-2mum, is formed on at least the fin and the joining part of the fin and the tube. A high heat conductive metal of Cu, Al or the alloy of these metals is employed as the material of the fin and the alloy of Cu and Al, such as brass, cupro-nickel, Al-Zn-Mg alloy, Al-Cu-Zn alloy, or Fe-alloy, Ni-alloy and the like are employed as the material of the tube. The fin is jointed to the tube through soldering principally in the case of the heat exchanger constituted of the combination of Cu and Cu-alloy especially. The method of heat polymerization, light polymerization or especially plasma polymerization is suitable for forming the gas phase polymerized film in the heat exchanger and the vapor of hydrocarbon series organic compound is employed preferably.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高度な熱交換性をもち、ざらに軽量化、長寿命
化を実現しかつ経済的な熱交換器に関し、特に自動車、
航空機などの輸送機や電子機器などの用途に好適なもの
である。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an economical heat exchanger that has high heat exchange performance, is significantly lighter in weight, has a longer service life, and is particularly applicable to automobiles,
It is suitable for use in transport aircraft such as aircraft, electronic equipment, and the like.

〔従来の技術〕[Conventional technology]

現在、各種の流体(水、有機溶媒、空気等)が冷媒とし
て貫流するチューブとそれと一体に設けられたフィンと
からなる熱交換器が各種多用されている。ここに用いら
れるチューブ材は強度及び耐食性が要求され、一方フイ
ン材には高伝熱性即ち高い熱交換性が第1の要件とされ
ているので多くの場合チューブ材とフィン材とは構成の
異なる異種金属が用いられている。またチューブとフィ
ンの接合方法としてはかしめなどの機械的な方法、溶接
法及び接着法の他に、特にCu系の熱交換器においては
半田接合法が広く普及している。この半田法はフィレ一
部を形成するので接合界面の面積が広くかつ半田は高伝
熱性の金属であるので強度と共に熱交換性に優れている
特徴を有する。
BACKGROUND ART Currently, various types of heat exchangers are widely used, each of which is composed of a tube through which various fluids (water, organic solvent, air, etc.) flow as a refrigerant, and fins provided integrally with the tube. The tube material used here is required to have strength and corrosion resistance, while the first requirement for the fin material is high heat conductivity, that is, high heat exchange performance, so in many cases, the tube material and fin material have different configurations. Different metals are used. In addition to mechanical methods such as caulking, welding, and adhesive methods, soldering methods are widely used as methods for joining tubes and fins, especially in Cu-based heat exchangers. This soldering method forms part of the fillet, so the area of the bonding interface is wide, and since the solder is a highly heat conductive metal, it has the characteristics of excellent strength and heat exchangeability.

ところで小型、軽量で高い熱交換性を有する高性能熱交
換器を得るためのチューブ材とフィン材との組合せは各
種金属の内から最適なものによって構成されなければな
らない。
By the way, in order to obtain a high-performance heat exchanger that is small, lightweight, and has high heat exchange performance, the combination of tube material and fin material must be made of the optimal one from among various metals.

以下これらの材料について自動車用熱交換器特にエンジ
ン系の放熱器(ラジェーター)を例にとって説明する。
These materials will be explained below using an example of a heat exchanger for an automobile, particularly a radiator for an engine system.

一般に自動車用熱交換器、特にラジェーターは自動車の
前部に取付け、エンジン部との間に熱交換用媒体(以下
媒体と略記)を循環させて、エンジン部で昇温した媒体
をラジェーターで放熱させることにより、エンジン部の
冷却を行なうもので、第2図に示すように媒体を流通す
る上下方向のチューブ(13)を複数個並列状に並べ、
各チューブ(13)間にフィン(14)を装着してコア
ー (15)を形成し、該コアー(15)のチューブ(
13)両端に座板(16a)、 (16b)を設けてタ
ンク(17a)。
Automotive heat exchangers, especially radiators, are generally installed at the front of the car, circulate a heat exchange medium (hereinafter referred to as "medium") between it and the engine, and radiate heat from the medium heated up in the engine by the radiator. As shown in Fig. 2, a plurality of vertical tubes (13) through which the medium flows are arranged in parallel.
Fins (14) are installed between each tube (13) to form a core (15), and the tubes (
13) Tank (17a) with seat plates (16a) and (16b) on both ends.

