[go: up one dir, main page]

JPH01200647A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH01200647A
JPH01200647A JP2617588A JP2617588A JPH01200647A JP H01200647 A JPH01200647 A JP H01200647A JP 2617588 A JP2617588 A JP 2617588A JP 2617588 A JP2617588 A JP 2617588A JP H01200647 A JPH01200647 A JP H01200647A
Authority
JP
Japan
Prior art keywords
power supply
logic circuit
circuit section
delay
delay time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2617588A
Other languages
Japanese (ja)
Inventor
Mikio Takuwa
宅和 幹雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2617588A priority Critical patent/JPH01200647A/en
Publication of JPH01200647A publication Critical patent/JPH01200647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To reduce the number of elements required to constitute a delay circuit by a method wherein a power supply voltage which is lower than that of a logic circuit part is applied to the delay circuit part and the delay time of a signal in individual logic gates is delayed. CONSTITUTION:Because a delay circuit part 2 is driven by a power supply voltage Vcc' (e.g., 2.5V) which is lower than a power supply voltage Vcc (e.g., 5V) of logic circuit parts 1, 4, the delay time of a signal to be input from the logic circuit part 1 to the logic circuit part 4 through individual inverters 2a of five stages is also longer than the delay time of a signal in the logic circuit parts 1, 4. Accordingly, the same delay time can be realized by the small number of inverters 2a as compared with a case driven by the power supply voltage Vcc; the number of FETs required to obtain the desired delay time can be made small; more FETs can be used in the logic circuit parts 1, 4 and the like.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、同一サイズのトランジスタをアレイ状に配置
してなり、遅延回路部を有するマスタースライス方式の
半導体集積回路装置(LSI)に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a master slice type semiconductor integrated circuit device (LSI) which is formed by arranging transistors of the same size in an array and has a delay circuit section.

〈従来の技術〉 マスタースライス方式とは、設計された基本パターンに
従って同一サイズのトランジスタ等の素子をアレイ状に
配置し、必要に応じて素子間の接続態様を変えて個々の
LSIを製造する方式をいう。このマスタースライス方
式で作られたLSIの遅延回路部は、トランジスタ等を
組み合わけてなる多段の論理ゲートで措成され、この論
理ゲートを通過さU゛ることにより信号を遅延さl′る
ものである。
<Prior art> The master slicing method is a method in which elements such as transistors of the same size are arranged in an array according to a designed basic pattern, and the connection between the elements is changed as necessary to manufacture individual LSIs. means. The delay circuit section of an LSI made using this master slice method is made up of multistage logic gates made by combining transistors, etc., and delays signals by passing them through these logic gates. It is.

〈発明が解決しようとする課題〉 ところで、遅延回路は、各トランジスタのゲート幅を狭
くしたりゲート長を長くしたりして、ゲート1段当たり
の遅延時間を延ばすことによっても実現できる。しかし
ながら、上記マスタースライス方式のLSIでは、マス
タウェハに作り込まれた各トランジスタは、全て同一サ
イズで、しかも高速動作を目標としているため1段当た
りの遅延時間が短い。従って、上記従来のLSIで遅延
回路を実現しようとすると、論理ゲートの段数を増加せ
ざるを得す、そのために多くのトランジスタ等の素子が
必要となり、遅延回路以外の論理回踏部などに使用でき
る素子数が減少してしまうという欠点がある。
<Problems to be Solved by the Invention> Incidentally, the delay circuit can also be realized by increasing the delay time per gate stage by narrowing the gate width or increasing the gate length of each transistor. However, in the above-mentioned master slice type LSI, the transistors fabricated on the master wafer are all of the same size and are aimed at high-speed operation, so the delay time per stage is short. Therefore, if you try to realize a delay circuit using the conventional LSI mentioned above, you will have to increase the number of stages of logic gates, which will require many transistors and other elements, which will be used in logic circuits other than delay circuits. The disadvantage is that the number of elements that can be made is reduced.

