JPH01224692A - Foreign object detection method and device - Google Patents
Foreign object detection method and deviceInfo
- Publication number
- JPH01224692A JPH01224692A JP63049503A JP4950388A JPH01224692A JP H01224692 A JPH01224692 A JP H01224692A JP 63049503 A JP63049503 A JP 63049503A JP 4950388 A JP4950388 A JP 4950388A JP H01224692 A JPH01224692 A JP H01224692A
- Authority
- JP
- Japan
- Prior art keywords
- solid
- state imaging
- photoelectric conversion
- sample
- foreign object
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Geophysics And Detection Of Objects (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、半導体LSIクエーノ1及びTPT製造中間
工程での試料面上の微小異物を高感度で検出するのに好
適な異物検出方法及びその装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention provides a foreign matter detection method suitable for highly sensitive detection of minute foreign matter on a sample surface in an intermediate process of manufacturing semiconductor LSI Quano 1 and TPT. Regarding equipment.
半導体デバイスの高集積化、パターンの微細化が増々進
み、回路パターンの線幅は11xn程度又はそれ以下に
なっている。このような半導体デバイスを高歩留シで製
造するためには異しの管理が重要である。2. Description of the Related Art As semiconductor devices become more highly integrated and patterns become increasingly finer, the line width of circuit patterns has become approximately 11×n or less. In order to manufacture such semiconductor devices with high yield, it is important to manage the differences.
従来のウェーハ上の異物検査装置では、(1)レーザ光
の一次元高速走査と試料の並進低速移動の組み合わせや
、1ii)特開昭55−135551に示す様な試料の
高速回転と並進低速移動との組み合わせによるら線走査
を用いて、試料全面の走査・検出を行なっていた。Conventional foreign particle inspection equipment on wafers uses (1) a combination of one-dimensional high-speed scanning of a laser beam and low-speed translational movement of the sample, or (1ii) high-speed rotation and low-speed translational movement of the sample as shown in JP-A-55-135551. In combination with this, line scanning was used to scan and detect the entire surface of the sample.
又、特開昭57−80546 号では自己走f型−次
元光電変換索子アレイの電気的走査と試料低速移動全組
み合わせて上記(1)と同等の走査を実現している。Furthermore, in Japanese Patent Application Laid-open No. 57-80546, a scanning equivalent to the above (1) is realized by combining the electric scanning of a self-scanning f-dimensional photoelectric conversion probe array and the low-speed movement of the sample.
更に、オートマチック・マイクロサーキット・アンド・
ウェハ・インスベクシヲン・エレクトロニクス0テスト
、第4巻5号、(AutomaticMicrocir
cuit and Wafer In5pection
ElectronicsTeat、 VoL 4.
NCL 5 ) 1981年5月、pB60−74では
、試料ウェーへの半径位置に自己走査屋−次元光電変換
素子アレイを配置し、これと試料の回転移動を組み合わ
せて上記(11〕と同等の走査を実現している。In addition, automatic microcircuits and
Wafer Inspection Electronics Test, Volume 4, Issue 5, (Automatic Microcirc
cuit and wafer inspection
ElectronicsTeat, VoL 4.
NCL 5) In May 1981, in pB60-74, a self-scanner-dimensional photoelectric conversion element array was placed at a radial position to the sample wafer, and this was combined with rotational movement of the sample to perform scanning equivalent to the above (11). has been realized.
しかし、上記の方法では、個々の固体撮像光電変換素子
の画素の隣接部に存在する不感帯が異物全定食した場合
の異物の”見逃しnを避けることができない。又は異物
からの慎重信号が低下してしまう。However, with the above method, it is not possible to avoid "missing" the foreign object when the dead zone existing in the adjacent area of each solid-state imaging photoelectric conversion element is completely occupied by the foreign object, or the cautious signal from the foreign object is degraded. It ends up.
しかし、固体撮像光電変m索子の不感帯幅に比べて検出
すべき異物の大きさが十分大きい場合も固体撮像光電変
m索子画素幅に比べて、不感帯幅が無視できる程度に小
さい場合には、上記6見逃し”は大きな問題とならない
。However, when the size of the foreign object to be detected is sufficiently large compared to the dead zone width of the solid-state imaging photoelectric variable element, and when the dead zone width is negligibly small compared to the pixel width of the solid-state imaging photoelectric variable element, However, the above 6 "overlooked" is not a big problem.
上NrEの方法では、このような続点から不感帯による
1見逃し”は無視しておp論じていない。In the above NrE method, the possibility of "missing one point due to a dead zone from such a continuation point" is ignored and not discussed.
−LSIがI M、 4 M bitと高集積化される
に従い製造工程においては、1iimの大きさの異物あ
るいはそれ以下の異物の存在が製品歩留シに太き(影響
するので1iim以下異物の検出感度が必要となる。- As LSIs become more highly integrated with IM and 4 Mbits, the presence of foreign matter of 1iim size or smaller has a large effect on product yield in the manufacturing process. Detection sensitivity is required.
