JPH01201337A - Pattern forming material and pattern formation - Google Patents
Pattern forming material and pattern formationInfo
- Publication number
- JPH01201337A JPH01201337A JP63025639A JP2563988A JPH01201337A JP H01201337 A JPH01201337 A JP H01201337A JP 63025639 A JP63025639 A JP 63025639A JP 2563988 A JP2563988 A JP 2563988A JP H01201337 A JPH01201337 A JP H01201337A
- Authority
- JP
- Japan
- Prior art keywords
- tables
- formulas
- group
- chemical formulas
- pattern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 25
- 230000007261 regionalization Effects 0.000 title 1
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- 230000001678 irradiating effect Effects 0.000 claims abstract description 10
- 239000011261 inert gas Substances 0.000 claims abstract description 8
- 229920002050 silicone resin Polymers 0.000 claims abstract description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims abstract description 5
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 3
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 3
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 3
- 150000002430 hydrocarbons Chemical group 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 22
- 239000000758 substrate Substances 0.000 claims description 12
- 229920000620 organic polymer Polymers 0.000 claims description 10
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 3
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims 18
- 238000004519 manufacturing process Methods 0.000 abstract description 25
- -1 o-naphthoquinone compound Chemical class 0.000 abstract description 19
- 230000035945 sensitivity Effects 0.000 abstract description 12
- 239000003513 alkali Substances 0.000 abstract description 5
- 230000005855 radiation Effects 0.000 abstract description 4
- 239000004065 semiconductor Substances 0.000 abstract description 2
- 125000000896 monocarboxylic acid group Chemical group 0.000 abstract 1
- 229920000642 polymer Polymers 0.000 description 14
- 239000010408 film Substances 0.000 description 13
- 238000005481 NMR spectroscopy Methods 0.000 description 11
- 238000001312 dry etching Methods 0.000 description 11
- 125000005372 silanol group Chemical group 0.000 description 10
- 238000010521 absorption reaction Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000002861 polymer material Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 4
- 239000012346 acetyl chloride Substances 0.000 description 4
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 4
- 239000005457 ice water Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 3
- 230000021736 acetylation Effects 0.000 description 3
- 238000006640 acetylation reaction Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- KETQAJRQOHHATG-UHFFFAOYSA-N 1,2-naphthoquinone Chemical compound C1=CC=C2C(=O)C(=O)C=CC2=C1 KETQAJRQOHHATG-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000005708 Sodium hypochlorite Substances 0.000 description 2
- 230000021523 carboxylation Effects 0.000 description 2
- 238000006473 carboxylation reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 2
- KGWYICAEPBCRBL-UHFFFAOYSA-N 1h-indene-1-carboxylic acid Chemical compound C1=CC=C2C(C(=O)O)C=CC2=C1 KGWYICAEPBCRBL-UHFFFAOYSA-N 0.000 description 1
- VSIKJPJINIDELZ-UHFFFAOYSA-N 2,2,4,4,6,6,8,8-octakis-phenyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocane Chemical compound O1[Si](C=2C=CC=CC=2)(C=2C=CC=CC=2)O[Si](C=2C=CC=CC=2)(C=2C=CC=CC=2)O[Si](C=2C=CC=CC=2)(C=2C=CC=CC=2)O[Si]1(C=1C=CC=CC=1)C1=CC=CC=C1 VSIKJPJINIDELZ-UHFFFAOYSA-N 0.000 description 1
- VCYDUTCMKSROID-UHFFFAOYSA-N 2,2,4,4,6,6-hexakis-phenyl-1,3,5,2,4,6-trioxatrisilinane Chemical compound O1[Si](C=2C=CC=CC=2)(C=2C=CC=CC=2)O[Si](C=2C=CC=CC=2)(C=2C=CC=CC=2)O[Si]1(C=1C=CC=CC=1)C1=CC=CC=C1 VCYDUTCMKSROID-UHFFFAOYSA-N 0.000 description 1
- IRVZFACCNZRHSJ-UHFFFAOYSA-N 2,4,6,8-tetramethyl-2,4,6,8-tetraphenyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocane Chemical compound O1[Si](C)(C=2C=CC=CC=2)O[Si](C)(C=2C=CC=CC=2)O[Si](C)(C=2C=CC=CC=2)O[Si]1(C)C1=CC=CC=C1 IRVZFACCNZRHSJ-UHFFFAOYSA-N 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 241001330002 Bambuseae Species 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- NDZITSUBFAYISV-UHFFFAOYSA-N C(Cl)(Cl)(Cl)Cl.C(F)(F)(F)F Chemical compound C(Cl)(Cl)(Cl)Cl.C(F)(F)(F)F NDZITSUBFAYISV-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- OLLFKUHHDPMQFR-UHFFFAOYSA-N dihydroxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](O)(O)C1=CC=CC=C1 OLLFKUHHDPMQFR-UHFFFAOYSA-N 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 1
- KBXJHRABGYYAFC-UHFFFAOYSA-N octaphenylsilsesquioxane Chemical compound O1[Si](O2)(C=3C=CC=CC=3)O[Si](O3)(C=4C=CC=CC=4)O[Si](O4)(C=5C=CC=CC=5)O[Si]1(C=1C=CC=CC=1)O[Si](O1)(C=5C=CC=CC=5)O[Si]2(C=2C=CC=CC=2)O[Si]3(C=2C=CC=CC=2)O[Si]41C1=CC=CC=C1 KBXJHRABGYYAFC-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920003217 poly(methylsilsesquioxane) Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- MJDTZPZTEUWXNE-UHFFFAOYSA-J potassium gold(3+) tetrahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[K+].[Au+3] MJDTZPZTEUWXNE-UHFFFAOYSA-J 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- 239000000052 vinegar Substances 0.000 description 1
- 235000021419 vinegar Nutrition 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/075—Silicon-containing compounds
- G03F7/0757—Macromolecular compounds containing Si-O, Si-C or Si-N bonds
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Silicon Polymers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、半導体素子、磁気バブル素子及び光応用部品
等を製造する際に用いられるパターン形成材料及び形成
方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a pattern forming material and a pattern forming method used in manufacturing semiconductor elements, magnetic bubble elements, optical application parts, and the like.
従来、IC及びL S、I等の製造ではレジストと呼ば
れる高分子化合物等の有機組成物で被加工基板を被覆し
、高エネルギー線をパターン状に照射してレジストに潜
像を形成し、これを現像してパターン状のレジスト膜を
形成したのち、被加工基板を腐食液に浸すことに工り基
板のレジストに伽われていない部分を化学的にエツチン
グあるいは不純物をドーピングするなどの処理を行って
きた。Conventionally, in the production of ICs, LS, I, etc., a substrate to be processed is coated with an organic composition such as a polymer compound called a resist, and a latent image is formed on the resist by irradiating it with high-energy radiation in a pattern. After developing the resist film to form a patterned resist film, the substrate to be processed is immersed in a corrosive solution, and the parts of the substrate that are not covered by the resist are chemically etched or doped with impurities. It's here.