(17b)を取付けたものである。尚、第2図において
(18)、 (19)は媒体循環用出入口、(20)。
(17b) is attached. In Fig. 2, (18) and (19) are the inlet/outlet for medium circulation, and (20).

(21)は媒体注入、排出用の注排口を示す。(21) indicates an inlet/outlet for injecting and discharging the medium.

チューブ(13)は通常第3−図の部分斜視図に例示す
る如く2列に配列され、1枚のフィン(14)と接合さ
れるが一部ではチューブ1列のコアーも実現している。
The tubes (13) are usually arranged in two rows and joined to one fin (14) as illustrated in the partial perspective view of Figure 3, but in some cases a core of one row of tubes is also realized.

通常チューブには黄銅を用い、フィンにはラジェーター
の放熱特性に直接影響するところから、Cu、Cu−3
n、Cu−A9又はCu−Cd等の高伝熱性のCu又は
Cu合金薄条(以下Cu系条と略記)を用い、放熱面積
を大きくするため、コルゲートやルーパー加工を行なっ
て、前記デユープと組合わせ、半田付は等により接合し
て銅製コアーを形成している。
Normally, brass is used for the tube, and the fins are made of Cu or Cu-3, since it directly affects the heat dissipation characteristics of the radiator.
Using a highly heat conductive Cu or Cu alloy thin strip (hereinafter abbreviated as Cu-based strip) such as n, Cu-A9 or Cu-Cd, corrugate or looper processing is performed to increase the heat dissipation area. They are combined, soldered, etc. to form a copper core.

[発明が解決しようとする課題] Cu又はCU金合金本来耐食性の良好な合金として知ら
れているが、海塩粒子の飛散する海洋に近接した地域は
元より近年降雪地帯の通路に融雪剤として食塩が多聞に
散布されるようになり、これがラジェーターのフィンに
付着して、フィンを異常に迅速に腐食し、フィンの強度
を低下するばかりか、ラジェーターの機能を低下づるた
め問題となっている。通常フィンには厚さ0.025〜
0. os顛のCu系条が用いられているが、最近省エ
ネルギーの見地から自動車の軽量化に対する要求が強く
、ラジェーターにおいても軽量化のためにフィンの薄肉
化が検討されている。
[Problem to be solved by the invention] Cu or CU gold alloy is known as an alloy with inherently good corrosion resistance, but in recent years it has been used as a snow melting agent in areas close to the ocean where sea salt particles are scattered, as well as in passageways in snowy areas. Salt is being sprayed extensively, and this has become a problem because it adheres to the fins of the radiator and corrodes them abnormally quickly, reducing the strength of the fins and reducing the functionality of the radiator. . Usually fins have a thickness of 0.025~
0. OS-based Cu-based strips are used, but recently there has been a strong demand for lighter automobiles from the standpoint of energy conservation, and thinning of the fins of radiators is also being considered to reduce weight.

しかしながら上記塩害対策が大きな問題となっており、
防食塗装を施すことも検討されたが、塩害を防止するた
めには少なくとも厚さ10μ以上の塗膜が必要となり、
重量増加やコストアップをまねき、実用性に欠けるもの
であった。またフィンを耐食Cu合金で形成することも
検討されたが、耐食Cu合金は伝熱性が劣るためフィン
には使用できないものであった。例えば耐食Cu合金と
して知られているCu−10%Ni合金の伝熱性はフィ
ン用Cu系条の数分の1稈度であり、ラジェーターの軽
量化と塩害対策を両立させることは極めて困難であった
However, countermeasures against salt damage mentioned above have become a major problem.
Applying anti-corrosion coating was also considered, but in order to prevent salt damage, a coating film with a thickness of at least 10 μm was required.
This resulted in increased weight and cost, and lacked practicality. It was also considered to form the fins from a corrosion-resistant Cu alloy, but the corrosion-resistant Cu alloy had poor heat conductivity and could not be used for the fins. For example, the heat conductivity of a Cu-10%Ni alloy, which is known as a corrosion-resistant Cu alloy, is a fraction of the culm of Cu-based strips for fins, making it extremely difficult to achieve both weight reduction and salt damage prevention for radiators. Ta.

このように高性能ラジェーターを1qるには相反する幾
多の問題が存在しているが、これらの解決すべき点は次
のようにまとめることができる。
As described above, there are many conflicting problems in building a high-performance radiator, but these points to be solved can be summarized as follows.