そこで、本発明の目的は、トランジスタゲートの遅延時
間が電源電圧によって変化することに着目し、少ない素
子数で遅延回路部を構成することができ、論理回路部等
により多くの素子を使用することができるマスタースラ
イス方式の半導体集積回路装置(LSI)を提供するこ
とである。
Therefore, an object of the present invention is to focus on the fact that the delay time of a transistor gate changes depending on the power supply voltage, and to make it possible to configure a delay circuit section with a small number of elements, and to use more elements in a logic circuit section, etc. An object of the present invention is to provide a master slice type semiconductor integrated circuit device (LSI) capable of performing the following steps.

く課題を解決するための手段〉 上記目的を達成するため、本発明のマスタースライス方
式の半導体集積回路装置は、論理回路部と、この論理回
路部に給電する論理回路用電源供給線と、入力信号を遅
延させて出力する遅延回路部と、上記論理回路用電源供
給線と別系統であって上記遅延回路部に給電する遅延回
路用電源供給線とを備えたことを特徴とする。
Means for Solving the Problems> In order to achieve the above object, a master slice type semiconductor integrated circuit device of the present invention includes a logic circuit section, a logic circuit power supply line that supplies power to the logic circuit section, and an input The present invention is characterized in that it includes a delay circuit section that delays and outputs a signal, and a delay circuit power supply line that is separate from the logic circuit power supply line and that supplies power to the delay circuit section.

く作用〉 半導体集積回路装置を構成する個々のMOS形等のトラ
ンジスタにおける信号遅延時間は、電源電圧が低くなる
ほど長くなる。従って、遅延回路用電源供給線に論理回
路用電源供給線上りら低い電源電圧を印加すれば、遅延
回路部のゲート1段当たりの遅延時間が長くなって、少
ない段数即ち少ないトランジスタ数で廣望の遅延時間を
得ることができる。
Effect> The signal delay time in each MOS type transistor or the like constituting a semiconductor integrated circuit device becomes longer as the power supply voltage becomes lower. Therefore, if a low power supply voltage is applied to the delay circuit power supply line from the logic circuit power supply line, the delay time per gate stage of the delay circuit section will become longer, and Hiroshima's desired result will be achieved with fewer stages, that is, fewer transistors. You can get the delay time.

〈実施例〉 以下、本発明を図示の実施例により詳細に説明する。<Example> Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.

第1図は本発明のマスタースライス方式の半導体集積回
路装置(LSI)の一実施例を示す模式図であり、1.
4は論理回路部、2はインバータ2aを多段接続してな
り、上記論理回路部1からの人力信号を遅延させて出力
する遅延回路部、3はこの遅延回路部2の出力信号のレ
ベルを上げて上記論理回路部4へ伝送するレベル変換回
路部、5は上記論理回路部1.4およびレベル変換回路
部3へ711源電圧Vccを供給する論理回路用電源供
給線、6は上記遅延回路部2とレベル変換回路部3へ上
記電源電圧Vccよりも低い電源電圧Vcc’を供給す
る遅延回路用電源供給線であり、上記各回路部1.2,
3.4は、具体的にはマスタウェハにアレイ状に作り込
まれた同一サイズのMOSFET(MO8形電界効果ト
ラジジスタ)を相互に適宜接続して構成される。
FIG. 1 is a schematic diagram showing an embodiment of a master slice type semiconductor integrated circuit device (LSI) of the present invention.
4 is a logic circuit section, 2 is a delay circuit section which is formed by connecting inverters 2a in multiple stages and delays and outputs the human input signal from the logic circuit section 1, and 3 is a section for raising the level of the output signal of this delay circuit section 2. 5 is a logic circuit power supply line that supplies the 711 source voltage Vcc to the logic circuit section 1.4 and the level conversion circuit section 3; 6 is the delay circuit section; 2 and a delay circuit power supply line for supplying a power supply voltage Vcc' lower than the power supply voltage Vcc to the level conversion circuit section 3, and each circuit section 1.2,
3.4 is specifically constructed by appropriately connecting MOSFETs (MO8 type field effect transistors) of the same size fabricated in an array on a master wafer.

第2図は、上記レベル変換回路部3の構成例を示す回路
図である。このレベル変換回路部3は、N。
FIG. 2 is a circuit diagram showing an example of the configuration of the level conversion circuit section 3. As shown in FIG. This level conversion circuit section 3 has N.