しかし、近年集積回路の高集積化に伴い、史に微細なパ
ターンを形成することが望まれている。特に、高加速で
イオンをドーピングしたり、パターンの高さと幅の比で
ある形状比の高いパターンを得たい場合には、レジスト
の膜厚が淳いものでなくてはならない。すなわち、高速
のイオンを基板に到達させることなく捕獲するためには
、レジスト膜厚も厚くなくてはならず、また、腐食液に
浸しエツチングする湿式法では避けられないサイドエツ
チングのないドライエツチング、すなわちガスプラズマ
、イオンなどを用いた反応性スパッタエツチングなどを
用いて、形状比の高いパターンを実現したい場合にも、
ドライエツチング中にレジスト部分もエツチングされる
ため、レジストの膜厚も厚くしなくてはならない。しか
し、従来のレジストでは、膜厚が厚くなるに従い解像度
の低下が起り、したがって形状比の高いレジストパター
ンを形成することができな−かった。However, as integrated circuits have become more highly integrated in recent years, it has been desired to form ever finer patterns. In particular, when doping ions at high acceleration or obtaining a pattern with a high shape ratio, which is the ratio of the height to width of the pattern, the resist film thickness must be thick. In other words, in order to capture high-speed ions without them reaching the substrate, the resist film must be thick, and dry etching eliminates the side etching that is inevitable with the wet etching method, which involves immersing the resist in a corrosive solution. In other words, even when you want to realize a pattern with a high shape ratio using reactive sputter etching using gas plasma, ions, etc.
Since the resist portion is also etched during dry etching, the resist film thickness must also be increased. However, with conventional resists, the resolution decreases as the film thickness increases, making it impossible to form a resist pattern with a high shape ratio.
この問題を解決する友めに、レジストを一増ではなく多
層化することにニジ、形状比の高いレジストパターンを
形成する方法が提案されている。すなわち、第1層目に
有機高分子材料の厚膜を形成し、その上の第2層に薄膜
のレジスト材料を形成したのち、第2層のレジスト材料
に高エネルギー線を露光し、現像したのち得られるパタ
ーンをマスクとして第1NIの有機高分子材′Prをド
ライエツチングすることにより、高形状比のパターンを
得ようとするものである。In order to solve this problem, a method has been proposed in which the number of layers of resist is increased rather than one, and a resist pattern with a high shape ratio is formed. That is, a thick film of an organic polymer material is formed as the first layer, a thin film of resist material is formed on the second layer, and then the second layer of resist material is exposed to high-energy rays and developed. By dry etching the first NI organic polymer material 'Pr using the resulting pattern as a mask, a pattern with a high shape ratio is obtained.
しかし、この方法では第2層に通常のレジストを用いた
場合、第1層と第2層の材料のドライエツチング速度の
比、すなわち選択比が大きくとれなかったり、大きくす
るためには、かなり長いエツチング時間を必要とした。However, with this method, when a normal resist is used for the second layer, it may not be possible to obtain a large ratio of dry etching speeds, that is, selectivity, between the materials of the first and second layers, or it may take a long time to increase the dry etching rate. Etching time was required.
例えば、秋谷ら(第45回応用物理学会学術膳演会講演
予稿果P213)によれば第1wIにポリメチルメタク
リレート(以下PMMAと略記する)t−、、第2 J
flにクロロメチル化ポリスチレンを用いた糸で、四塩
化炭素をエツチングガスとしたドライエツチングを行え
ば、その選択比は非常に藁くなシ、高形状比のレジスト
パターンが形成でさることを報告している。しかしこの
場合には、PMMAのエツチング速度も小さくなってし
1つため、厚いPMMA ’jiエツチングするのに時
間がかかり、また、四塩化炭素で下地基板も同時にエツ
チングしてしまう欠点がある。For example, according to Akiya et al. (Preliminary presentation of the 45th Annual Meeting of the Japan Society of Applied Physics, P213), polymethyl methacrylate (hereinafter abbreviated as PMMA) t-, 2nd J
It has been reported that when dry etching is performed using carbon tetrachloride as an etching gas using a thread made of chloromethylated polystyrene for the fl, the selectivity is very low and a resist pattern with a high shape ratio is formed. are doing. However, in this case, since the etching speed of PMMA is also low, it takes time to etch thick PMMA'ji, and there is also a drawback that the underlying substrate is also etched with carbon tetrachloride at the same time.
酸素プラズマを用いる多層レジスト系としては1鳩目の
厚膜高分子材料層と、2層目のレジストとの中間に酸素
プラズマ耐性の高い無機物層を設ける3層構造のレジス
トが提案されている。この場合はレジスト材料で形成し
たパターンをマスクとして四塩化炭素−四フフ化炭素や
アルゴン等のガス金柑いて無機物層をドライエツチング
し、ついで無機物層パターンをマスクとして、a2索で
有機高分子材料層をドライエツチングすることになる。As a multilayer resist system using oxygen plasma, a three-layer resist has been proposed in which an inorganic layer having high oxygen plasma resistance is provided between a first layer of thick polymer material and a second layer of resist. In this case, the inorganic layer is dry-etched using a pattern formed with a resist material as a mask using a gas such as carbon tetrachloride-carbon tetrafluoride or argon, and then the organic polymer material layer is etched using an A2 wire using the inorganic layer pattern as a mask. will be dry etched.
そしてこの場合には、ぼ素プラズマは1#目の厚膜烏分
子材料を速やかにエツチングでき、基板社はとんどエツ
チングされないため、エツチングの終点を明らかにする
ことができる。しかしながら、工程数が大幅に増加する
という欠点を有する。In this case, the boron plasma can quickly etch the #1 thick film material, and the substrate is hardly etched, so the end point of etching can be made clear. However, it has the disadvantage that the number of steps increases significantly.
一方、酸素プラズマによるドライエツチング耐性の高い
シリコーン系レジストを第2層に用いた場合にtj、W
I2Nのレジストパターンをマスクとして第1層の有機
高分子材料をドライエツチングする際に酸素プラズマが
使えるため、短時間で少ない工程数によシ高形状比のレ
ジストパターンを形成できる。On the other hand, when a silicone resist with high resistance to dry etching by oxygen plasma is used as the second layer, tj, W
Since oxygen plasma can be used when dry etching the organic polymer material of the first layer using the I2N resist pattern as a mask, a resist pattern with a high shape ratio can be formed in a short time and with a small number of steps.