しかし、固体d&像光電変換素子画素の隣接部の不感帯
における異物の1見逃し”又は、検出信号の低下によシ
バターンから弁別することは困難となる。However, it is difficult to distinguish this from a shiver turn due to a foreign object being missed in the dead zone adjacent to the solid-state d&image photoelectric conversion element pixel or due to a decrease in the detection signal.
本発明の目的は、微小異物をパターンと弁別し異物を高
感度に検出できるようにした異物検査方法及びその装置
を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a foreign matter inspection method and apparatus that can distinguish minute foreign matter from patterns and detect foreign matter with high sensitivity.
〔課題をll1I決するための手段〕
個々の画素の受光部の大きさが、20 X 20μmm
’(試料面上に換算)程度以下t−複数有する固体撮像
光電変換素子を使用し、固体撮像光電変m索子画素の隣
接部に存在する不感帯をカバーするように。[Means for solving the problem] The size of the light receiving area of each pixel is 20 x 20 μmm.
Use a solid-state imaging photoelectric conversion element having a plurality of t- or less (calculated on the sample surface) to cover the dead zone existing in the adjacent part of the solid-state imaging photoelectric conversion element pixel.
41数の固体撮像光電変換素子を重複“して設置し、各
々の固体撮像元電変換素子慣出出力00凡処理によシ異
物を検出する。Forty-one solid-state imaging photoelectric conversion elements are installed overlappingly, and foreign objects are detected through processing of the output output of each solid-state imaging element.
工作用〕
1)固体撮像光電変換素子の検出領域(画業)全小さく
することでパターンの検出領域全分割できるため、1画
素内へのパターンからの散乱光検出信号が低下できる。For work] 1) By reducing the entire detection area (imaging work) of the solid-state imaging photoelectric conversion element, the entire pattern detection area can be divided, so the scattered light detection signal from the pattern within one pixel can be reduced.
2)固体撮像光電変換菓子画素の隣接部の不感情をカバ
ーするように複数の固体撮像光X変侠累子をjiaして
設置することによシ異物の″′見逃し”及び検出信号低
下を防止でき高感度に異物検査が可能となる。2) By installing a plurality of solid-state imaging light beams so as to cover the area adjacent to the solid-state imaging photoelectric conversion confectionery pixel, it is possible to prevent foreign objects from being missed and the detection signal to deteriorate. This makes it possible to detect foreign substances with high sensitivity.
以下図面を診照して本発明の一実施例について説明する
。An embodiment of the present invention will be described below with reference to the drawings.
第1図は本発明の一実施例に適用するTFTfi造にお
ける主要工程を示したものである。FIG. 1 shows the main steps in TFT fabrication applied to one embodiment of the present invention.
これはガラス基板1の上に導体(クロム 〔ゲート〕2
や絶縁体(Si−N)5やアモルファスシリコン(a−
8i)4により回路パターンt−順次形成してい(もの
である。This is a conductor (chrome [gate] 2
, insulator (Si-N) 5 and amorphous silicon (a-
8i) The circuit pattern t-sequentially is formed by 4.
試料が薄膜トランジスタ基板5の場合には、X;X方向
の回路パターンの組み合わせによる構成であシバターン
からの散乱光は空間フィルタ6によシ逍光できる。空間
フィルタは、遮光部7.透過部8より形成される。When the sample is a thin film transistor substrate 5, the configuration is a combination of circuit patterns in the X; The spatial filter includes a light shielding section 7. It is formed by the transparent part 8.
本実施例のパターンと異物からの散乱光分布を第2図に
示す。FIG. 2 shows the pattern of this example and the distribution of scattered light from foreign objects.
同図(す〜(C1はパターン直線部9aにレーザ光を照
射した時の対物レンズ11のフーリエ変換面Fの回折光
の分布を示したもので、フーリエ変換面Fの中央に狭い
回折光が生じる。この回折光の幅Wは試料上へのレーザ
光スポットのX方向の幅により決まる。The same figure (C1 shows the distribution of diffracted light on the Fourier transform surface F of the objective lens 11 when the pattern linear part 9a is irradiated with laser light. There is a narrow diffracted light in the center of the Fourier transform surface F. The width W of this diffracted light is determined by the width of the laser beam spot on the sample in the X direction.
同図(d)〜(f)はパターンコーナ9bにレーザ光を
照射した時の7一リエ変換面Fの回折光の状態でノくタ
ーン直線部94よシも回折光の幅W、が広くなる。Figures (d) to (f) show the state of the diffracted light on the 7-layer conversion surface F when the pattern corner 9b is irradiated with a laser beam, and the width W of the diffracted light is wider than the turn straight portion 94. Become.
これは、パターンコーナ9bvcよシレーザ光の回折光
が指向性?失うためで必る。Does this mean that the diffracted light of the laser beam at pattern corner 9bvc is directional? I need it because I want to lose it.