PチャンネルFET(Tn、Tp)からなる前段のCM
OSインバータIOと、NチャンネルFET(Tn)を
夫々3個並列接続してなる第1および第2並列!?ET
11.12と、PチャンネルFET(Tp)を夫々3個
直列接続してなる第1および第2直列FET13,14
と、後段のインバータ15からなる。
Front-stage CM consisting of P-channel FETs (Tn, Tp)
The first and second parallel connections are made by connecting the OS inverter IO and three N-channel FETs (Tn) in parallel! ? E.T.
11.12, and first and second series FETs 13 and 14 each formed by connecting three P-channel FETs (Tp) in series.
and a subsequent inverter 15.

そして、いま入力端子INにI−Iの信号が人力されて
いるとすると、CMOSインバータ10のFET (T
 n)および第2並列F’ET 12と第1直列FET
l3がオンに、第1並列FETIIと第2直列FE’l
’14がオフで、出力端子OU ’1”に1夏の信号が
出力されているとき、入力端子INにLの信号が入力さ
れると、CMOSインバータlOのFE’r(Tp)お
よび第1並列rjET l 1がオンになり並列FET
12がオフになる。このときノード17は、第2並列F
’ET12.第2直列17 E’1’ 14が共にオフ
になるため電位か定まらないが、ノード16の電位は第
1並列r;’Eq”ttがオンしており、この能力が第
1直列FET l 3より高いためノード!7と同電位
である第1直列FET13の入力にかかわらず、ノード
16の電位はLになる。この結果、第2直列FET14
がオンに、第1直列FET13がオフになって、出力端
子00′rにLの信号が出力されるようになっている。
Assuming that the I-I signal is currently input to the input terminal IN, the FET (T
n) and the second parallel F'ET 12 and the first series FET
l3 is turned on, the first parallel FET II and the second series FE'l
'14 is off and the 1 summer signal is output to the output terminal OU '1', when an L signal is input to the input terminal IN, the FE'r(Tp) of the CMOS inverter lO and the first Parallel rjET l 1 turns on and parallel FET
12 is turned off. At this time, the node 17 is connected to the second parallel F
'ET12. The potential of the node 16 is not determined because the second series 17 E'1' and 14 are both off, but the first parallel r;'Eq'tt is on, and this ability is the first series FET l3. Therefore, the potential of the node 16 becomes L regardless of the input of the first series FET 13, which has the same potential as the node !7.As a result, the potential of the second series FET 14 becomes L.
is turned on, the first series FET 13 is turned off, and an L signal is output to the output terminal 00'r.

入力がLから11に変わったときも同様に第2直列FE
T14と第2並列r’ET l 2の能力差によりI−
1が出力される。
Similarly, when the input changes from L to 11, the second series FE
Due to the difference in performance between T14 and the second parallel r'ET l2, I-
1 is output.

第3図は、第1図、第2図に示した実施例の具体的パタ
ーンを示す平面図である。このLSIは、第3図に示す
基板の左側に縦方向に等間隔をおいて矩形のN拡散領域
20を、右側に同様に矩形のP拡散領域21を夫々形成
し、各N拡散領域20に延在する一対のポリシリコンゲ
ート(G n、 G n)を形成してNチャンネルFE
T(Tn)となす一方、各PtM領域2■に延在する一
対のポリシリコンゲート(Gp、Gp)を形成してPチ
ャンネルF’ET(T[))となすとともに、左のNヂ
ャンネル側に接地線GNDを、右のPヂャンネル側にV
 cc、 V cc’を供給する電源供給線5.6を夫
々縦に形成してなる。
FIG. 3 is a plan view showing a specific pattern of the embodiment shown in FIGS. 1 and 2. FIG. In this LSI, rectangular N diffusion regions 20 are formed at equal intervals in the vertical direction on the left side of the substrate shown in FIG. 3, and similarly rectangular P diffusion regions 21 are formed on the right side of the substrate. An N-channel FE is formed by forming a pair of extending polysilicon gates (G n, G n).
On the other hand, a pair of polysilicon gates (Gp, Gp) extending in each PtM region 2 is formed to form a P-channel F'ET (T[)), and the left N-channel side Connect the ground wire GND to the terminal, and V to the right P channel side.
Power supply lines 5 and 6 for supplying voltages cc and Vcc' are formed vertically.