しかし、現在知られているシリコーン系レジストではガ
ラス転移温度が室温より相当低く、分子量の低いポリマ
ーは液状あるいは半液状のため、非常に扱い難く、高エ
ネルギー線に対しても感度が悪くなる。However, currently known silicone resists have glass transition temperatures considerably lower than room temperature, and polymers with low molecular weights are liquid or semi-liquid, making them extremely difficult to handle and having poor sensitivity to high-energy radiation.
他方、分子量を高くするとゴム状になシ若干扱いやすく
なシ、また感度も高くなるが、現像浴媒中での膨潤のた
めパターンのうね9等の解像度の低下を招く等の欠点が
めった。また、架倫反応の感度金高くするためビニル基
等の連鎖反応性の高い官能基金側鎖に導入しており、こ
れも解像性を低下させている原因となっている。On the other hand, when the molecular weight is increased, it becomes rubbery and is slightly easier to handle, and the sensitivity also increases, but it rarely has disadvantages such as swelling in the developing bath, resulting in a decrease in the resolution of pattern ridges, etc. . Furthermore, in order to increase the sensitivity of the cross-linking reaction, a functional group having a high chain reactivity such as a vinyl group is introduced into the side chain, which also causes a decrease in resolution.
本祐明は、これらの欠点を解消するためなされたもので
オ夛、その目的は、高エネルギー線に対して、高感度、
高解像性を有し、しかもぼ累プラズマによるドライエツ
チングに対し高耐性な爾エネルギー線感応材料を用いた
パターン形成方法を提供することにある。Yumei Moto was created to eliminate these drawbacks, and its purpose is to provide high sensitivity and high sensitivity to high energy rays.
It is an object of the present invention to provide a pattern forming method using an energy ray sensitive material which has high resolution and is highly resistant to dry etching by accumulated plasma.
本発明を概説すれば、本発明の第1の発明はシリコーン
樹脂に関する発明であって、下記−般式l又は■:
(但しRは炭化水素基又は置換炭化水素基を示、す)及
びカルボキシル基よりなる群から選択した1橿の基金示
し、R゛、R#、R−及びR″″は同−又は異なり、水
酸基、アルキル基及びフェニル基よりなる基から選択し
た1棟の基を示し、tlm及びnは、0又は正の整数を
示し、tとmが同時に0になることはない% pf′i
正の整数を示す〕で表されることを特徴とする。To summarize the present invention, the first invention of the present invention relates to a silicone resin, which has the following general formula 1 or 2: (wherein R represents a hydrocarbon group or a substituted hydrocarbon group) and a carboxyl resin. R゛, R#, R- and R'' are the same or different and represent one group selected from the group consisting of hydroxyl group, alkyl group and phenyl group. , tlm and n indicate 0 or a positive integer, and t and m cannot be 0 at the same time% pf'i
positive integer].
また、本発明の第2の発8Aは、パターン形成材料に関
する発明でろって、Mlの発明のシリコーンw脂と、下
記一般式l:
C,H。Further, the second aspect 8A of the present invention relates to a pattern forming material, and includes a silicone resin of the invention of Ml and the following general formula 1: C, H.
↓すなる群から選択した1a[の基を示し、X及びyは
同−又は異な夛正数を示す)で表されるオルトナフトキ
ノン糸化合物とを包含することt%徴とする。↓ represents the group 1a selected from the group ↓, where X and y are the same or different integers).
そして、本発明の第6の発明はパターン形成方法に関す
る発明でろって、第2の発明のパターン形成材料金、加
工基板上又は厚い有機ポリマー層上に塗布する工程、こ
れに高エネルギー、l5Itハターン状に照射する工程
、高エネルギー線照射後紫外線を全面に露光する工程、
及びアルカリ水溶液で現像して、高エネルギー線照射部
にネガ形パターン全形成させる工程の各工程を包含する
ことを特徴とする。The sixth invention of the present invention relates to a pattern forming method, which includes a step of coating the pattern forming material gold of the second invention on a processing substrate or a thick organic polymer layer, and applying high energy to the process, process of irradiating the entire surface with ultraviolet rays after irradiation with high energy rays,
and development with an alkaline aqueous solution to completely form a negative pattern in the high-energy ray irradiation area.
高エネルギー線の例としては、紫外線、X線、電子線等
があシ、例えば紫外?fMt−用いて、真空中若しくは
不活性ガス雰囲気下でパターン状に照射する。若しくは
紫外1ii81t−大気中でパターン状に照射し、その
後、加熱する工at−含む。真空中若しくは不活性ガス
雰囲気下でパターン状に照射し穴場合は、その後に加熱
する工程を付加してもよい。Examples of high-energy rays include ultraviolet rays, X-rays, and electron beams. For example, ultraviolet? Using fMt-, irradiation is performed in a pattern in vacuum or under an inert gas atmosphere. Alternatively, ultraviolet light may be irradiated in a pattern in the atmosphere, followed by heating. If the holes are irradiated in a pattern in a vacuum or under an inert gas atmosphere, a heating step may be added after that.
パターン形成工程を第1図に示す0すなわち第1図は本
発明におけるパターン形成の工程の1例を示した工程図
であシ、1は高エネルギー線、2は高エネルギー線照射
によシ生じた潜像部分、5はパターン形成材料、4は厚
い有機ポリマー層ろるいは基板、5は紫外線、6はネガ
形パターンを意味する。まず厚い有機ポリマー層あるい
は加工基板に上記パターン形成材料を塗布しこれにパタ
ーン状に高エネルギー線を真空中、若しくは不活性ガス
中、若しくは大気中にて照射する。その際照射部にのみ
浩偉が生じる(a)。真空中若しくは不活性ガス中で照
射した場合は、そのままめるい扛加熱処理を行い、大気
中で照射した場合は加熱処理を行う。そののちに、全体
に大気中で紫外線を照射する(b)。The pattern forming process is shown in Fig. 1. 0, that is, Fig. 1 is a process diagram showing one example of the pattern forming process in the present invention. 5 is a pattern forming material, 4 is a thick organic polymer layer or substrate, 5 is an ultraviolet ray, and 6 is a negative pattern. First, the above-mentioned pattern forming material is applied to a thick organic polymer layer or processed substrate, and then patterned with high energy rays in a vacuum, an inert gas, or the atmosphere. At this time, a hiatus occurs only in the irradiated area (a). If irradiation is performed in vacuum or in an inert gas, heat treatment is performed directly, and if irradiation is performed in the atmosphere, heat treatment is performed. After that, the entire structure is irradiated with ultraviolet rays in the atmosphere (b).