同図(1)〜(L)はパターン9Cにレーザを照射した
場合であるが、対物レンズ11に入らないので、この場
合、回折光は検出されない。Figures (1) to (L) show cases in which the pattern 9C is irradiated with a laser, but the diffracted light is not detected in this case because it does not enter the objective lens 11.
一同図(ハ〜(−’)は異物10にレーザ光を照射した
場合で、フーリエ変換面F全面に渉夛回折元が広がる。The figures (C to (-')) show the case where the foreign object 10 is irradiated with a laser beam, and the diffraction source spreads over the entire Fourier transform surface F.
これは、異物10からの散乱光は指向性がないためであ
る。This is because the scattered light from the foreign object 10 has no directionality.
以上よシ、遮光部7のwAWを有する空間フィルタ6に
よシバターンコーナ9bからの散乱光は完全に遮光され
る。又、パターン9Cは検出系に入らないので、異物1
0の検出に影響のあるパターンコーナ9bのみを考慮す
ればよい。As described above, the scattered light from the shield turn corner 9b is completely blocked by the spatial filter 6 having the wAW of the light blocking portion 7. Also, since pattern 9C does not enter the detection system, foreign matter 1
It is sufficient to consider only the pattern corner 9b that affects the detection of zero.
薄膜トランジスタ製造工程によシバターン9は、種類(
#科)と形状が異なるために散乱光分布が異なる。その
ために、各パターン工程及びパターン形状に最適な遮光
用の空間フィルタ6aa 6ba 6Cが必要となる。According to the thin film transistor manufacturing process, the Shiba turn 9 is of type (
The scattered light distribution is different because the shape is different from #family). Therefore, light-shielding spatial filters 6aa, 6ba, and 6C that are optimal for each pattern process and pattern shape are required.
次に、パターン形状による散乱光分布と遮光用の空間フ
ィルタ6の遮光部7の形状の相違を第5図に示す。Next, FIG. 5 shows the difference in the scattered light distribution depending on the pattern shape and the shape of the light shielding part 7 of the light shielding spatial filter 6.
同図(43,(b)%(d)は(d)に示すようにパタ
ーンコーナ9bの角部の丸み几が小さい時の回折光分布
(tb)に示す。)で、7一リエ変換面Fの回折光の幅
W、は狭いため遮光部7は(8)に示すようにW、で完
全に遮光できる。The same figure (43, (b)% (d) shows the diffracted light distribution (tb) when the roundness of the corner of the pattern corner 9b is small as shown in (d)). Since the width W of the diffracted light of F is narrow, the light shielding portion 7 can completely shield the light with W, as shown in (8).
しかし、tea、 (f)〜(h) i (L) 、
(1)〜(力のようにパターンコーナ9bの几が(d)
に示す場合に比べて大きいと、7一リエ変換面Fの回折
光((fJ、−に示す。〕は広がシ、これに応じて(e
)、 (、jJに示すように遮光l1S7の%−Wst
−広くしないと遮光できない。However, tea, (f) ~ (h) i (L),
(1) ~ (The pattern corner 9b is like a force (d)
If it is larger than the case shown in , the diffracted light ((fJ, shown in −)) of the 7-Lier transformation plane F will spread out, and accordingly (e
), (%-Wst of shading l1S7 as shown in jJ
-Light cannot be blocked unless it is wide.
そこで、 (h)、 (−’1に示すようなパターン形
状では空間フィルタ6の遮光部7のIlgWを広くする
必要がある。Therefore, in the pattern shape shown in (h), (-'1), it is necessary to widen IlgW of the light shielding part 7 of the spatial filter 6.
次に第4〜7図で固体撮像光電変換素子による検出信号
について説明する。Next, detection signals by the solid-state imaging photoelectric conversion element will be explained with reference to FIGS. 4 to 7.
第4図(aJは、固体撮像光電変換素子12Aを異物1
0を有する試料上を画素寸法HずつX方向に定食して検
出する状態を示し、同図(b)は、各Q、 R,。FIG. 4 (aJ is a solid-state imaging photoelectric conversion element 12A with a foreign object 1)
0 is detected by setting each pixel size H in the X direction on a sample, and FIG.
Sの位置において固体撮像光電変換素子12Aの各々の
画素(L、 j、A、t、m)から得られる検出信号を
示し、同図(c)はこの検出信号をVTRの閾値で2値
化された2値化信号を示す図である。The detection signal obtained from each pixel (L, j, A, t, m) of the solid-state imaging photoelectric conversion element 12A at the position S is shown, and (c) of the same figure shows the detection signal obtained by binarizing this detection signal using the threshold value of the VTR. FIG.