(1)熱交換器自体特にフィン部の耐食性を向上するこ
と。
(1) Improve the corrosion resistance of the heat exchanger itself, especially the fins.

(2)耐食性の向上は熱交換性の低下と重量の増加を共
に伴なわないこと。
(2) Improvement in corrosion resistance is not accompanied by a decrease in heat exchangeability or an increase in weight.

(3)耐食性はフィンとチューブとの接合部でも十分に
保証されること。
(3) Corrosion resistance must be sufficiently ensured even at the joint between the fin and tube.

(4)複雑形状である実用熱交換器において耐食性を実
質的に必要とする部分に有効に処理できること。
(4) In a practical heat exchanger having a complicated shape, it is possible to effectively treat the parts that substantially require corrosion resistance.

(5)塩害などの苛酷な環境においても異種金属間の電
食を有効に防止できること。
(5) Electrical corrosion between dissimilar metals can be effectively prevented even in harsh environments such as salt damage.

(6)自動車用として好適な小型軽量のCU系熟熱交換
器あること。
(6) There is a compact and lightweight CU-based mature heat exchanger suitable for use in automobiles.

(課題を解決するための手段〕 本発明はこれに鑑み種々検討の結果、上記問題点を解決
した熱交換器を開発したものである。
(Means for Solving the Problems) In view of this, and as a result of various studies, the present invention has developed a heat exchanger that solves the above problems.

即ち冷媒がn流するチューブと該チューブに一体に設け
られた伝熱性薄肉フィンとからなる熱交換器においてフ
ィン及びフィンとチューブとの接合部の少なくとも一部
に0.01〜2μの厚さの気相重合ポリマー膜を形成し
たことを特徴とするものであり、フィン材とチューブ材
が互いに異種金属であるのは有効である。
That is, in a heat exchanger consisting of a tube through which a refrigerant flows and heat-conductive thin-walled fins integrally provided on the tube, at least a portion of the fin and the joint between the fin and the tube is coated with a thickness of 0.01 to 2 μm. It is characterized by forming a gas phase polymerized polymer film, and it is effective that the fin material and the tube material are made of different metals.

このような熱交換器の構成は材料の面からみるとフィン
材はCu、Alまたはこれらの合金の高熱伝導性金属が
用いられ、チューブ材にはCu、A1の合金例えば黄銅
、キュプロニッケル、Ai−Zn−M!7合金、A1−
Cu−Zn合金またはFe合金、Ni合金等が使用され
ている。そしてこれらフィンとチューブの接合は特にC
U及びCu合金の組み合わせで構成される熱交換器の場
合は主に半田付けで接合されている。
In terms of materials, the structure of such a heat exchanger is such that the fin material is made of Cu, Al, or a highly thermally conductive metal such as an alloy thereof, and the tube material is made of Cu, an alloy of Al, such as brass, cupronickel, or Al. -Zn-M! 7 alloy, A1-
Cu-Zn alloy, Fe alloy, Ni alloy, etc. are used. And the connection between these fins and tubes is especially C
Heat exchangers made of a combination of U and Cu alloys are mainly joined by soldering.