そして、アルカリ現像を行い高エネルギー線照射部のみ
残膜が生じるネガ形パターンを形成する(C)。Then, alkaline development is performed to form a negative pattern in which a residual film remains only in the high-energy ray irradiated areas (C).
本発明においてパターン形成材料はポリシロキサン構造
を採用してO,RIE酎性耐を高め、更に側鎖にフェニ
ル基を多数導入してTg t″高めたシリコーンポリ
マーを柑いることにニジ前記問題点を解決するようにし
た。前記式1% 川で示されるシロキサンポリマーは玉
鎖がシロキサン構造をもっためO,RIE耐性が高く、
またフェニル基が91+1鎖く多く存在するのでTgが
N−以上で69、粘稠でなく、平滑な膜が形成可能でレ
ジストとして使用可能である。親水性のシラノール基が
尋人されているため、アルカリ水浴液に可溶でろる。In the present invention, the pattern forming material adopts a polysiloxane structure to improve O, RIE resistance, and also incorporates a silicone polymer with a high Tg t'' by introducing many phenyl groups into the side chain. The siloxane polymer represented by the above formula 1% has a siloxane structure in the chain, so it has high resistance to O, RIE.
Further, since there are many 91+1 chains of phenyl groups, the Tg is 69 or more than N-, and a smooth film can be formed without being viscous, and can be used as a resist. Because the hydrophilic silanol group is contained, it is soluble in alkaline water baths.
このため、上記オルトナフトキノン系化合物(1) e
式1、■で示されるシロキサンポリマーに添加した組成
物は感光a樹脂組成物でめシ紫外線照射により照射部分
のオルトナフトキノン系化合物が相応するインデンカル
ボン酸となってアルカリ可溶となり、アルカリ現像で除
去される。−万事発明で使用するパターン形成材料は例
えば真空中若しくは不活性ガス中で紫外線照射すると上
記のアルカリ可溶性が減退することが見出された。また
、大気中で紫外線照射したのち、加熱処理を行っても、
アル方り可溶性が減退した。このような条件でパターン
状に露光し九のち、全面に紫外縁を露光しアルカリ現像
することによシ、ネガ形パターンを形成できる。真空中
若しくは不活性ガス中で露光したのち、加熱処理すると
アルカリ可溶性がよシ減退し、パターン形成効果がより
大きくなる。この工程によプ得られたネガ形パターンは
、現像時の膨潤がないため高い屏像性を示す。このパタ
ーン形成材料において1、オルトナフトキノン系化合物
の添加蓋は、通常5〜40重t%の範囲とされる。5N
量チ未満ではポリマー化合物のアルカリ現像液に対する
溶解を抑制することができず、また40重量%を超える
とパターン形成材料としてS1含有率が低下し、酸素プ
ラズマ耐性が低下して不都合を来す。Therefore, the above orthonaphthoquinone compound (1) e
The composition added to the siloxane polymer represented by formula 1 and (■) is a photosensitive a resin composition, and upon irradiation with ultraviolet rays, the orthonaphthoquinone compound in the irradiated area becomes the corresponding indenecarboxylic acid and becomes alkali-soluble, and it becomes alkali-soluble in alkaline development. removed. - It has been found that when the pattern forming material used in the invention is irradiated with ultraviolet rays in a vacuum or an inert gas, the alkali solubility described above decreases. In addition, even if heat treatment is performed after UV irradiation in the atmosphere,
Solubility in Al decreased. A negative pattern can be formed by exposing in a pattern under these conditions, then exposing the entire surface to ultraviolet light and developing with alkali. If heat treatment is performed after exposure in vacuum or in an inert gas, the alkali solubility will be further reduced and the pattern forming effect will be greater. The negative pattern obtained by this process exhibits high screenability because it does not swell during development. In this pattern forming material, the amount of the orthonaphthoquinone compound added is usually 5 to 40% by weight. 5N
If the amount is less than 40% by weight, the dissolution of the polymer compound in the alkaline developer cannot be suppressed, and if it exceeds 40% by weight, the S1 content as a pattern forming material decreases, resulting in a decrease in oxygen plasma resistance, resulting in disadvantages.
本発明で使用する一般式lで表されるシロキサンポリマ
ーの製造法としては、ヘキサフェニルシクロトリシロキ
サン、オクタフェニルシクロテトラシロキサンなど環状
フェニルシロキサン金水酸化カリウムなどのアルカリ金
属の水酸化物やブチルリチウムなどのアルカリ金属のア
ルキル化物で開ij1重合させ、得られたポリジフェニ
ルシロキサンを変性する方法が考えられる。The method for producing the siloxane polymer represented by the general formula 1 used in the present invention includes cyclic phenylsiloxanes such as hexaphenylcyclotrisiloxane and octaphenylcyclotetrasiloxane, alkali metal hydroxides such as gold potassium hydroxide, butyl lithium, etc. A conceivable method is to perform open polymerization with an alkylated alkali metal and modify the obtained polydiphenylsiloxane.
また、環状フェニルシロキサン単独ではなく、テト2メ
テルテトラフェニルシクロテト2シロキサンやオクタメ
チルシクロテトラシロキサンなどと共重合させてもよい
。Further, instead of using cyclic phenylsiloxane alone, it may be copolymerized with tetramethyltetraphenylcyclotetrasiloxane, octamethylcyclotetrasiloxane, or the like.
本発明で使用する一般式Iで表されるフェニルシルセス
キオキサンポリマーの製造法としてはC)−81E3(
Eはct又は0CR3)で表されるシラン化合物を加水
分解することによシ容易に得うレルフェニルシルセスキ
オキサンボリマーを変性する方法が考えられる。C)-81E3(
A conceivable method is to modify lerphenylsilsesquioxane polymer, which is easily obtained by hydrolyzing a silane compound (E is ct or 0CR3).
次に、一般式l及び■で表されるシロキサンポリマーの
製造例をガ示する◇
製造例1
かきまぜ磯、温度計、滴下漏斗をつけ九300−のフラ
スコに無水塩化アルミニウム1st1垣化アセチル50
−1−とりかくはんする。次に分子量a 20のボリフ
ェニルシルセスキオキサン(ガラスレジンGR950,
オーエンスーイリノイ社製)5tf塩化アセチル50−
に溶かした溶液を徐々に滴下する。温度を25℃に保ち
反応を進める。反応の進行と共に塩化水素が発生する。Next, we will show examples of the production of siloxane polymers represented by general formulas 1 and ◇ Production Example 1 In a 9300-meter flask equipped with a stirring point, a thermometer, and a dropping funnel, 1st 1 liter of anhydrous aluminum chloride and 50 liters of acetyl chloride were added.