第5図(−)は、固体撮像光電変換素子12Bを異物1
]を有する試料上で画素寸法Hの172だけX方向にシ
フトさせた位置からX方向に画素寸法HずつQ、R,S
の位置に走査して検出する状6t−示し、同図[bJは
、各Q’、 R,’、 8’の位置において固体撮像光
電変換素子12Bの各々の画素(Lv Jl# ’B
e 11mm、)から得られる検出信号を示し、同図(
CJは、この検出信号ftvTHの閾値で2値化された
2値化信号を示す図である。FIG. 5 (-) shows that the solid-state imaging photoelectric conversion element 12B is exposed to a foreign object 1.
] Q, R, S by pixel dimensions H in the X direction from a position shifted in the X direction by 172 of the pixel dimension H
6t- is shown, and in the figure [bJ is each pixel of the solid-state imaging photoelectric conversion element 12B (Lv Jl#'B
The detection signal obtained from e 11 mm, ) is shown, and the same figure (
CJ is a diagram showing a binarized signal binarized using the threshold value of this detection signal ftvTH.
第6図(a)は、固体撮像光電変換素子12Ct−異物
を有する試料上で画素寸法Hの172だけ一1方向にシ
フトさせた位置から1方向に画素寸法HずつQ゛″。FIG. 6(a) shows the solid-state imaging photoelectric conversion element 12Ct--from a position shifted in one direction by 172 of the pixel dimension H on the sample having foreign matter, by the pixel dimension H in one direction.
R”e 3t″の位置に走査して検出する状態を示し、
同図(bJは、各Q°″ B、l#、 881の位置に
おいて固体撮像光電変換素子12Cの各々の画X(↓2
* JHm Age〕、。Indicates the state of scanning and detecting the position of R"e 3t",
In the same figure (bJ is each image X (↓2
*JHm Age],.
−)から得られる検出信号を示し、同図(CJはこの検
出信号をv’ritの閾値で2値化された2値化信号を
示す図である。-), and in the same figure (CJ is a diagram showing a binarized signal obtained by binarizing this detection signal with the threshold value of v'rit.
第7図(a)は、固体撮像光電変換素子120.12B
を画素寸法Hの1/2だけ−X及び1方向にシフトし配
置した場合に、異物10t−有する試料上をX方向に短
資して検出する状態?示し、同図(b)は、固体撮像光
電変換素子12ム12Eの谷々の画素(’se 1st
ABm lBp In6−”4e J4m ’4
a 14a In4) カラ4bレル検出器号を示し
、同図(C)は、固体撮像光電変換素子12ハ12gで
得られた検出信号を各々閾値VTIIで2値化し、0几
処理した後の2値化信号を示す図である。FIG. 7(a) shows a solid-state imaging photoelectric conversion element 120.12B.
is shifted by 1/2 of the pixel size H in the -X and 1 directions, and a specimen containing 10 tons of foreign matter is detected by being shifted in the X direction? The figure (b) shows the trough pixels ('se 1st
ABm lBp In6-”4e J4m '4
a 14a In4) A color 4b detector number is shown, and (C) of the same figure shows the detection signals obtained by the solid-state imaging photoelectric conversion elements 12 and 12g, which are each binarized using a threshold value VTII and subjected to zero processing. FIG. 3 is a diagram showing a value signal.
なお、第4〜7図では説明を藺単にするために各々ノ画
素数5ケ(”m J e ’a Ia m” J@−f
fj@・L、・・・−・↓、・・・m、・輸・・・m4
)としている。In addition, in FIGS. 4 to 7, in order to simplify the explanation, the number of pixels is 5 ("m J e 'a Ia m" J@-f
fj@・L,・・・−・↓,・・m,・export・m4
).
固体撮像光電変換素子12八12a12Cにおいての検
出では各々の画素(↓・・・m a Ll・・・ml・
L、・・・m、)から得られる検出信号と各々閾値Vr
mで2値化信号とした場合、画素jとA(又はAとj、
Lとj。In the detection in the solid-state imaging photoelectric conversion element 128 12a12C, each pixel (↓...m a Ll...ml
L,...m,) and the respective threshold values Vr
When m is used as a binary signal, pixels j and A (or A and j,
L and j.
L、とjりの間の不感惜13のα5〜1細の小異*1゜
を見逃してしまう。I will miss the small difference *1 degree between L and j, which is α5~1 in the gap 13.
そこで第7図(りのように試料表面の拡大結像位′ 置
において、固体撮像光電変換素子12Dに固体撮像光電
変換素子12Bt−χとy方向に画素寸法Hの1/2だ
けオーバラップさせることによシ、固体撮像光電変換素
子121)の画素り、とj、又は!、と−の間の不感f
13にある小異物10は、固体撮像光電変換素子12E
の画素り、と14によシ検出されるため、この検出信号
、をVTHの閾値で2値化し、固体撮像光電変換素子1
2ハ12g信号のOR,処理により2値化信号は、小異
物10でも”1” とな9感度向上が得られる。Therefore, at the magnified imaging position of the sample surface as shown in FIG. In particular, the pixels of the solid-state imaging photoelectric conversion element 121), and j, or! , the insensitivity f between and -
The small foreign object 10 located at 13 is the solid-state imaging photoelectric conversion element 12E.