そして、上記N、PヂャンネルF’ET(Tn、Tp)
、接地線CND、電源供給線5.6を互いに多数のコン
タクトホール22を介して配線23で適宜接続して回路
が構成され、図中の1〜4は、第1図の論理回路部1,
4、遅延回路部2、レベル変換回路部3に夫々対応して
いる。
And the above N, P channel F'ET (Tn, Tp)
, the ground line CND, and the power supply line 5.6 are appropriately connected to each other by wiring 23 through a large number of contact holes 22 to form a circuit.
4, corresponding to the delay circuit section 2 and the level conversion circuit section 3, respectively.

即ち、上記遅延回路部2は、N、PチャンネルFET(
Tn、Tp)からなるCMOSインバータ2a(第1図
参照)を5段直列接続してなり、論理回路部1からの入
ツJ信号はゲートG、〜G、を経るたびに反転される。
That is, the delay circuit section 2 includes N and P channel FETs (
It consists of five stages of CMOS inverters 2a (see FIG. 1) consisting of Tn, Tp) connected in series, and the incoming J signal from the logic circuit section 1 is inverted every time it passes through gates G, .about.G.

また上記レベル変換回路部3は、第2図にも述べたよう
に、CMOSインバータlOと、NチャンネルF’ET
(Tn)を夫々3個並列接続してなる第1および第2並
列FETII、12と、PチャンネルFET(Tp)を
夫々3個直列接続してなる第1および第2直列FBT1
3.+4と、後段のCMOSインパーク15からなる。
Further, as described in FIG. 2, the level conversion circuit section 3 includes a CMOS inverter lO and an N-channel
The first and second parallel FETs II and 12 each have three parallel FETs (Tn) connected in parallel, and the first and second series FETs 1 each have three P-channel FETs (Tp) connected in series.
3. +4 and CMOS Impark 15 in the latter stage.

そして、レベル変換@踏部3の最終段のドレインを、次
の論理回路部4の初段のゲートG1.に接続している。
Then, the drain of the final stage of the level conversion@step section 3 is connected to the gate G1 of the first stage of the next logic circuit section 4. is connected to.

上記構成のLSIの作用、動作について次に述べる。The function and operation of the LSI having the above configuration will be described next.

遅延回路部2は、論理回路部!、4の電源電圧Vcc(
例えば5V)よりも低い電源電圧Vcc’(例えば2.
5V)で駆動されるため、論理回路部1から5段の各イ
ンバータ2aを通過して論理回路部4に人力される信号
の遅延時間も、論理回路部1゜4における信号の遅延時
間よりも長くなる。従って、電源電圧Vccで駆動され
る場合に比して少数個のインバータ2aで同じ遅延時間
を実現することができ、所望の遅延時間を得るに必要な
F ET個敢が少なくて済み、論理回路部1.4等に、
より多くのF E Tを使用できるという利点がある。
The delay circuit section 2 is a logic circuit section! , 4 power supply voltage Vcc(
For example, 5 V) is lower than the power supply voltage Vcc' (for example, 2.
5V), the delay time of the signal that passes through each of the five stages of inverters 2a from the logic circuit section 1 and is manually input to the logic circuit section 4 is also shorter than the delay time of the signal in the logic circuit section 1.4. become longer. Therefore, the same delay time can be achieved with a smaller number of inverters 2a than in the case of driving with the power supply voltage Vcc, the number of FETs required to obtain the desired delay time is small, and the logic circuit Part 1.4 etc.
The advantage is that more FETs can be used.

なお、バックアップモード時や動作時の消費電流が大き
くてもよければ、上記レベル変換回路部3を第4図に示
すように構成することもできる。
Incidentally, if a large current consumption is acceptable in the backup mode or during operation, the level conversion circuit section 3 may be configured as shown in FIG. 4.