-1- Stir. Next, polyphenylsilsesquioxane (glass resin GR950,
Owens-Illinois Co.) 5tf acetyl chloride 50-
Gradually add the solution dissolved in The reaction is allowed to proceed while maintaining the temperature at 25°C. Hydrogen chloride is generated as the reaction progresses.
3時間反応後冷却して内容物t−jlF!rIRを含む
氷水中に注ぐ。よくかきまぜて塩化アルミニウムを分解
し、氷水が酸性であることを確かめてから沈殿したポリ
マーtF別する。希塩酸−水でよく洗い、最後に真空乾
燥器で乾燥する。得られたポリマーの分子量は980で
めった。赤外線吸収スペクトル(IR)では16706
R−1にカルボニル基の吸収が、NMRでδ=2.4に
メチル基の吸収がみられ、アセチル化されたことが確認
できた。この時のアセチル化率はNMRから60%でめ
った。また、IRで3400011−”にOHの吸収が
、NMRでは6.5 ppm付近にシラノールのOHが
観測され、シラノール基が入っていることが確認できた
0
製造例2
かきまぜ機、温度計、滴下漏斗をつけた500−のフラ
スコに塩化第二スズ25gt、無水酢咳50wtt−と
シかくはんする0次にジフェニルシランジオール6fを
無水酢酸50−に浴かした@敢ヲ徐々IcM下する。以
下製造例1と同様な方法でアセチル化ボリシロキサンヲ
得た。After reacting for 3 hours, it was cooled and the contents were t-jIF! Pour into ice water containing rIR. Stir well to decompose the aluminum chloride, and after confirming that the ice water is acidic, separate the precipitated polymer tF. Wash thoroughly with dilute hydrochloric acid and water, and finally dry in a vacuum dryer. The obtained polymer had a molecular weight of 980. 16706 in the infrared absorption spectrum (IR)
Absorption of a carbonyl group was observed at R-1, and absorption of a methyl group was observed at δ=2.4 by NMR, confirming acetylation. The acetylation rate at this time was estimated to be 60% by NMR. In addition, OH absorption was observed at 3400011-'' by IR, and OH of silanol was observed at around 6.5 ppm by NMR, confirming the presence of silanol groups.0 Production Example 2 Stirrer, thermometer, dropping In a 500mm flask equipped with a funnel, stir 25gt of stannic chloride and 50wtt of anhydrous vinegar.Next, diphenylsilanediol 6f was soaked in 50mm of acetic anhydride and gradually drop IcM. An acetylated polysiloxane was obtained in the same manner as in Example 1.
得られたポリマーの分子量は1500であり、アセチル
化率は42%でおった。IR,NMRより、シラノール
基がめることが確認された。The molecular weight of the obtained polymer was 1500, and the acetylation rate was 42%. It was confirmed by IR and NMR that silanol groups were present.
製造例3
製造例1で得たアセチルポリフェニルシルセスキオキサ
ン6f′t−10%の次亜塩素酸ナトリウムの水浴g1
00−に加え、12時間還流する。得られた透明な液に
塩rIIt−加えることに↓シば性にすると沈殿が生じ
る。f別して黄白色固体を得た。赤外線吸収スペクトル
において、1670備″″1のカルボニル基の吸収が消
滅し1700 an−”にカルボキシル基の吸収がみら
れ、カルボキシル化されたことが認められた。収率70
%。IR%NMR↓シ、シラノール基があることが確認
された。Production Example 3 Acetylpolyphenylsilsesquioxane obtained in Production Example 1 6f't-10% sodium hypochlorite water bath g1
00- and reflux for 12 hours. When a salt rIIt- is added to the resulting clear liquid, a precipitate is formed. A yellowish white solid was obtained. In the infrared absorption spectrum, the absorption of the carbonyl group at 1670 an-'' disappeared and the absorption of the carboxyl group was observed at 1700 an-'', indicating carboxylation. Yield 70
%. IR%NMR↓, it was confirmed that there was a silanol group.
製造例4
製造?+12で得られたアセチル化ポリジフェニルシロ
キサン6tff10%の次亜塩素酸ナトリウムの水溶液
100+wjに加え、12時間還流する@以下、製造f
lJ 5と同様にしてカルボキシル化を行った。収率6
5チ
製造例3及び製造fli4で得られたカルボキシル化物
はアルカリ性水溶液、メタノール、エタノールに可溶、
他の有機溶媒に不溶であった。Manufacturing example 4 Manufacturing? Add 6tff of the acetylated polydiphenylsiloxane obtained in step 12 to 100+wj of a 10% aqueous solution of sodium hypochlorite and reflux for 12 hours.
Carboxylation was carried out similarly to lJ5. Yield 6
The carboxylated products obtained in Production Example 3 and Production fli4 are soluble in alkaline aqueous solution, methanol, and ethanol.
It was insoluble in other organic solvents.
IR%NMR工り、シラノール基であることが確認され
た。IR%NMR analysis confirmed that it was a silanol group.
製造例5
製造例1で得たアセチルポリフェニルシルセスキオキサ
ン5tfテトラヒドロフラン1001stVC溶かし、
これに5 f (D LiAム4’を加え、3時間速流
を行った。反応終了後5%の塩酸を含む氷水の中に注ぎ
こみ黄白色固体を得た。収*55囁
生成物の赤外線吸収スペクトルでは原料でみられた1
670 all−”のカルボニルの吸収が消え、310
0〜3400cIn−’付近にOH基に起因する吸収が
見られ、還元されたことが確認できたOIR%NMRよ
り、シラノール基があることが確認された。Production Example 5 Dissolve acetylpolyphenylsilsesquioxane 5tf obtained in Production Example 1 in tetrahydrofuran 1001stVC,
5f (D LiAm 4') was added to this, and a rapid flow was carried out for 3 hours. After the reaction was completed, it was poured into ice water containing 5% hydrochloric acid to obtain a yellowish white solid. 1 observed in the raw material in the infrared absorption spectrum
670 all-” carbonyl absorption disappears, 310
Absorption due to OH groups was observed in the vicinity of 0 to 3400 cIn-', and reduction was confirmed by OIR% NMR, which confirmed the presence of silanol groups.