This detection signal is binarized using the threshold value of VTH, and the solid-state imaging photoelectric conversion element 1
By ORing and processing the 2x12g signals, the binary signal becomes "1" even with a small foreign object 10, and an improvement in sensitivity of 9 is obtained.
次に固体fj&像元電変換素子の信号処理方法を第8図
に示す。Next, FIG. 8 shows a signal processing method of the solid-state fj & image-to-electrical conversion element.
固体撮像光電変換素子12ハ12Eの画素す、・・・m
、。Pixels of solid-state imaging photoelectric conversion element 12c, 12E...m
,.
輸・・・町の各々の出力はNΦコンバータ14によ)デ
ィジタル(IT号に変換され、閾値のVTR指示で2値
化回路15によ)2値化されて2値化信号(1″)は異
物メモリ16に記憶され08回wr17に導かれる。少
な(とも、固体撮像光電f:換素子12話12Bいずれ
かの画素で異物が慎重された場合に0几回路17の出力
は@1”となシ、表示モニタ18に表示される。この方
法によ巾検出感度の向上が図れる。The output of each town is converted into a digital signal (IT number by the NΦ converter 14) and binarized by the binarization circuit 15 according to the VTR instruction of the threshold value to produce a binarized signal (1"). is stored in the foreign object memory 16 and guided to wr17 08 times. This is then displayed on the display monitor 18. By this method, the width detection sensitivity can be improved.
次に検出器の検出画素の大きさとパターン寸法の関係に
ついて第9図、第10図を用いて説明する。Next, the relationship between the size of the detection pixel of the detector and the pattern size will be explained using FIGS. 9 and 10.
−第9図(b)のような多層パターンは、パターン90
段差が大ぎ<、パターン9が多層になるため、同図(a
)のように検出器の画素Uが601m”l/)場せ、複
数(2り)のパターンコーナ9bの影*’を受け、幽g
Uの検出出力が大きくなる。そこで、lI!li巣2の
ように画素寸法を2鴎1とすればパターンコーナ9bの
影響はVM素Uに比べて小さくできる。- A multilayer pattern as shown in FIG. 9(b) is a pattern 90
The difference in level is too large and pattern 9 is multi-layered, so the same figure (a
), the pixel U of the detector is placed in a field of 601m"l/), receives the shadows *' of multiple (two) pattern corners 9b, and
The detection output of U increases. So, lI! If the pixel size is set to 2 and 1, as in the case of the Li nest 2, the influence of the pattern corner 9b can be made smaller compared to the VM element U.
実施例で用いる薄膜トラジスタ試料上のパターンは幅2
0〜60μm程度であ多画素寸法をこの程度以下とすれ
ば、1画素内1cadのパターンコーナ9bが入らない
。The pattern on the thin film transistor sample used in the example has a width of 2
If the multi-pixel dimension is set to about 0 to 60 μm or less, the pattern corner 9b of 1 cad in one pixel will not be included.
第10図(司は、画22が201rnl″の場合で、1
画素には1ケのパターンコーナ9bからの散乱光のみが
入るので同図(C)のようにパターンコーナ9bの構出
出力は小異′@10の検出出力より小さくなる。FIG. 10 (Tsukasa is 1
Since only the scattered light from one pattern corner 9b enters the pixel, the composition output of the pattern corner 9b is smaller than the detection output of the small difference '@10, as shown in FIG.
こり場付、1画素: 20細”とした為、1画素内のパ
ターンコーナ9bの畝が1ケ以内でめジ小典物IQとパ
ターン9の弁別が可能となる。Since the ridges are set to 20" per pixel, it is possible to distinguish between Meji Kotenmon IQ and Pattern 9 within one pixel of pattern corner 9b.
−試料が、薄膜トランジスタ試料の場合パターン15は
X、Y方向の回路パターンの組み合わセノ構成でめ)パ
ターン直一部9aからの散乱光は壁間フィルタ6に工9
避元さn異viJ10との弁別がでさあ。- If the sample is a thin film transistor sample, the pattern 15 is a combination of circuit patterns in the
I can't tell it apart from the different viJ10.
しかし、同図(1))のように画XUt″60廂−と大
きくすると、1画素には複数のパターンコーナ9bが入
るため同図(d)のように、パターンコーナ9bからの
検出出力は小異物10の検出出力よシ大きくなる。However, if the image size is increased to 60 squares as shown in (1) of the same figure, multiple pattern corners 9b are included in one pixel, so the detection output from the pattern corner 9b is The detection output of the small foreign object 10 becomes larger.
このように、画素を大きくしてTPT試料表面を走査す
ると複数のパターンコーナ9bからの散乱光を検出する
ため、異物検出出力がその中に埋もれてしまう。よって
、画素を20点−以下にする必要がある。In this way, when the TPT sample surface is scanned with large pixels, scattered light from a plurality of pattern corners 9b is detected, so that the foreign object detection output is buried in the scattered light. Therefore, it is necessary to reduce the number of pixels to 20 points or less.