そしてこのように構成した熱交換器に気相重合膜を形成
するには熱や光重合、特にプラズマ重合法が好適であっ
て炭化水素系有機化合物の蒸気を用いるのが良い。そこ
で以下にプラズマ重合の手順について述べる。先づプラ
ズマ重合を行なうプラズマ発生装置は例えば第1図に示
すように、上下に対向する電極(2^)(2B)を真空
排気装置(5)により内部を真空にできるペルジャー(
3)内に設け、該ペルジャー(3)内に固体又は液体の
有機化合物(8)を抵抗加熱ボート(9)上に載置し、
ペルジャー(3)内にキャリアガスまたは有機化合物ガ
スを導入するためのノズル(11)を設けたものである
。このような装置でプラズマ重合を実施するには熱交換
器(1)をあらかじめ50〜300℃程度に加熱して、
ペルジャー(3)内の電極(2^)(213)の一方に
セットし、ペルジャー(3)内を真空排気した後固体又
は液体の有機化合物(8)を用いる場合は外部の加熱用
電源(10)により抵抗加熱ボート(9)に電圧を印加
して該有機化合物(8)を気化させプラズマ発生用電源
(7)により電極(2A) (2B)間にプラズマを発
生させることにより行ないあるいは有機化合物ガスを用
いる場合は、モノマーガス供給源(12)からノズル(
11)を通してペルジャー(3)内に有機化合物気体を
導入した後プラズマを発生させることにより行なって熱
交換器(1)の表面に重合ポリマー膜を形成する。なお
図中(6)は真空計、(4)はこの装置のテーブルを示
す。
To form a gas-phase polymerized film on the heat exchanger constructed in this way, heat or photopolymerization, particularly plasma polymerization, is suitable, and it is preferable to use vapor of a hydrocarbon-based organic compound. Therefore, the procedure of plasma polymerization will be described below. For example, as shown in FIG. 1, the plasma generator that performs plasma polymerization is a Pelger (2), which can evacuate the inside of the vertically opposing electrodes (2^) (2B) using a vacuum evacuation device (5).
3) in which a solid or liquid organic compound (8) is placed on a resistance heating boat (9) in the Pelger (3);
A nozzle (11) for introducing carrier gas or organic compound gas into the Pelger (3) is provided. To carry out plasma polymerization with such an apparatus, heat the heat exchanger (1) to about 50 to 300°C in advance.
Set it on one of the electrodes (2^) (213) inside the Pel Jar (3), and after evacuating the inside of the Pel Jar (3), turn on the external heating power source (10) when using a solid or liquid organic compound (8). ) by applying a voltage to the resistance heating boat (9) to vaporize the organic compound (8), and by generating plasma between the electrodes (2A) and (2B) using the plasma generation power source (7). When using gas, the monomer gas supply source (12) is connected to the nozzle (
A polymer film is formed on the surface of the heat exchanger (1) by introducing an organic compound gas into the Pelger (3) through the heat exchanger (11) and then generating plasma. In the figure, (6) shows a vacuum gauge, and (4) shows a table of this device.

ざらに上記プラズマ発生装置は誘導コイル型、導波管型
及びコンデンサー型の高周波発生装置を備えたいずれの
反応系であってもよいが、好ましくはコンデンサー型の
高周波発生装置が適当である。またペルジャー(3)内
にセットする前の熱交換器(1)の加熱はペルジャー(
3)内にセットしてからプラズマ重合を起こす前にプラ
ズマ加熱で代替してもよく、ざらにプラズマを発生する
電極(2A) (2[3)の一方を直接当該熱交換器(
1)で形成してもよい。
Generally speaking, the plasma generating device may be any reaction system equipped with an induction coil type, waveguide type, or condenser type high frequency generating device, but preferably a condenser type high frequency generating device is suitable. In addition, heating the heat exchanger (1) before setting it in the Pelger (3) is performed using the Pelger (3).
3) may be replaced by plasma heating before plasma polymerization occurs after setting in the heat exchanger (2A) (2[3) that roughly generates plasma
1) may be formed.

このように高周波によりプラズマ重合を行なう場合、高
周波出力と電極面積の大きさからエネルギー密度は0.
2〜4W/clN、望ましくは0.5〜3’?I/cr
Aの範囲が良好であり、高周波電源の発振周波数は通常
13.56)IH2であるが、特にこれに限定されるこ
となく直流からマイクロ波までのいかなる周波数であっ
ても良い。
When plasma polymerization is performed using high frequency waves in this way, the energy density is 0.5% due to the high frequency output and the size of the electrode area.
2 to 4 W/clN, preferably 0.5 to 3'? I/cr
The range of A is good, and the oscillation frequency of the high frequency power source is usually 13.56) IH2, but it is not limited to this and may be any frequency from direct current to microwave.

またベンジャ−内の圧力は0.005〜3 torr。Moreover, the pressure inside the venter is 0.005 to 3 torr.

望ましくは0.01〜1.5 torr’の範囲が良く
、反応時間は七ツマ−の種類、気化速度、流速及びキャ
リアーガスの流速並びに電極の配置によって影響を受け
るが通常は5秒〜60分、望ましくは10秒〜3分の間
が良好である。そしてこのような条件で得られる膜の厚
さは100〜20.000人でおるが、より好ましくは
500〜6000人に分布することが望ましい。
The reaction time is preferably in the range of 0.01 to 1.5 torr', and the reaction time is usually 5 seconds to 60 minutes, although it is affected by the type of tank, vaporization rate, flow rate, carrier gas flow rate, and electrode arrangement. , preferably between 10 seconds and 3 minutes. The thickness of the film obtained under these conditions is 100 to 20,000, but preferably 500 to 6,000.