製造例6
製造例2で得たアセチル化ポリジフェニルシロキサン5
tをテトラヒドロフラン100−に溶かし、これに3t
のLiAα4を加え還流全行った。反応終了後、5%の
塩戚金含む氷水の中に注ぎこみ黄白色固体を得た0収軍
66%製造ガ5及び製造例6で得られたポリマーはアル
カリ性水溶液、メタノール等アルコールに可溶であった
。IR,NMR工り、シラノール基かめる仁とが確認さ
れた。Production Example 6 Acetylated polydiphenylsiloxane 5 obtained in Production Example 2
Dissolve t in 100% of tetrahydrofuran, add 3t to this
of LiAα4 was added and the mixture was completely refluxed. After the reaction was completed, the polymers obtained in Production Example 5 and Production Example 6 were poured into ice water containing 5% salt to obtain a yellowish white solid. Met. IR, NMR processing, and silanol group formation were confirmed.
製造例7
製造例1においてポリフェニルシルセスキオキサンの代
りに環状シロキサンの開環ム合で得うレタポリジフェニ
ルシロキサン(分子1i3QOo)を用いて、同じ方法
でアセチル化ポリジフェニルシロキサンを得た。IR,
NMRよシ、シラノ−ル基があることが確認された。Production Example 7 An acetylated polydiphenylsiloxane was obtained in the same manner as in Production Example 1 except that in place of the polyphenylsilsesquioxane, letapolydiphenylsiloxane (molecule 1i3QOo) obtained by ring-opening polymerization of a cyclic siloxane was used. IR,
The presence of silanol groups was confirmed by NMR.
製造例8
製造例1において、塩化アセチルの代シに塩化フロピオ
ニルを用いて同じ方法に工9グロビオニル化ポリフェニ
ルシルセスキオキサンヲ得た。IR%NMR工夛、シラ
ノール基があることが確認された。Production Example 8 A globionylated polyphenylsilsesquioxane was obtained in the same manner as in Production Example 1, using flopionyl chloride in place of acetyl chloride. IR% NMR technology confirmed the presence of silanol groups.
製造例9
製造例7において塩化アセチルの代りに塩化グロビオニ
ルを用いて同じ方法によりプロピオモル化ポリジフェニ
ルシロキサンヲ得た。IR。Production Example 9 A propiomolated polydiphenylsiloxane was obtained in the same manner as in Production Example 7 except that globionyl chloride was used in place of acetyl chloride. IR.
NMRよシ、シラノール基があることが確認された。NMR confirmed the presence of silanol groups.
以下、本発明を実施例によシ更に具体的に説明するが、
本発明はこれら実施例に限定されないO
実施例1
製造例1〜9で得られたレジスト材料にで表されるナフ
トキノン化合物を20重筺%疹加したパターン形成材料
を約[14μm厚さでシリコンウェハに塗布し、80℃
で20分間グリベークした。プリベータ後、超高圧水銀
灯の紫外線を大気中、真全中、又はアルゴンガス中で照
射した。照射後、110℃で30分間恒温槽で加熱した
。加熱後Xeランプで500 mJ/cv?の照射蓋で
全面照射した。照射したサンプルを!イクロポジット2
401 (シブレイ社製)と水の比が171の現像液で
それぞれ現像し、照射部の残膜が初期膜厚の50%とな
るところの照射量を感度とした。解像性はラインースペ
ースパターンでPs僚しうる最小パターン寸法を測定し
た。Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these examples. Coat on wafer and heat to 80℃
It was grilled for 20 minutes. After pre-veta, the sample was irradiated with ultraviolet rays from an ultra-high pressure mercury lamp in the atmosphere, in the middle of the atmosphere, or in argon gas. After irradiation, it was heated in a constant temperature bath at 110°C for 30 minutes. 500 mJ/cv with Xe lamp after heating? The entire surface was irradiated with the irradiation lid. The irradiated sample! Microposit 2
401 (manufactured by Sibley) and a developer having a water ratio of 171, respectively, and the irradiation amount at which the remaining film in the irradiated area became 50% of the initial film thickness was defined as the sensitivity. The resolution was determined by measuring the minimum pattern size that could be resolved using a line-space pattern.
紫外線照射雰囲気にはあまり依存せず、製造ガ1〜9の
もののいずれの場合も、感度は120〜150 mJ/
car”、解像性はα6〜0.8Amで6つ次。真空中
及びアルゴンガス中で照射して、加熱処理金しない場合
は感度は約30%低下しfC。It does not depend much on the ultraviolet irradiation atmosphere, and the sensitivity is 120 to 150 mJ/
car'', resolution is α6 to 0.8 Am, 6th order.If irradiated in vacuum or argon gas and without heat treatment, the sensitivity will decrease by about 30% fC.
実施例2
1造例tによるフェニルシルセスキオキサンポリマーを
用い、前記一般式lで示されるオルトナフトキノン糸化
合物において、基2が、下記構造:
(1) −〇H,ra)−octJ (31−OF。Example 2 Using the phenylsilsesquioxane polymer according to Preparation Example t, in the orthonaphthoquinone thread compound represented by the general formula 1, group 2 has the following structure: (1) -〇H,ra)-octJ (31 -OF.
C冨H。C Tomi H.
〔なお、番号15の化合物は、弐鳳で表される化合物と
して1歓平均分子量が970で、式(ト)内におけるエ
ステル部分(重合度Xの部分)対遊離のフェノール部分
(重合度yの部分)との比はFJ6:4でbる〕のもの
を2o重tう添加し、実施例1と同様の方法で真空中に
おける紫外線照射に対する感度(残膜5o%における照
射t)を測定した。その結果を表1に示す。[Compound No. 15 is a compound represented by Niho, and has an average molecular weight of 970, and has a ratio of ester moiety (polymerization degree X) to free phenol moiety (polymerization degree y) in formula (g). The ratio of FJ6:4) was added at a weight of 20%, and the sensitivity to ultraviolet irradiation in vacuum (irradiation t at 50% remaining film) was measured in the same manner as in Example 1. . The results are shown in Table 1.
それぞれ、α7μmラインースペースtm像する。Each is an α7 μm line-space tm image.
実施例3
シリコンウェハにAZ−1550レジスト(シブレイ社
製)を2μmの厚さに塗布し、200℃で3o分間加熱
し不溶化させた。このAZレジストの上に実施911で
用いたレジスト材料を実施例1と同様の操作で約[12
μmの厚さに塗布し、80℃で20分間プリベークし友
。Example 3 AZ-1550 resist (manufactured by Sibley) was coated on a silicon wafer to a thickness of 2 μm and heated at 200° C. for 30 minutes to insolubilize it. On top of this AZ resist, the resist material used in Example 911 was applied to about [12
Coat to a thickness of μm and pre-bake at 80°C for 20 minutes.