次に薄膜トランジスタ基板上の異物を検出する装置に本
発明を適用した例について第11図、第12図を用いて
説明する。Next, an example in which the present invention is applied to a device for detecting foreign matter on a thin film transistor substrate will be described with reference to FIGS. 11 and 12.
この実施例の異物検査装置は、光学照明部19、TPT
基板5t−走査させるためのx(y)ステージ21 、
(22)とθ方向に回転させるθステージ23及び図
示にはないが自動焦点合せ機構からなるステージ駆動部
24、半導体レーザ25ヲレンズ26によシ集光し薄膜
トランジスタ基板5に照射する照射部27、TPT基板
5表面よシ反射された散乱光を検出する検出部2屯検出
部28よシ検出された検出信号を処理する処理回路29
よ多構成されている。The foreign matter inspection device of this embodiment includes an optical illumination section 19, a TPT
Substrate 5t - x (y) stage 21 for scanning,
(22) a θ stage 23 that rotates in the θ direction; a stage drive unit 24 consisting of an automatic focusing mechanism (not shown); A processing circuit 29 that processes the detection signal detected by the detection unit 28;
It is made up of many things.
更に構成要素について説明する。Further, the constituent elements will be explained.
ステージ駆動部24は、薄膜トランジスタ基板5をθス
テージ25上面にセットし位置決め後、真空で吸着する
ことにより薄膜トランジスタ基板5が固定される。Xス
テージ21とXステージ22のエンコーダ30α、30
bで座標位置情報がCP U31へ逐次入力される。After setting and positioning the thin film transistor substrate 5 on the upper surface of the θ stage 25, the stage driving unit 24 fixes the thin film transistor substrate 5 by vacuum suction. Encoders 30α, 30 of X stage 21 and X stage 22
At step b, coordinate position information is sequentially input to the CPU 31.
照射部27は、半導体レーザ25をレンズ26によシ集
光して薄膜トランジスタ基板5表面に照射するものであ
る。薄膜トランジスタ基板5の表面全面を検査するため
に、X−Y定量させる。この時、薄膜トランジスタ基板
5表面の高さが変動すると。The irradiation unit 27 focuses the semiconductor laser 25 through a lens 26 and irradiates the surface of the thin film transistor substrate 5 with the focused light. In order to inspect the entire surface of the thin film transistor substrate 5, X-Y quantification is performed. At this time, if the height of the surface of the thin film transistor substrate 5 changes.
半導体レーザ25による照明位置が変動し、異物検出性
能が低下するため自動焦点合せ機構〔図示せス(ステー
ジ駆動部24内に具備)〕が必貴でるる。Since the illumination position by the semiconductor laser 25 changes and the foreign object detection performance deteriorates, an automatic focusing mechanism (not shown (included in the stage drive section 24)) is required.
これには、脣囲昭58−70540 号のような投影
縞パターンコントラスト慎出方式が通している。For this purpose, a projection stripe pattern contrast extraction method such as that disclosed in No. 58-70540 is used.
検出s28は、薄層トランジスタ基板5茨面より反射さ
れた散乱光を対物レンズ32により来光し、半透過鏡3
3により分岐した後、検出器12ム12E上にWi像す
る。ここでは固体撮像光電変換菓子121112Et−
用いる。In the detection s28, the scattered light reflected from the thorny surface of the thin-layer transistor substrate 5 is sent to the objective lens 32, and the semi-transparent mirror 3
After branching by 3, a Wi image is formed on the detector 12m 12E. Here, solid-state imaging photoelectric conversion confectionery 121112Et-
use
また検出928にはパターン9ρ)らの散乱光kjJ1
元するたりに空間フィルタ6”# 6b* 6Cが具備
6れている。In addition, the detection 928 includes scattered light kjJ1 of pattern 9ρ).
A spatial filter 6''#6b*6C is provided at the beginning.
検出器12ム12i!Jの検出信号は、処理回路29に
より処理さnる。検出912話12Eの谷幽索からの出
力はAIDコンバータ14によりディジタル薯号に変換
され211f化回に1615で2値化され2櫃化信号(
11′)は異物メモリ16に記憶されORIIg回路1
7に導かれ表示モニタ18に1画素毎に表示さ扛る。Detector 12mu 12i! The detection signal of J is processed by the processing circuit 29. The output from Yusaku Tani in the detection 912 episode 12E is converted into a digital code by the AID converter 14, and in the 211f conversion, it is binarized at 1615 and converted into a binary signal (
11') is stored in the foreign object memory 16 and sent to the ORIIg circuit 1.
7 and displayed pixel by pixel on the display monitor 18.