(作 用) このように保護性の防食被膜を形成した熱交換器は熱交
換面積を可及的に大きくするために前記の如くフィンを
薄くしてかつ高密度にコルゲート状に形成し、フィン間
の間隔は1〜2#またはこれ以下とし、更にルーバー加
工などにより切り溝を設けて流体の熱交換能をより増大
することができる利点を有する。
(Function) In order to increase the heat exchange area as much as possible, the heat exchanger with the protective anti-corrosion film formed has thin fins and is formed in a corrugated shape with high density as described above. The spacing between them is 1 to 2# or less, and there is an advantage that the heat exchange ability of the fluid can be further increased by providing grooves by louver processing or the like.

またある種の熱交換器のように溝や突起を設けたり、さ
らに多孔質の金属層を形成したりして表面積を拡大した
ような複雑な表面に対しても緻密で連続な被膜を形成で
きる特徴を有する。
It is also possible to form a dense and continuous coating on complex surfaces, such as those in some types of heat exchangers, where the surface area is expanded by providing grooves and protrusions, or by forming a porous metal layer. Has characteristics.

ざらにプラズマ重合は特にプラズマのエネルギーにより
高密度で耐食性に有効な被膜が得られる点で有効である
Roughly speaking, plasma polymerization is particularly effective in that a coating with high density and effective corrosion resistance can be obtained using plasma energy.

また上記の如く熱交換器はフィンとチューブが異種金、
属で構成されている場合が多く、この場合は電食が起こ
り、特に塩害環境ではこの傾向が強い。従って自動車用
ラジェーターの例では薄肉のCu系フィンが腐食損耗す
るのみでなくCuに対して卑な半田が激しく腐食する結
果フィンとチューブが剥離する現象が発生するが、一般
に半田よりもCuフィンの表面積が大きいのでこの傾向
は特に顕著である。しかしながら熱交換器として本発明
の熱交換器を用いれば貴及び卑な両金属を共に絶縁被覆
できるので電食を防止でき有益でおる。
Also, as mentioned above, the heat exchanger has fins and tubes made of different metals.
In many cases, electrolytic corrosion occurs, and this tendency is particularly strong in salt-damaged environments. Therefore, in the example of an automobile radiator, not only the thin Cu-based fins are corroded and worn out, but also the fins and tubes peel off as a result of the strong corrosion of base solder against Cu. This tendency is particularly noticeable due to the large surface area. However, if the heat exchanger of the present invention is used as a heat exchanger, both noble and base metals can be coated with insulation, which is advantageous in that electrolytic corrosion can be prevented.

本発明において気相重合ポリマー膜の厚さを0.01〜
2μとしたのはo、 oiμ未満では耐食性が不十分で
あり、2μを超えると耐食性についてより大きな効果は
認められず、他方重量の増加や熱交換能の低下などの不
都合を生ずるので実用的でないからである。このことは
上記の如く自動車では軽量化の目的で厚さ0.025〜
0.05N11の薄肉のフィンが使われていることから
も厚さ2μを超える被膜は実用的でないといえるからで
ある。
In the present invention, the thickness of the gas phase polymerized polymer film is 0.01~
The reason why the value is 2μ is that if it is less than o, the corrosion resistance will be insufficient, and if it exceeds 2μ, no greater effect on corrosion resistance will be observed, and on the other hand, it will cause disadvantages such as an increase in weight and a decrease in heat exchange ability, so it is not practical. It is from. As mentioned above, for the purpose of weight reduction in automobiles, the thickness is 0.025~
This is because a thin fin of 0.05N11 is used, so a coating with a thickness exceeding 2 μm is not practical.

また本発明と従来の塗装法とを比較した場合、塗装法に
より保護膜を形成すると通常10μ以上の厚い膜となり
、これ以下の薄膜にするとピンホールなどを生じてしま
い防食効果を減することになる。更に厚い膜は材料コス
トばかりでなく熱交換器の徂但増をも招いて軽量化の要
求にそぐわない。
Furthermore, when comparing the present invention with conventional coating methods, it was found that when a protective film is formed using the coating method, the film is usually thicker than 10 μm, and if the film is made thinner than this, pinholes will occur, reducing the anticorrosion effect. Become. Furthermore, thicker membranes not only increase material costs but also increase the size of the heat exchanger, which does not meet the demands for weight reduction.