このレベル変換回路部3°は、第2図に示したCMOS
インバータ10のPチャンネルFET(TI))を、P
ET(TI))を3個直列接続してなる電源Vccで駆
動される直列FET25に、CMOSインバータlOの
NチャンネルFET(Tn)を、FET(Tn)を3個
並列接続してなる並列FET26に夫々変更したもので
ある。このレベル変換回路3°では、直列インバータ2
5のソースSpに印加される電源電圧Vccが、入力端
子INの信号レベル(V cc’ )よりも大きいため
、V cc’に相当する+(の信号が入力端子INに入
力されると、直列PET25が完全にはオフにならず半
ば導通して、インバータ15にLの信号が入力され、こ
れが反転されて出力端子OUTにトrの出力信号が得ら
れるが、導通した上記両インバータ26.25を介して
アースに貫通電流が流れ、消費電力が多くなり、またバ
ックアップモード時にも同様の欠点があるが、素子数が
少なくて済むという利点がある。
This level conversion circuit section 3° is a CMOS shown in FIG.
The P channel FET (TI) of the inverter 10 is
A series FET 25 driven by the power supply Vcc, which is formed by connecting three ET (TI)) in series, an N-channel FET (Tn) of a CMOS inverter lO, and a parallel FET 26, which is formed by connecting three FETs (Tn) in parallel. They have been modified respectively. In this level conversion circuit 3°, series inverter 2
Since the power supply voltage Vcc applied to the source Sp of 5 is higher than the signal level (V cc' ) of the input terminal IN, when a signal of +( corresponding to V cc' is input to the input terminal IN, the series The PET 25 does not turn off completely but becomes partially conductive, and an L signal is input to the inverter 15, which is inverted and an output signal of r is obtained at the output terminal OUT. A through-current flows to the ground through the capacitor, increasing power consumption, and the same drawback occurs during backup mode, but the advantage is that the number of elements can be reduced.

第5図は、上記遅延回路部2等を構成する各FETの駆
動電圧とゲート遅延時間の関係を示すグラフである。図
から明らかなように、電源電圧を1/2にするとゲート
遅延時間は略3〜4倍になる。従って、論理回路部1.
4の電源電圧Vcc=5■のとき、遅延回路部2のf、
源電圧Vcc’−2゜5■とすれば、遅延回路部2を構
成するに必要な素子数は従来の1/3〜1/4まで削減
することができ、削減した素子を論理回路部1.4等に
使用することができる。
FIG. 5 is a graph showing the relationship between the drive voltage and gate delay time of each FET constituting the delay circuit section 2 and the like. As is clear from the figure, when the power supply voltage is halved, the gate delay time increases approximately three to four times. Therefore, the logic circuit section 1.
4, when the power supply voltage Vcc=5■, f of the delay circuit section 2,
If the source voltage is Vcc'-2°5■, the number of elements necessary to construct the delay circuit section 2 can be reduced to 1/3 to 1/4 of the conventional one, and the reduced elements can be used as the logic circuit section 1. .4 etc. can be used.

なお、本発明が上記実施例に限られないのはいうまでも
ない。
It goes without saying that the present invention is not limited to the above embodiments.