座標位置はエンコーダ5otL、 50bによρCPU
61へ入力し座標位置に応じた閾値レベルは予110C
PU51内で設定されている。The coordinate position is determined by encoder 5otL and ρCPU by 50b.
The threshold level according to the coordinate position input to 61 is 110C.
It is set within the PU51.
また、本発明は薄膜トランジスタに限定されず、ウェー
ハ、ホトマスクやレチクル゛等の他の製品の検量にも通
用可能である。Furthermore, the present invention is not limited to thin film transistors, but can also be applied to the calibration of other products such as wafers, photomasks, and reticles.
以上説明したように本発明によれば、微小異物の検出を
高感度かつ安定に行なうことの出来る自動異物検量装置
が実現できる効果を奏する。As explained above, according to the present invention, it is possible to realize an automatic foreign matter measuring device that can detect minute foreign matter with high sensitivity and stability.
第1図は本−A明の一実施例に通用するTF’T裏造の
主要工程図、
第2図はパターンと異物からの散乱光分布を示す図、
第3図はパターン形状による散乱光分布と空間フィルタ
遮光部形状の相違を示した図、第4図乃至第7図は固体
撮像光′it変侠累子による検出法と検出信号を示す図
、
第8図は固体撮像光電変換素子の信号処理方法を示す図
、
第9図及び第10図は検出器の検出画素におけるパター
ンと異物との関係を示す図、
第11図は本発明の一実施例の異物検査装置の概要を示
す模式図、
第12図は同じく本発明の一実施例の異物検査装置のブ
ロック図を示すものでるる。
符号の説明
5・・・薄膜トランジスタ、 6・・・空間フィルタ
、9・−パターン、10 ・・・異物、11・一対物レ
ンズ、12・・・検出器、13・・・不感帯、14・・
・んΦコンバータ、15・・・2値化回路、16・・・
異物メモリ、17・−〇凡回路、18・・・表示モニタ
、19 ・・・光学照Ij11部、21・・Xステージ
、22−Yステージ、23・・・θステージ、24・・
・ステージ駆動部、27−・・照射部、2B・・・検出
部、29−・・処理回路、31−CP U。
第1囚
■ oO
イ
(Cン (1,(i)
0−ツアー・&光重 /θ−・聚夜
尾4I21
第60
第6圀
祐70
弗B目
/2D
吟μ
晃1
(α)(b)
発10囚Figure 1 is a diagram showing the main process of TF'T lining that is applicable to one embodiment of this A-mei. Figure 2 is a diagram showing the distribution of scattered light from the pattern and foreign matter. Figure 3 is the scattered light due to the pattern shape. A diagram showing the difference in the distribution and the shape of the spatial filter light shielding part, Figures 4 to 7 are diagrams showing the detection method and detection signal using solid-state imaging light, and Figure 8 is a diagram showing the solid-state imaging photoelectric conversion element. FIG. 9 and FIG. 10 are diagrams showing the relationship between the pattern in the detection pixels of the detector and a foreign object. FIG. 11 is an overview of a foreign object inspection device according to an embodiment of the present invention. FIG. 12 is a schematic diagram showing a block diagram of a foreign matter inspection apparatus according to an embodiment of the present invention. Explanation of symbols 5...Thin film transistor, 6...Spatial filter, 9...-pattern, 10...Foreign object, 11.1 objective lens, 12...Detector, 13...Dead zone, 14...
・NΦ converter, 15... Binarization circuit, 16...
Foreign object memory, 17...-circuit, 18...Display monitor, 19...Optical illumination Ij 11 section, 21...X stage, 22-Y stage, 23...θ stage, 24...