なお本発明において使用する有機化合物としては常温で
固体、液体、気体のいずれでもよいが不飽和結合を有す
るものが望ましく、特に固体、液体では常圧で沸点が3
00℃以下のものが望ましい。具体的にはエチレン、プ
ロピレン。
The organic compound used in the present invention may be solid, liquid, or gaseous at room temperature, but it is preferable to have an unsaturated bond.
A temperature of 00°C or lower is desirable. Specifically, ethylene and propylene.

ブテン、ブタジェン、アセチレン等の不飽和炭化水素化
合物またはその誘導体、シクロブテン。
Unsaturated hydrocarbon compounds such as butene, butadiene, acetylene or derivatives thereof, cyclobutene.

シクロペンテン、シクロヘキサン等の環状不飽和炭化水
素化合物またはその誘導体、ベンゼン。
Cyclic unsaturated hydrocarbon compounds such as cyclopentene and cyclohexane or their derivatives, benzene.

トルエン、キシレン、ナフタレン、スチレン。Toluene, xylene, naphthalene, styrene.

アントラセン等の芳香族化合物またはその誘導体あるい
はジフェニール、ジフェニルメタン。
Aromatic compounds such as anthracene or derivatives thereof, diphenyl, diphenylmethane.

ジベンジル等の脂肪族−芳香族炭化水素またはその誘導
体があげられる。特に固体についてはジベンジル等の昇
華性の高いものが良い。
Examples include aliphatic-aromatic hydrocarbons such as dibenzyl and derivatives thereof. In particular, for solids, those with high sublimability such as dibenzyl are preferred.

そしてこれら有機化合物の単独または混合物をメタン、
゛エタン、プロパン、エチレン、プロピレン等の炭化水
素系有機ガス、ヘリウム、ネオン、アルゴン、クリプト
ン等の不活性ガスまたは水素、窒素等の無懇ガスの共存
下においてプラズマ重合を行なうものである。
And these organic compounds alone or in combination with methane,
Plasma polymerization is carried out in the presence of a hydrocarbon-based organic gas such as ethane, propane, ethylene, or propylene, an inert gas such as helium, neon, argon, or krypton, or an inert gas such as hydrogen or nitrogen.

(実施例〕 次に本発明の実施例について説明する。(Example〕 Next, examples of the present invention will be described.

第2図に示す自動車ラジェーターにおいてCu−0,1
5%3n合金製で板厚0.046mのコルゲート状のフ
ィン(14)がCu−35%zn黄銅製のチューブ(1
3)に3n−70%Pb合金により半田付けされている
。上記ラジェーターを第1図のペルジャー(3)内の電
極(2I3)にセットし、固体の有機化合物(8)とし
てジベンジルを抵抗加熱ボート(9)に載置し、ペルジ
ャー(3)内を真空排気して該ボート(9)を120℃
に加熱した。
In the automobile radiator shown in Fig. 2, Cu-0,1
A corrugated fin (14) made of 5% 3N alloy with a plate thickness of 0.046 m is attached to a tube (14) made of Cu-35% Zn brass.
3) is soldered with 3n-70% Pb alloy. The above radiator was set on the electrode (2I3) in the Pel jar (3) in Figure 1, dibenzyl was placed as a solid organic compound (8) on the resistance heating boat (9), and the Pel jar (3) was evacuated. and heated the boat (9) to 120°C.
heated to.

その後真空度10−1℃orrでArガスをペルジャー
(3)内に導入し、500 Wの出力で約90人/m!
nの生成レートにてプラズマ重合しラジェーター表面に
第1表に示したような膜厚の被膜を形成した。
After that, Ar gas was introduced into the Pelger (3) at a vacuum level of 10-1°C orr, and at an output of 500 W, about 90 people/m!
Plasma polymerization was performed at a production rate of n to form a film having the thickness shown in Table 1 on the radiator surface.

次に各ラジェーターに40℃の1%NaCf!、’を含
液を0.5hr@霧後60’CX 75%RHの加湿空
気中に23.5hr放置するサイクルを60回繰り返す
処理をし、その後以下の各試験を実施した。
Next, apply 1% NaCf at 40°C to each radiator! , ' was subjected to a cycle of 60 times of leaving it in humidified air of 0.5 hr@60' CX 75% RH after fogging for 23.5 hr, and then the following tests were conducted.