プリベーク後、真を中で超高圧水銀灯からの紫外線照射
、キセノン光照射を行い、実施例1と同一組成の現像液
で現像を行ったところ最小線幅α7μmのパターンが上
層のレジスト材料に形成された。その後平行平板型スパ
ッタエツチング装置で酸素ガスをエッチャントガスとし
てレジストパターンtAZレジスト金エツチングした。After prebaking, UV irradiation from an ultra-high pressure mercury lamp and xenon light irradiation were performed in a vacuum chamber, and development was performed with a developer having the same composition as in Example 1. A pattern with a minimum line width α of 7 μm was formed on the upper resist material. Ta. Thereafter, the resist pattern tAZ resist gold was etched using a parallel plate type sputter etching apparatus using oxygen gas as an etchant gas.
RFバフ −(L 2 W/cam” % 02ガス圧
20ミリトルの条件で15分間エツチングすることにょ
シレジストパターンに覆われてぃない部分のAZレジス
トは完全に消失した。実施例1で用いたいfれのレジス
ト材料でもα7 Am ライy −スペースのパターン
が約2μmの厚さで形成できた。By etching for 15 minutes at a gas pressure of 20 mtorr, the AZ resist in the areas not covered by the resist pattern completely disappeared. Even with a resist material of f deviation, an α7 Am lie y-space pattern with a thickness of about 2 μm could be formed.
以上説明したように、本発明方法のパターン形成材料は
アルカリ可溶性シロキサンポリマーを用い、オルトナフ
トキノン糸化合物金添加したものであるため、高エネル
ギー線例えば紫外#’e、真空中、不活性ガス中又は大
気中等で照射後、必要に応じて加熱し、更に全面に光照
射しアルカリ現像することによシ高感度、高解像性のネ
ガ形パターンを形成することができる。As explained above, the pattern forming material used in the method of the present invention uses an alkali-soluble siloxane polymer and contains orthonaphthoquinone thread compound gold. A negative pattern with high sensitivity and high resolution can be formed by irradiating in the atmosphere, heating if necessary, irradiating the entire surface with light, and developing with alkali.
またシリコンを含有するためtR累プラズマ耐性が高く
、シたがって2層レジストの上層レジストとして使用で
きる。2層レジストは下層にCF4などを用いるドライ
エツチングに対する耐性が高く、シかも厚い有機ポリマ
ー層を有するため、著しく高い形状比t−有するパター
ンを段差基板上に形成できる。このため本発明によれば
従来のネガ形ホトレジスト材料では達成できなかった、
鍋感度で高形状比、しかもCF、など金柑いるドライエ
ツチング耐性の箭いパターンを形成でさるという顕著な
効果がある。Furthermore, since it contains silicon, it has high tR plasma resistance, and therefore can be used as an upper layer resist of a two-layer resist. Since the two-layer resist has high resistance to dry etching using CF4 or the like as the lower layer and has a thick organic polymer layer, a pattern having an extremely high shape ratio t- can be formed on a stepped substrate. Therefore, according to the present invention, it is possible to achieve
It has the remarkable effect of being sensitive to pots, having a high shape ratio, and forming a bamboo pattern that is resistant to dry etching, such as CF.
第1図は本発明におけるパターン形成の工程の1例を示
した工程図である。
1:鍋エネルギー腺、2:高エネルギー巌照射により生
じた潜像部分、5=パターン形成材料、4:有機ポリマ
ー鳩あるいは基板、5:紫外線、6:ネガ形パターン
特許出願人 日本奄偏電話株式会社FIG. 1 is a process diagram showing one example of a pattern forming process in the present invention. 1: Pot energy gland, 2: Latent image area generated by high-energy beam irradiation, 5 = Pattern forming material, 4: Organic polymer dove or substrate, 5: Ultraviolet rays, 6: Negative pattern patent applicant Nippon Amboshi Telephone Co., Ltd. company
Claims (1)
ります▼、▲数式、化学式、表等があります▼基(但し
Rは炭化水素基又は置換炭化水素基を示す)及びカルボ
キシル基よりなる群から選択した1種の基を示し、R′
、R″、R″′及びR″″は同一又は異なり、水酸基、
アルキル基及びフエニル基よりなる群から選択した1種
の基を示し、l、m及びnは、0又は正の整数を示し、
lとmが同時に0になることはない、pは正の整数を示
す〕で表されることを特徴とするシリコーン樹脂。 2、請求項1記載のシリコーン樹脂と、下記一般式III
: ▲数式、化学式、表等があります▼・・・〔III〕 (式中Zは−OH、−OCl、−OF、▲数式、化学式
、表等があります▼、▲数式、化学式、表等があります
▼ ▲数式、化学式、表等があります▼、▲数式、化学式、
表等があります▼、 ▲数式、化学式、表等があります▼、▲数式、化学式、
表等があります▼、 ▲数式、化学式、表等があります▼、 ▲数式、化学式、表等があります▼、 ▲数式、化学式、表等があります▼、 ▲数式、化学式、表等があります▼、 ▲数式、化学式、表等があります▼、 ▲数式、化学式、表等があります▼及び▲数式、化学式
、表等があります▼ よりなる群から選択した1種の基を示し、x及びyは同
一又は異なり正数を示す)で表されるオルトナフトキノ
ン系化合物とを包含することを特徴とするパターン形成
材料。 3、請求項2記載のパターン形成材料を、加工基板上又
は厚い有機ポリマー層上に塗布する工程、これに高エネ
ルギー線をパターン状に照射する工程、高エネルギー線
照射後紫外線を全面に露光する工程、及びアルカリ水溶
液で現像して、高エネルギー線照射部にネガ形パターン
を形成させる工程の各工程を包含することを特徴とする
パターン形成方法。 4、該高エネルギー線が紫外線であり、真空中又は不活
性ガス雰囲気下にてパターン状に照射する請求項3記載
のパターン形成方法。 5、該高エネルギー線照射後、加熱する工程を含む請求
項4記載のパターン形成方法。 6、該高エネルギー線が紫外線であり、大気中でパター
ン状に照射したのち、加熱する工程を含む請求項3記載
のパターン形成方法。[Claims] 1. The following general formula I or II: ▲There are mathematical formulas, chemical formulas, tables, etc.▼...[I] ▲There are mathematical formulas, chemical formulas, tables, etc.▼...[II] [In the formula] X is the same or different, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼From the group consisting of a group (wherein R represents a hydrocarbon group or a substituted hydrocarbon group) and a carboxyl group Indicates one selected group, R'
, R″, R″′ and R″″ are the same or different, hydroxyl group,
represents one type of group selected from the group consisting of an alkyl group and a phenyl group, l, m and n represent 0 or a positive integer,
A silicone resin characterized in that l and m are never 0 at the same time, and p is a positive integer. 2. The silicone resin according to claim 1 and the following general formula III
: ▲There are mathematical formulas, chemical formulas, tables, etc.▼... [III] (In the formula, Z is -OH, -OCl, -OF, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc. There are ▼ ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ Mathematical formulas, chemical formulas,
There are tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ Mathematical formulas, chemical formulas,