- Stage drive section, 27--Irradiation section, 2B--Detection section, 29--Processing circuit, 31-CPU. 1st Prisoner ■ oO I (Cn (1, (i)
0-Tour & Mitsushige /θ-・Juyao 4I21 60th 6th Kousuke 70 弗B 目/2D Ginμ Ko 1 (α) (b) 10th prisoner
Claims (1)
信号に変換する固体撮像光電変換素子を、試料表面の拡
大像位置に複数配置して該固体撮像光電変換素子の各々
の出力信号により試料表面上の異物を検出することを特
徴とする異物検出方法。 2、上記複数の固体撮像光電変換素子を、固体撮像光電
変換素子と試料との相対的走査方向に重複して配置して
個々の検出領域の隣接部に存在する不感帯に起因する異
物の見逃しを避けることを特徴とする請求項1記載の異
物検出方法。 3、試料に光を照明する照明手段と、該照明手段によっ
て照明された試料からの散乱光を集光する集光光学系と
、該集光光学系によって集光された光を受光して電気信
号に変換する画素を複数有する固体撮像光電変換素子と
、該固体撮像光電変換素子の画素から得られた信号に基
いて異物を検出する検出手段とを備えたことを特徴とす
る異物検出装置。 4、上記画素の大きさを試料面上に換算して20×20
μm^3以下であることを特徴とする請求項3記載の異
物検出装置。 5、上記集光光学系に所定の方向の散乱光を遮光する空
間フィルタを設置したことを特徴とする請求項3記載の
異物検出装置。 6、上記空間フィルタを複数種類設け、切替えできるよ
うに構成したことを特徴とする請求項5記載の異物検出
装置。 7、上記複数有する固体撮像光電変換素子を、固体撮像
光電変換素子と試料との相対的走査方向に重複して配置
したことを特徴とする請求項3記載の異物検出装置。[Claims] 1. A plurality of solid-state imaging photoelectric conversion elements that convert scattered light from the sample generated by an illumination means into electrical signals are arranged at enlarged image positions on the sample surface, and each of the solid-state imaging photoelectric conversion elements A method for detecting foreign matter, characterized by detecting foreign matter on the surface of a sample using an output signal. 2. The above-mentioned plurality of solid-state imaging photoelectric conversion elements are arranged in an overlapping manner in the relative scanning direction between the solid-state imaging photoelectric conversion element and the sample to avoid overlooking foreign objects due to dead zones existing in adjacent areas of individual detection areas. 2. The method of detecting foreign matter according to claim 1, wherein: 3. An illumination means for illuminating the sample with light, a condensing optical system for condensing the scattered light from the sample illuminated by the illumination means, and a condensing optical system for receiving the light condensed by the condensing optical system to generate electricity. A foreign object detection device comprising: a solid-state imaging photoelectric conversion element having a plurality of pixels to be converted into signals; and a detection means for detecting a foreign object based on the signals obtained from the pixels of the solid-state imaging photoelectric conversion element. 4. The size of the above pixel is converted to 20 x 20 on the sample surface.
4. The foreign object detection device according to claim 3, wherein the particle diameter is .mu.m^3 or less. 5. The foreign object detection device according to claim 3, wherein the condensing optical system is provided with a spatial filter that blocks scattered light in a predetermined direction. 6. The foreign object detection device according to claim 5, wherein a plurality of types of spatial filters are provided and configured to be switchable. 7. The foreign object detection apparatus according to claim 3, wherein the plurality of solid-state imaging photoelectric conversion elements are arranged in an overlapping manner in a relative scanning direction between the solid-state imaging photoelectric conversion element and the sample.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63049503A JPH01224692A (en) | 1988-03-04 | 1988-03-04 | Foreign object detection method and device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63049503A JPH01224692A (en) | 1988-03-04 | 1988-03-04 | Foreign object detection method and device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH01224692A true JPH01224692A (en) | 1989-09-07 |
Family
ID=12832937
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP63049503A Pending JPH01224692A (en) | 1988-03-04 | 1988-03-04 | Foreign object detection method and device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH01224692A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2010052891A1 (en) * | 2008-11-04 | 2010-05-14 | 株式会社ニコン | Surface inspection device |
-
1988
- 1988-03-04 JP JP63049503A patent/JPH01224692A/en active Pending
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2010052891A1 (en) * | 2008-11-04 | 2010-05-14 | 株式会社ニコン | Surface inspection device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR930008773B1 (en) | Method and apparatus for detecting circuit pattern detect | |
| US6774991B1 (en) | Method and apparatus for inspecting a patterned semiconductor wafer | |
| US7847927B2 (en) | Defect inspection method and defect inspection apparatus | |
| US6621570B1 (en) | Method and apparatus for inspecting a patterned semiconductor wafer | |
| US8411264B2 (en) | Method and apparatus for inspecting defects | |
| US8416292B2 (en) | Defect inspection apparatus and method | |
| JPH0671038B2 (en) | Crystal defect recognition processing method | |
| JP2005158780A (en) | Pattern defect inspection method and apparatus | |
| JP2000105203A (en) | Defect inspection apparatus and method | |
| JPS6289336A (en) | Foreign object detection device on semiconductor substrate | |
| JP2005283190A (en) | Foreign object inspection method and apparatus | |
| JP3287227B2 (en) | Micro foreign matter detection method and its detection device | |
| US20060290930A1 (en) | Method and apparatus for inspecting pattern defects | |
| JP2001183301A (en) | Defect inspection apparatus and method | |
| US9933370B2 (en) | Inspection apparatus | |
| TWI829958B (en) | System and method for inspecting semiconductor devices | |
| JPH01224692A (en) | Foreign object detection method and device | |
| JP2017138246A (en) | Inspection device, inspection method, and image sensor | |
| JPS61104242A (en) | Semiconductor wafer foreign matter inspection equipment | |
| JPS61104244A (en) | Semiconductor wafer foreign object detection equipment | |
| JP3070748B2 (en) | Method and apparatus for detecting defects on reticle | |
| JP3201396B2 (en) | Method for manufacturing semiconductor device | |
| JPS61104658A (en) | Semiconductor solid-state image sensor array | |
| JPH0562821B2 (en) | ||
| JPH0690143B2 (en) | Method for detecting agglomerated particles in transparent thin film |