(1)放熱性試験: JIS D 1614法に基づき
、上記処理前のラジェーターの放熱性を100%とし、
処理後の各ラジェーターの放熱性について百分率で求め
た。
(1) Heat dissipation test: Based on JIS D 1614 method, the heat dissipation of the radiator before the above treatment is 100%,
The heat dissipation properties of each radiator after treatment were determined in percentage.

(2)フィンの腐食深さ試験二フィン部を切り出して希
硫酸で洗い腐食物を洗い落してから残部の重量を測定し
面積当りの平均腐食深さを求めた。
(2) Fin Corrosion Depth Test Two fin sections were cut out, washed with dilute sulfuric acid to remove corroded substances, and the weight of the remaining portion was measured to determine the average corrosion depth per area.

(3)フィンまたはチューブの引張り強度試験:隣り合
う2本のチューブとそれらの間に形成されているコルゲ
ート・フィンの3周期分を切り出し、これらチューブを
互いに反対方向に引張り、上記処理前の強度を100%
としたときのフィンまたはチューブの強度を百分率で求
めた。
(3) Tensile strength test of fins or tubes: Cut out three periods of two adjacent tubes and the corrugated fin formed between them, pull these tubes in opposite directions, and test the strength before the above treatment. 100%
The strength of the fin or tube was calculated as a percentage.

(4)半田フィレーの腐食量:チューブとフィンの半田
接合部を切り出して樹脂に埋め込み、その断面を検鏡し
て半田の腐食量を半定量化して百分率で求めた。
(4) Corrosion amount of solder fillet: The solder joint between the tube and the fin was cut out, embedded in resin, and its cross section was examined under a microscope to semi-quantify the amount of solder corrosion and determine it as a percentage.

以上の試験結果を第1表に併記した。また従来品として
プラズマ重合膜を形成しないもの及び従来の塗装法によ
り15μの塗膜を形成したものについても同様の試験(
上記(1)〜(4))を実施し、その結果を第1表に併
記した。
The above test results are also listed in Table 1. Similar tests were also conducted on conventional products that did not form a plasma polymerized film and those that formed a 15μ coating film using the conventional coating method.
The above (1) to (4)) were carried out, and the results are also listed in Table 1.

第1表から明らかなように本発明品Nα1〜NQ4は放
熱性を保持し、かつ耐食性も発現していることがわかる
。これを従来品と対比すれば被 膜なしのもの(Nα7
)は特に腐食が激しく、フィンは強度を失っており、1
5μコートのもの(Nα8)は耐食性はあるが放熱性に
劣る。また被膜厚さが0.01μ未満の比較量Nα5は
耐食性、放熱性共に不十分であり、2μを超える被膜厚
さの比較量NQ6は放熱性が若干劣る傾向が見られる。
As is clear from Table 1, the products Nα1 to NQ4 of the present invention maintain heat dissipation properties and also exhibit corrosion resistance. Comparing this with the conventional product, the one without coating (Nα7
) is particularly severely corroded, the fins have lost strength, and 1
The 5μ coated material (Nα8) has corrosion resistance but is inferior in heat dissipation. In addition, the comparative amount Nα5 with a coating thickness of less than 0.01μ is insufficient in both corrosion resistance and heat dissipation, and the comparison amount NQ6 with a coating thickness of more than 2μ tends to be slightly inferior in heat dissipation.