There are tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ and ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ Indicates one type of group selected from the group consisting of, x and y are the same or a different positive number). 3. A step of applying the pattern forming material according to claim 2 onto a processed substrate or a thick organic polymer layer, a step of irradiating it with high energy rays in a pattern, and after irradiating the high energy rays, exposing the entire surface to ultraviolet rays. A pattern forming method comprising the following steps: and developing with an alkaline aqueous solution to form a negative pattern in a high-energy ray irradiated area. 4. The pattern forming method according to claim 3, wherein the high-energy rays are ultraviolet rays, and the irradiation is carried out in a pattern in a vacuum or in an inert gas atmosphere. 5. The pattern forming method according to claim 4, further comprising the step of heating after irradiating the high energy beam. 6. The pattern forming method according to claim 3, wherein the high-energy rays are ultraviolet rays, and the method includes a step of irradiating the high-energy rays in a pattern in the atmosphere and then heating them.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63025639A JPH01201337A (en) | 1988-02-08 | 1988-02-08 | Pattern forming material and pattern formation |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63025639A JPH01201337A (en) | 1988-02-08 | 1988-02-08 | Pattern forming material and pattern formation |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH01201337A true JPH01201337A (en) | 1989-08-14 |
Family
ID=12171416
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP63025639A Pending JPH01201337A (en) | 1988-02-08 | 1988-02-08 | Pattern forming material and pattern formation |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH01201337A (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0229652A (en) * | 1988-07-20 | 1990-01-31 | Fuji Photo Film Co Ltd | Photoresist composition |
| JPH0436755A (en) * | 1990-06-01 | 1992-02-06 | Fuji Photo Film Co Ltd | Resist composition |
| JPH0436322A (en) * | 1990-06-01 | 1992-02-06 | Fuji Photo Film Co Ltd | Preparation of siloxane polymer |
| JPH05134402A (en) * | 1991-02-26 | 1993-05-28 | Hitachi Ltd | Resist mask for dry etching and it's resist mask resin composition and fine working method by dry etching using the resist mask |
| JP2010043030A (en) * | 2008-08-13 | 2010-02-25 | Az Electronic Materials Kk | Alkali-soluble silsesquioxane and photosensitive composition |
| JP2010043200A (en) * | 2008-08-13 | 2010-02-25 | Az Electronic Materials Kk | Alkali-soluble silsesquioxane and photosensitive composition |
| JP2010185991A (en) * | 2009-02-12 | 2010-08-26 | Jsr Corp | Radiation-sensitive composition, microlens, and method for forming the same |
| JP2016029498A (en) * | 2010-06-01 | 2016-03-03 | インプリア・コーポレイションInpria Corporation | Patterned inorganic layer, radiation-based patterning composition, and corresponding method |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS62220949A (en) * | 1986-03-24 | 1987-09-29 | Nippon Telegr & Teleph Corp <Ntt> | Photoresist material and photosensitive resin composition |
-
1988
- 1988-02-08 JP JP63025639A patent/JPH01201337A/en active Pending
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS62220949A (en) * | 1986-03-24 | 1987-09-29 | Nippon Telegr & Teleph Corp <Ntt> | Photoresist material and photosensitive resin composition |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0229652A (en) * | 1988-07-20 | 1990-01-31 | Fuji Photo Film Co Ltd | Photoresist composition |
| JPH0436755A (en) * | 1990-06-01 | 1992-02-06 | Fuji Photo Film Co Ltd | Resist composition |
| JPH0436322A (en) * | 1990-06-01 | 1992-02-06 | Fuji Photo Film Co Ltd | Preparation of siloxane polymer |
| JPH05134402A (en) * | 1991-02-26 | 1993-05-28 | Hitachi Ltd | Resist mask for dry etching and it's resist mask resin composition and fine working method by dry etching using the resist mask |
| JP2010043030A (en) * | 2008-08-13 | 2010-02-25 | Az Electronic Materials Kk | Alkali-soluble silsesquioxane and photosensitive composition |
| JP2010043200A (en) * | 2008-08-13 | 2010-02-25 | Az Electronic Materials Kk | Alkali-soluble silsesquioxane and photosensitive composition |
| JP2010185991A (en) * | 2009-02-12 | 2010-08-26 | Jsr Corp | Radiation-sensitive composition, microlens, and method for forming the same |
| JP2016029498A (en) * | 2010-06-01 | 2016-03-03 | インプリア・コーポレイションInpria Corporation | Patterned inorganic layer, radiation-based patterning composition, and corresponding method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10739680B2 (en) | Cross-linkable fluorinated photopolymer | |
| JP5423802B2 (en) | Positive photosensitive resin composition, cured film and optical device using the same | |
| JPH065385B2 (en) | Resist for dry development | |
| JP2619358B2 (en) | Photosensitive resin composition | |
| JP2646289B2 (en) | Resist composition | |
| JPH01201337A (en) | Pattern forming material and pattern formation | |
| JP5181968B2 (en) | Positive photosensitive composition, method for producing cured film, cured film, and element having cured film | |
| JP2008170937A (en) | Photosensitive siloxane composition, manufacturing method thereof, hardened film manufactured therefrom, and element having hardened film | |
| JPS62220949A (en) | Photoresist material and photosensitive resin composition | |
| JPH0769609B2 (en) | Photosensitive resin composition | |
| JPS63269150A (en) | Pattern forming method | |
| JPH01222254A (en) | Photoresist composition | |
| JPH0232354A (en) | Photosensitive resin composition | |
| JP2573996B2 (en) | Pattern forming material | |
| JPS63231331A (en) | Pattern formation method | |
| JPS63239440A (en) | Energy ray sensitive resin composition | |
| JPH0682215B2 (en) | Radiation resist and pattern forming method using the same | |
| JPH023054A (en) | Pattern forming material | |
| JPS63157145A (en) | Photosensitive resin composition | |
| JP2024006533A (en) | Positive photosensitive composition, cured film and method for producing the same, and member including the cured film and electronic component including the member | |
| JPH063548B2 (en) | Photosensitive resin composition | |
| JPS62287242A (en) | Resist composition | |
| JP2003202672A (en) | Method for manufacturing semiconductor device | |
| JPH01106042A (en) | Photosensitive resin composition | |
| WO2023243593A1 (en) | Resin composition, method for manufacturing cured film, substrate with multilayer film, method for manufacturing substrate with pattern, method for manufacturing patterned cured film, and method for manufacturing resin composition |