〈発明の効果〉 以上の説明で明らかなように、本発明のマスタースライ
ス方式の半導体集積回路装置は、遅延回路部に論理回路
部より低い電源電圧を供給して、個々の論理ゲートにお
ける信号遅延時間を延ばすことにより、遅延回路部の構
成に必要な素子数を従来の!/3〜l/4程度に削減す
ることができ、削減した素子を他の回路部に有効に用い
ることができる。
<Effects of the Invention> As is clear from the above description, the master slice type semiconductor integrated circuit device of the present invention supplies the delay circuit section with a lower power supply voltage than the logic circuit section, thereby reducing the signal delay in each logic gate. By extending the time, the number of elements required to configure the delay circuit can be reduced compared to the conventional one! The number of elements can be reduced to approximately 1/3 to 1/4, and the reduced elements can be effectively used in other circuit sections.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のマスタースライス方式のLSIの一実
施例を示す模式図、第2図は第1図のレベル変換回路部
の一例を示す回路図、第3図は上記実施例の具体的パタ
ーンを示す平面図、第4図は変換回路部の他の例を示す
回路図、第5図はFETの駆動電圧とゲート遅延時間の
関係を示す図である。 1.4・・・論理回路部、 2・・・遅延回路部、2a
・・・インバータ、3・・・レベル変換回路部、5・・
・論理回路用電源供給線、 6・・・遅延回路用電源供給線。
FIG. 1 is a schematic diagram showing an embodiment of the master slice type LSI of the present invention, FIG. 2 is a circuit diagram showing an example of the level conversion circuit section of FIG. 1, and FIG. 3 is a specific diagram of the above embodiment. FIG. 4 is a plan view showing the pattern, FIG. 4 is a circuit diagram showing another example of the conversion circuit section, and FIG. 5 is a diagram showing the relationship between FET drive voltage and gate delay time. 1.4...Logic circuit section, 2...Delay circuit section, 2a
... Inverter, 3... Level conversion circuit section, 5...
- Power supply line for logic circuit, 6... Power supply line for delay circuit.

Claims (1)

【特許請求の範囲】[Claims] (1)同一サイズのトランジスタをアレイ状に配置して
なるマスタースライス方式の半導体集積回路装置におい
て、論理回路部と、この論理回路部に給電する論理回路
用電源供給線と、入力信号を遅延させて出力する遅延回
路部と、上記論理回路用電源供給線と別系統であって上
記遅延回路部に給電する遅延回路用電源供給線とを備え
たことを特徴とする半導体集積回路装置。
(1) In a master slice type semiconductor integrated circuit device in which transistors of the same size are arranged in an array, the logic circuit section, the logic circuit power supply line that supplies power to the logic circuit section, and the input signal are delayed. 1. A semiconductor integrated circuit device comprising: a delay circuit unit that outputs power to the delay circuit unit; and a delay circuit power supply line that is separate from the logic circuit power supply line and that supplies power to the delay circuit unit.
JP2617588A 1988-02-04 1988-02-04 Semiconductor integrated circuit device Pending JPH01200647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2617588A JPH01200647A (en) 1988-02-04 1988-02-04 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2617588A JPH01200647A (en) 1988-02-04 1988-02-04 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH01200647A true JPH01200647A (en) 1989-08-11

Family

ID=12186199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2617588A Pending JPH01200647A (en) 1988-02-04 1988-02-04 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH01200647A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7007257B2 (en) 2002-05-22 2006-02-28 Renesas Technology Corp. Automatic placement and routing apparatus for designing integrated circuit that controls its timing using multiple power supplies

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7007257B2 (en) 2002-05-22 2006-02-28 Renesas Technology Corp. Automatic placement and routing apparatus for designing integrated circuit that controls its timing using multiple power supplies

Similar Documents

Publication Publication Date Title
JPH10313236A (en) Delay circuit
JPH01200647A (en) Semiconductor integrated circuit device
JPH03132115A (en) Semiconductor integrated circuit
JP3402947B2 (en) Address decoder
JPH09214324A (en) CMOS logic circuit
JP2830244B2 (en) Tri-state buffer circuit
JPS63250911A (en) Semiconductor integrated circuit device
JPS62195922A (en) Semiconductor integrated circuit device
JPS61212118A (en) Coincidence detecting circuit
JPS62208715A (en) Semiconductor integrated circuit
JP3000950B2 (en) Word line drive circuit for semiconductor memory device
JPH04341010A (en) Logic circuit
JPH04213919A (en) Semiconductor integrated circuit
JPH0750562A (en) Semiconductor integrated circuit device
JPH03217055A (en) Semiconductor integrated circuit device
JPS59200524A (en) Cmos multiplexer
JPS61247123A (en) Tri-state value output circuit
JP2552107B2 (en) Synchronous compound integrated circuit device
JPH04192808A (en) Output buffer circuit
JPH01221916A (en) Programmable logic array
JPH05206805A (en) Delay circuit
JPS59205818A (en) Output circuit
JPH0683051B2 (en) Output circuit
JPH04129414A (en) Hysteresis circuit
JPH04132310A (en) Tri-state buffer