(発明の効果) このように本発明によれば、特に自動車ラジェーターの
ように苛酷な使用条件の下でも腐食に強く、かつ放熱性
に優れているので安定して長期使用ができる等工業上顕
著な効果を奏するものである。
(Effects of the Invention) As described above, the present invention is industrially remarkable because it is resistant to corrosion and has excellent heat dissipation properties even under severe usage conditions such as automobile radiators, and can be used stably for a long period of time. This has the following effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で用いるプラズマ発生装置を示す説明図
、第2図はラジェーターを示す外観図、第3図はラジェ
ーターの部分斜視図である。 1・・・熱交換器 2A、 2B・・・電極 3・・・ペルジャー 4・・・テーブル 5・・・真空排気装置 6・・・真空計 7・・・プラズマ発生用電源 8・・・有機化合物 9・・・抵抗加熱ボート 1G・・・加熱用電源 11・・・ノズル 12・・・モノマーガス供給源 13・・・チューブ 14・・・フィン 15・・・コアー lea、16b −・・座板 17a、17b・・・タンク 18、19・・・媒体循環用出入口 20.21・・・注排口 第1図 第2図 第3図
FIG. 1 is an explanatory diagram showing a plasma generator used in the present invention, FIG. 2 is an external view of a radiator, and FIG. 3 is a partial perspective view of the radiator. 1... Heat exchanger 2A, 2B... Electrode 3... Pelger 4... Table 5... Vacuum exhaust device 6... Vacuum gauge 7... Power source for plasma generation 8... Organic Compound 9... Resistance heating boat 1G... Heating power source 11... Nozzle 12... Monomer gas supply source 13... Tube 14... Fin 15... Core lea, 16b -... Seat Plates 17a, 17b...Tanks 18, 19...Medium circulation inlet/outlet 20.21...Inlet/outlet Figure 1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)冷媒が貫流するチューブと該チューブに一体に設
けられた伝熱性薄肉フィンとからなる熱交換器において
、フイン及びフインとチユーブとの接合部の少なくとも
一部に0.01〜2μの厚さの気相重合ポリマー膜を形
成したことを特徴とする熱交換器。
(1) In a heat exchanger consisting of a tube through which a refrigerant flows and heat-conductive thin-walled fins integrally provided on the tube, at least a portion of the fin and the joint between the fin and the tube has a thickness of 0.01 to 2 μm. A heat exchanger characterized by forming a vapor phase polymerized polymer film.
(2)フィン材とチユーブ材が互いに異種金属である請
求項1記載の熱交換器。
(2) The heat exchanger according to claim 1, wherein the fin material and the tube material are made of different metals.
JP1660188A 1988-01-27 1988-01-27 Heat exchanger Pending JPH01193597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1660188A JPH01193597A (en) 1988-01-27 1988-01-27 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1660188A JPH01193597A (en) 1988-01-27 1988-01-27 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH01193597A true JPH01193597A (en) 1989-08-03

Family

ID=11920816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1660188A Pending JPH01193597A (en) 1988-01-27 1988-01-27 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH01193597A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377219B2 (en) * 2000-01-11 2002-04-23 Cool Options, Inc. Composite molded antenna assembly
KR20030067357A (en) * 2002-02-08 2003-08-14 엘지전자 주식회사 Air conditioner evaporator offer method for using the inorganic antibaterial agency

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377219B2 (en) * 2000-01-11 2002-04-23 Cool Options, Inc. Composite molded antenna assembly
KR20030067357A (en) * 2002-02-08 2003-08-14 엘지전자 주식회사 Air conditioner evaporator offer method for using the inorganic antibaterial agency

Similar Documents

Publication Publication Date Title
CN101681896B (en) Heat spreader for semiconductor device and method for manufacturing the heat spreader
US8152047B2 (en) Method of producing a corrosion resistant aluminum heat exchanger
KR20050024201A (en) Heat transfer tube with pin member
JPS61186164A (en) Production of aluminum heat exchanger
JPH05164496A (en) Fin tube for open rack type carburetor
CN112975204B (en) Self-fluxing brazing filler metal applied to aluminum-copper dissimilar material welding and welding method
JPH01193597A (en) Heat exchanger
US20150068714A1 (en) Sacrificial aluminum fins for failure mode protection of an aluminum heat exchanger
WO2001002121A1 (en) Structure and method for joining metal members
US4950563A (en) Phosphoric acid fuel cells with improved corrosion resistance
JPS583348B2 (en) Aluminum terminal and its manufacturing method
US4780373A (en) Heat-transfer material
US3872921A (en) Erosion-corrosion resistant aluminum radiator clad tubing
EP0485194B1 (en) Improved heat transfer surface
JP3356856B2 (en) Anticorrosion aluminum material for brazing and method for producing the same
Van Velson et al. Performance life testing of a nanoscale coating for erosion and corrosion protection in copper microchannel coolers
US4775004A (en) Copper radiator for motor cars excellent in corrosion resistance and method of manufacturing
JPH02122093A (en) Multiple layer plated steel stock having heat resistance and corrosion resistance
CN222733429U (en) A lightweight, corrosion-resistant aluminum alloy flat tube
US8256502B2 (en) Heat exchange member and heat exchange apparatus
JPS60194296A (en) Heat exchanger material with excellent corrosion resistance
EP0612858B1 (en) Production of heat transfer element
JPS61112359A (en) Manufacture of heat exchanger
JPH0835787A (en) Heat-exchanger, flat pipe used therein, and manufacture thereof
CN116043220B (en) Nickel plating method for diamond copper heat sink for packaging shell of microwave high-power device